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We will discuss applications of Hörmander’s L2-estimate for ∂̄ in the
following problems:

1. Suita Conjecture (1972) from potential theory
2. Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)
3. Mahler Conjecture (1938) from convex analysis
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• “=” if D is simply connected

• “<” if D is an annulus (Suita)

• Enough to prove for D with smooth boundary

• “=” on ∂D if D has smooth boundary
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C = 2 (B., 2007)
C = 1.95388 . . . (Guan-Zhou-Zhu, 2011)
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Then there exists a holomorphic extension F of f to Ω such that∫
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where C depends only on n and the diameter of Ω.

Siu / Berndtsson (1996): If Ω ⊂ Cn−1 × {|zn < 1} and H = {zn = 0}
then C = 4π.

Problem. Can we improve to C = π?

B.-Y. Chen (2011): Ohsawa-Takegoshi extension theorem can be deduced
directly from Hörmander’s estimate for ∂̄-equation!
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Bourgain-Milman (1987): There exists c > 0 such that

λ(K)λ(K′) ≥ cn
4n

n!
.

Mahler Conjecture: c = 1, G. Kuperberg (2006): c = π/4

Nazarov (2012): One can show the Bourgain-Milman inequality with
c = (π/4)3 using Hörmander’s estimate.
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jk̄ᾱjαk, where (ϕjk̄) = (∂2ϕ/∂zj∂z̄k)−1 is the

length of α w.r.t. the Kähler metric i∂∂̄ϕ.

The estimate also makes sense for non-smooth ϕ: instead of |α|2
i∂∂̄ϕ

one

has to take any nonnegative H ∈ L∞loc(Ω) with
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(B., 2005).
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Berndtsson’s estimate is not enough to obtain Ohsawa-Takegoshi (it would
be if it were true for δ = 1).



Berndtsson’s Estimate
Ω - pseudoconvex
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ϕ, ψ - psh, |∂̄ψ|2
i∂∂̄ψ

≤ 1

Then, if 0 ≤ δ < 1, one can find u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2eδψ−ϕdλ ≤

4

(1− δ)2

∫
Ω
|α|2

i∂∂̄ψ
eδψ−ϕdλ.



Berndtsson’s Estimate
Ω - pseudoconvex
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ϕ, ψ - psh, |∂̄ψ|2
i∂∂̄ψ

≤ 1

Then, if 0 ≤ δ < 1, one can find u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2eδψ−ϕdλ ≤

4

(1− δ)2

∫
Ω
|α|2

i∂∂̄ψ
eδψ−ϕdλ.

Theorem. Ω, α, ϕ, ψ as above
Assume in addition that |∂̄ψ|2

i∂∂̄ψ
≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) solving ∂̄u = α with∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ψ
)eψ−ϕdλ ≤

1

(1−
√
δ)2

∫
Ω
|α|2

i∂∂̄ψ
eψ−ϕdλ.



Berndtsson’s Estimate
Ω - pseudoconvex
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ϕ, ψ - psh, |∂̄ψ|2
i∂∂̄ψ

≤ 1

Then, if 0 ≤ δ < 1, one can find u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2eδψ−ϕdλ ≤

4

(1− δ)2

∫
Ω
|α|2

i∂∂̄ψ
eδψ−ϕdλ.

Theorem. Ω, α, ϕ, ψ as above
Assume in addition that |∂̄ψ|2

i∂∂̄ψ
≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) solving ∂̄u = α with∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ψ
)eψ−ϕdλ ≤

1

(1−
√
δ)2

∫
Ω
|α|2

i∂∂̄ψ
eψ−ϕdλ.

From this estimate one can obtain Ohsawa-Takegoshi and Suita with
C = 1.95388 . . . (obtained earlier by Guan-Zhou-Zhu).



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u - minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u - minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)

⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u - minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)

⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)
⇒ v := ueψ ⊥ ker ∂̄ in L2(Ω, e−ϕ)



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u - minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)

⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)
⇒ v := ueψ ⊥ ker ∂̄ in L2(Ω, e−ϕ)
⇒ v - minimal solution to ∂̄v = β := eψ(α+ u∂̄ψ) in L2(Ω, e−ϕ)



Theorem. Ω - pseudoconvex in Cn, ϕ - psh in Ω
α ∈ L2

loc,(0,1)
(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2
i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω
|u|2(1− |∂̄ψ|2

i∂∂̄ϕ
)e2ψ−ϕdλ ≤

1 +
√
δ

1−
√
δ

∫
Ω
|α|2

i∂∂̄ϕ
e2ψ−ϕdλ.

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u - minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)

⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)
⇒ v := ueψ ⊥ ker ∂̄ in L2(Ω, e−ϕ)
⇒ v - minimal solution to ∂̄v = β := eψ(α+ u∂̄ψ) in L2(Ω, e−ϕ)
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√
δ̃

(1−
√
δ̃)(1− δ̃)

=
4

(1− δ)2
.
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ϕ - psh in Ω, f - holomorphic in Ω′ := Ω ∩ {zn = 0}
Then there exists a holomorphic extension F of f to Ω such that∫

Ω
|F |2e−ϕdλ ≤

π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′.

(For n = 1 and ϕ ≡ 0 we obtain the Suita Conjecture.)

Sketch of proof. By approximation may assume that Ω is bounded,
smooth, strongly pseudoconvex, ϕ is smooth up to the boundary, and f is
holomorphic in a neighborhood of Ω′.

ε > 0
α := ∂̄

(
f(z′)χ(−2 log |zn|)

)
,

where χ(t) = 0 for t ≤ −2 log ε and χ(∞) = 1.

G := GD(·, 0)
ϕ̃ := ϕ+ 2G+ η(−2G)

ψ := γ(−2G)

F := f(z′)χ(−2 log |zn|)− u, where u is a solution of ∂̄u = α given by the
previous thm.
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)
e2g−h+t ≥ 1.
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Crucial ODE Problem

Find g ∈ C0,1(R+), h ∈ C1,1(R+) such that h′ < 0, h′′ > 0,

lim
t→∞

(g(t) + log t) = lim
t→∞

(h(t) + log t) = 0

and (
1−

(g′)2

h′′

)
e2g−h+t ≥ 1.

Solution:

h(t) := − log(t+ e−t − 1)

g(t) := − log(t+ e−t − 1) + log(1− e−t).

Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with
optimal constant (and obtained some generalizations) but used essentially
the same ODE.
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KΩ(w) ≥
1

e2naλ({GΩ(·, w) < −a})
.

Corollary 1. If n = 1 then

KΩ(w) ≥
cΩ(w)2

π
.

Corollary 2. If Ω is convex in Cn then for w ∈ Ω

KΩ(w) ≥
1

λ2n(IΩ(w))
,

where IΩ(w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).



Theorem. Assume Ω is pseudoconvex in Cn. Then for a ≥ 0 and w ∈ Ω

KΩ(w) ≥
1

e2naλ({GΩ(·, w) < −a})
.

Sketch of proof. May assume that Ω is bounded, smooth and strongly
pseudoconvex. G := GΩ,w. Using Donnelly-Fefferman with

ϕ := 2nG, ψ := − log(−G),

α := ∂̄(χ ◦G) = χ′ ◦G ∂̄G,

χ(t) :=

0 t ≥ −a,∫ −t
a

e−ns

s
ds t < −a,

f := χ ◦G− u ∈ O(Ω)

we will get

KΩ(w) ≥
|f(w)|2

||f ||2
≥

cn,a

λ({G < −a})
,

where

cn,a =
Ei(na)2

(Ei(na) +
√
C)2

, Ei(a) =

∫ ∞
a

e−s

s
ds.
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Tensor power trick. Ω̃ := Ωm ⊂ Cnm, w̃ := (w, . . . , w), m� 0

K
Ω̃

(w̃) = (KΩ(w))m, λ2nm({G
Ω̃,w̃

< −a}) = (λ2n({G < −a})m.

(KΩ(w))m ≥
cnm,a

(λ2n({G < −a}))m
but

lim
m→∞

c
1/m
nm,a = e−2na.
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Conjecture. λ2n(I) ≤
(

4

π

)n
(λn(K))2

KTK
(0) ≥

(π
4

)n 1

(λn(K))2
(equality for cubes)



By the Lempert theory, if K is smooth, symmetric, strongly convex in Rn,

ν : ∂K → Sn−1

is the Gauss map, then ∂I is parametrized by

1

4

∫ 2π

0
eit ν−1

(
Re (eitw̄)

|Re (eitw̄)|

)
dt, w ∈ S2n−1.


