Hörmander's $\bar{\partial}$-estimate,
 Some Generalizations, and New Applications

Zbigniew Błocki
(Uniwersytet Jagielloński, Kraków, Poland)

http://gamma.im.uj.edu.pl/~blocki

Abel Symposium
in honor of Professor Yum-Tong Siu
Trondheim, July 4, 2013

We will discuss applications of Hörmander's L^{2}-estimate for $\bar{\partial}$ in the following problems:

1. Suita Conjecture (1972) from potential theory
2. Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)
3. Mahler Conjecture (1938) from convex analysis

Suita Conjecture

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$$
c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)
$$

(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita Conjecture (1972): $\quad \operatorname{Curv}_{c_{D}|d z|} \leq-1$

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita Conjecture (1972): $\quad \operatorname{Curv}_{c_{D}|d z|} \leq-1$

- "=" if D is simply connected
- " $<$ " if D is an annulus (Suita)
- Enough to prove for D with smooth boundary
- "=" on ∂D if D has smooth boundary

$\operatorname{Curv}_{c_{D}|d z|}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{K_{D}|d z|^{2}}$ for $D=\left\{e^{-10}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{\left(\log K_{D}\right)_{z \bar{z}|d z|^{2}} \text { for } D=\left\{e^{-5}<|z|<1\right\} \text { as a function of } t=-2 \log |z|, ~(z)}$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

It is thus an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

It is thus an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension theorem, showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$.

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

It is thus an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension theorem, showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$.
$C=2$
(B., 2007)
$C=1.95388 \ldots$
(Guan-Zhou-Zhu, 2011)

Ohsawa-Takegoshi Extension Theorem (1987)
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.

Ohsawa-Takegoshi Extension Theorem (1987)
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.
Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times\left\{\mid z_{n}<1\right\}$ and $H=\left\{z_{n}=0\right\}$ then $C=4 \pi$.

Ohsawa-Takegoshi Extension Theorem (1987)
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.
Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times\left\{\mid z_{n}<1\right\}$ and $H=\left\{z_{n}=0\right\}$ then $C=4 \pi$.

Problem. Can we improve to $C=\pi$?

Ohsawa-Takegoshi Extension Theorem (1987)
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.
Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times\left\{\mid z_{n}<1\right\}$ and $H=\left\{z_{n}=0\right\}$ then $C=4 \pi$.

Problem. Can we improve to $C=\pi$?
B.-Y. Chen (2011): Ohsawa-Takegoshi extension theorem can be deduced directly from Hörmander's estimate for $\bar{\partial}$-equation!

Mahler Conjecture

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Bourgain-Milman (1987): There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!}
$$

Mahler Conjecture: $c=1$

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Bourgain-Milman (1987): There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!}
$$

Mahler Conjecture: $c=1, \quad$ G. Kuperberg (2006): $c=\pi / 4$

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Santaló Inequality (1949): Mahler volume is maximized by balls.
Mahler Conjecture (1938): Mahler volume is minimized by cubes.
True for $n=2$:

Bourgain-Milman (1987): There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!}
$$

Mahler Conjecture: $c=1, \quad$ G. Kuperberg (2006): $c=\pi / 4$
Nazarov (2012): One can show the Bourgain-Milman inequality with $c=(\pi / 4)^{3}$ using Hörmander's estimate.

Hörmander's Estimate (1965)
Ω - pseudoconvex in \mathbb{C}^{n}, φ - smooth, strongly psh in Ω
$\alpha=\sum_{j} \alpha_{j} d \bar{z}_{j} \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Here $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k} \varphi^{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}$, where $\left(\varphi^{j \bar{k}}\right)=\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)^{-1}$ is the length of α w.r.t. the Kähler metric $i \partial \bar{\partial} \varphi$.

Hörmander's Estimate (1965)
Ω - pseudoconvex in \mathbb{C}^{n}, φ - smooth, strongly psh in Ω
$\alpha=\sum_{j} \alpha_{j} d \bar{z}_{j} \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda .
$$

Here $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k} \varphi^{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}$, where $\left(\varphi^{j \bar{k}}\right)=\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)^{-1}$ is the length of α w.r.t. the Kähler metric $i \partial \bar{\partial} \varphi$.

The estimate also makes sense for non-smooth φ : instead of $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}$ one has to take any nonnegative $H \in L_{\text {loc }}^{\infty}(\Omega)$ with

$$
i \bar{\alpha} \wedge \alpha \leq H i \partial \bar{\partial} \varphi
$$

(B., 2005).

Donnelly-Fefferman (1982)
Ω, α, φ as before
ψ psh in Ω s.th. $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ (that is $i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi$)
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda
$$

where C is an absolute constant.

Donnelly-Fefferman (1982)
Ω, α, φ as before
ψ psh in Ω s.th. $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ (that is $i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi$)
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda
$$

where C is an absolute constant.

Berndtsson (1996)
$\Omega, \alpha, \varphi, \psi$ as before
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

Donnelly-Fefferman (1982)
Ω, α, φ as before
ψ psh in Ω s.th. $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ (that is $i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi$)
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda
$$

where C is an absolute constant.

Berndtsson (1996)
$\Omega, \alpha, \varphi, \psi$ as before
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

The above constant was obtained in B. 2004 and is optimal (B. 2012). Therefore $C=4$ is optimal in Donnelly-Fefferman.

Donnelly-Fefferman (1982)
Ω, α, φ as before
ψ psh in Ω s.th. $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ (that is $i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi$)
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda
$$

where C is an absolute constant.

Berndtsson (1996)
$\Omega, \alpha, \varphi, \psi$ as before
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

The above constant was obtained in B. 2004 and is optimal (B. 2012). Therefore $C=4$ is optimal in Donnelly-Fefferman.

Berndtsson's estimate is not enough to obtain Ohsawa-Takegoshi (it would be if it were true for $\delta=1$).

Berndtsson's Estimate
Ω - pseudoconvex
$\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\varphi, \psi-\mathrm{psh},|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

Berndtsson's Estimate
Ω - pseudoconvex
$\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\varphi, \psi-\mathrm{psh},|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

Theorem. $\Omega, \alpha, \varphi, \psi$ as above
Assume in addition that $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq \delta<1$ on supp α.
Then there exists $u \in L_{l o c}^{2}(\Omega)$ solving $\bar{\partial} u=\alpha$ with

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2}\right) e^{\psi-\varphi} d \lambda \leq \frac{1}{(1-\sqrt{\delta})^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\psi-\varphi} d \lambda
$$

Berndtsson's Estimate

Ω - pseudoconvex
$\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\varphi, \psi-\mathrm{psh},|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda .
$$

Theorem. $\Omega, \alpha, \varphi, \psi$ as above
Assume in addition that $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq \delta<1$ on $\operatorname{supp} \alpha$.
Then there exists $u \in L_{l o c}^{2}(\Omega)$ solving $\bar{\partial} u=\alpha$ with

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2}\right) e^{\psi-\varphi} d \lambda \leq \frac{1}{(1-\sqrt{\delta})^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\psi-\varphi} d \lambda
$$

From this estimate one can obtain Ohsawa-Takegoshi and Suita with $C=1.95388 \ldots$ (obtained earlier by Guan-Zhou-Zhu).

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda .
$$

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial} \operatorname{in} L^{2}\left(\Omega, e^{\psi-\varphi}\right)$

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
$\Rightarrow v$ - minimal solution to $\bar{\partial} v=\beta:=e^{\psi}(\alpha+u \bar{\partial} \psi)$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
$\Rightarrow v$ - minimal solution to $\bar{\partial} v=\beta:=e^{\psi}(\alpha+u \bar{\partial} \psi)$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
By Hörmander's estimate

$$
\int_{\Omega}|v|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\beta|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Therefore

$$
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Therefore

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda & \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left(|\alpha|_{i \partial \bar{\partial} \varphi}^{2}+2|u| \sqrt{H}|\alpha|_{i \partial \bar{\partial} \varphi}+|u|^{2} H\right) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

where $H=|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}$.

Therefore

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda & \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left(|\alpha|_{i \partial \bar{\partial} \varphi}^{2}+2|u| \sqrt{H}|\alpha|_{i \partial \bar{\partial} \varphi}+|u|^{2} H\right) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

where $H=|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}$. For $t>0$ we will get

$$
\begin{aligned}
& \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left[|\alpha|_{i \partial \bar{\partial} \varphi}^{2}\left(1+t^{-1} \frac{H}{1-H}\right)+t|u|^{2}(1-H)\right] e^{2 \psi-\varphi} d \lambda \\
& \leq\left(1+t^{-1} \frac{\delta}{1-\delta}\right) \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \quad+t \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda & \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left(|\alpha|_{i \partial \bar{\partial} \varphi}^{2}+2|u| \sqrt{H}|\alpha|_{i \partial \bar{\partial} \varphi}+|u|^{2} H\right) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

where $H=|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}$. For $t>0$ we will get

$$
\begin{aligned}
& \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left[|\alpha|_{i \partial \bar{\partial} \varphi}^{2}\left(1+t^{-1} \frac{H}{1-H}\right)+t|u|^{2}(1-H)\right] e^{2 \psi-\varphi} d \lambda \\
& \leq\left(1+t^{-1} \frac{\delta}{1-\delta}\right) \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \quad+t \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

We will obtain the required estimate if we take $t:=1 /\left(\delta^{-1 / 2}+1\right)$.

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda .
$$

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants:

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ and $\delta<1$ set $\widetilde{\varphi}:=\varphi+\psi$ and $\widetilde{\psi}=\frac{1+\delta}{2} \psi$.

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ and $\delta<1$ set $\widetilde{\varphi}:=\varphi+\psi$ and $\widetilde{\psi}=\frac{1+\delta}{2} \psi$.
Then $2 \widetilde{\psi}-\widetilde{\varphi}=\delta \psi-\varphi$ and $|\bar{\partial} \widetilde{\psi}|_{i \partial \bar{\partial} \widetilde{\varphi}}^{2} \leq \frac{(1+\delta)^{2}}{4}=: \widetilde{\delta}$.

Theorem. Ω-pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ and $\delta<1$ set $\widetilde{\varphi}:=\varphi+\psi$ and $\widetilde{\psi}=\frac{1+\delta}{2} \psi$.
Then $2 \widetilde{\psi}-\widetilde{\varphi}=\delta \psi-\varphi$ and $|\bar{\partial} \widetilde{\psi}|_{i \partial \bar{\partial} \widetilde{\varphi}}^{2} \leq \frac{(1+\delta)^{2}}{4}=: \widetilde{\delta}$.
We will get Berndtsson's estimate with the constant

$$
\frac{1+\sqrt{\widetilde{\delta}}}{(1-\sqrt{\widetilde{\delta}})(1-\widetilde{\delta})}=\frac{4}{(1-\delta)^{2}}
$$

Theorem (Ohsawa-Takegoshi with optimal constant)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Theorem (Ohsawa-Takegoshi with optimal constant)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

(For $n=1$ and $\varphi \equiv 0$ we obtain the Suita Conjecture.)

Theorem (Ohsawa-Takegoshi with optimal constant)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

(For $n=1$ and $\varphi \equiv 0$ we obtain the Suita Conjecture.)
Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega^{\prime}}$.

Theorem (Ohsawa-Takegoshi with optimal constant)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

(For $n=1$ and $\varphi \equiv 0$ we obtain the Suita Conjecture.)
Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega^{\prime}}$.
$\varepsilon>0$

$$
\alpha:=\bar{\partial}\left(f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)\right),
$$

where $\chi(t)=0$ for $t \leq-2 \log \varepsilon$ and $\chi(\infty)=1$.
$G:=G_{D}(\cdot, 0)$
$\widetilde{\varphi}:=\varphi+2 G+\eta(-2 G)$
$\psi:=\gamma(-2 G)$
$F:=f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)-u$, where u is a solution of $\bar{\partial} u=\alpha$ given by the previous thm.

Crucial ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that $h^{\prime}<0, h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Crucial ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that $h^{\prime}<0, h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Solution:

$$
\begin{aligned}
h(t) & :=-\log \left(t+e^{-t}-1\right) \\
g(t) & :=-\log \left(t+e^{-t}-1\right)+\log \left(1-e^{-t}\right)
\end{aligned}
$$

Crucial ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that $h^{\prime}<0, h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Solution:

$$
\begin{aligned}
h(t) & :=-\log \left(t+e^{-t}-1\right) \\
g(t) & :=-\log \left(t+e^{-t}-1\right)+\log \left(1-e^{-t}\right)
\end{aligned}
$$

Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with optimal constant (and obtained some generalizations) but used essentially the same ODE.

Another approach: general lower bound for the Bergman kernel

Another approach: general lower bound for the Bergman kernel

$$
\begin{aligned}
& K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\} \quad \text { (Bergman kernel) } \\
& G_{\Omega}(\cdot, w)=\sup \left\{v \in P S H^{-}(\Omega), \varlimsup_{z \rightarrow w}(v(z)-\log |z-w|)<\infty\right\} \\
& \text { (pluricomplex Green function) }
\end{aligned}
$$

Another approach: general lower bound for the Bergman kernel

$$
\begin{aligned}
& K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\} \quad \text { (Bergman kernel) } \\
& G_{\Omega}(\cdot, w)=\sup \left\{v \in P S H^{-}(\Omega), \varlimsup_{z \rightarrow w}(v(z)-\log |z-w|)<\infty\right\} \\
& \text { (pluricomplex Green function) }
\end{aligned}
$$

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $a \geq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{2 n a} \lambda\left(\left\{G_{\Omega}(\cdot, w)<-a\right\}\right)}
$$

Another approach: general lower bound for the Bergman kernel

$$
\begin{aligned}
& K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\} \quad \text { (Bergman kernel) } \\
& G_{\Omega}(\cdot, w)=\sup \left\{v \in P S H^{-}(\Omega), \varlimsup_{z \rightarrow w}(v(z)-\log |z-w|)<\infty\right\} \\
& \text { (pluricomplex Green function) }
\end{aligned}
$$

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $a \geq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{2 n a} \lambda\left(\left\{G_{\Omega}(\cdot, w)<-a\right\}\right)}
$$

Corollary 1. If $n=1$ then

$$
K_{\Omega}(w) \geq \frac{c_{\Omega}(w)^{2}}{\pi}
$$

Another approach: general lower bound for the Bergman kernel

$$
\begin{aligned}
& K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\} \quad \text { (Bergman kernel) } \\
& G_{\Omega}(\cdot, w)=\sup \left\{v \in P S H^{-}(\Omega), \varlimsup_{z \rightarrow w}(v(z)-\log |z-w|)<\infty\right\} \\
& \text { (pluricomplex Green function) }
\end{aligned}
$$

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $a \geq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{2 n a} \lambda\left(\left\{G_{\Omega}(\cdot, w)<-a\right\}\right)}
$$

Corollary 1. If $n=1$ then

$$
K_{\Omega}(w) \geq \frac{c_{\Omega}(w)^{2}}{\pi}
$$

Corollary 2. If Ω is convex in \mathbb{C}^{n} then for $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{\lambda_{2 n}\left(I_{\Omega}(w)\right)}
$$

where $I_{\Omega}(w)=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0)=w\right\} \quad$ (Kobayashi indicatrix).

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $a \geq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{2 n a} \lambda\left(\left\{G_{\Omega}(\cdot, w)<-a\right\}\right)}
$$

Sketch of proof. May assume that Ω is bounded, smooth and strongly pseudoconvex. $G:=G_{\Omega, w}$. Using Donnelly-Fefferman with

$$
\begin{gathered}
\varphi:=2 n G, \quad \psi:=-\log (-G), \\
\alpha:=\bar{\partial}(\chi \circ G)=\chi^{\prime} \circ G \bar{\partial} G, \\
\chi(t)
\end{gathered}:=\left\{\begin{array}{ll}
0 & t \geq-a, \\
\int_{a}^{-t} \frac{e^{-n s}}{s} d s & t<-a,
\end{array},\right.
$$

we will get

$$
K_{\Omega}(w) \geq \frac{|f(w)|^{2}}{\|f\|^{2}} \geq \frac{c_{n, a}}{\lambda(\{G<-a\})}
$$

where

$$
c_{n, a}=\frac{\operatorname{Ei}(n a)^{2}}{(\operatorname{Ei}(n a)+\sqrt{C})^{2}}, \quad \operatorname{Ei}(a)=\int_{a}^{\infty} \frac{e^{-s}}{s} d s
$$

Tensor power trick.

Tensor power trick. $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w), m \gg 0$

Tensor power trick. $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w), m \gg 0$

$$
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda_{2 n m}\left(\left\{G_{\widetilde{\Omega}, \widetilde{w}}<-a\right\}\right)=\left(\lambda_{2 n}(\{G<-a\})^{m} .\right.
$$

Tensor power trick. $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w), m \gg 0$

$$
\begin{gathered}
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda_{2 n m}\left(\left\{G_{\widetilde{\Omega}, \widetilde{w}}<-a\right\}\right)=\left(\lambda_{2 n}(\{G<-a\})^{m} .\right. \\
\left(K_{\Omega}(w)\right)^{m} \geq \frac{c_{n m, a}}{\left(\lambda_{2 n}(\{G<-a\})\right)^{m}}
\end{gathered}
$$

Tensor power trick. $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w), m \gg 0$

$$
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda_{2 n m}\left(\left\{G_{\widetilde{\Omega}, \widetilde{w}}<-a\right\}\right)=\left(\lambda_{2 n}(\{G<-a\})^{m} .\right.
$$

$$
\left(K_{\Omega}(w)\right)^{m} \geq \frac{c_{n m, a}}{\left(\lambda_{2 n}(\{G<-a\})\right)^{m}}
$$

but

$$
\lim _{m \rightarrow \infty} c_{n m, a}^{1 / m}=e^{-2 n a}
$$

Application to the Bourgain-Milman Inequality

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{1}
\end{equation*}
$$

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{2}
\end{equation*}
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!}
$$

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{3}
\end{equation*}
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!}
$$

To show the lower bound in (1) we can use Corollary 2:
$K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}(I)}$, where $I=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}\left(\Delta, T_{K}\right), \varphi(0)=0\right\}$.

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{4}
\end{equation*}
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!}
$$

To show the lower bound in (1) we can use Corollary 2:
$K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}(I)}$, where $I=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}\left(\Delta, T_{K}\right), \varphi(0)=0\right\}$.
Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+i K)$

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{5}
\end{equation*}
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!}
$$

To show the lower bound in (1) we can use Corollary 2:
$K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}(I)}$, where $I=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}\left(\Delta, T_{K}\right), \varphi(0)=0\right\}$.
Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+i K)$
Corollary. $\lambda_{2 n}(I) \leq\left(\frac{4}{\pi}\right)^{2 n}\left(\lambda_{n}(K)\right)^{2}$

Application to the Bourgain-Milman Inequality

K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\begin{equation*}
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} \tag{6}
\end{equation*}
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!}
$$

To show the lower bound in (1) we can use Corollary 2:
$K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}(I)}$, where $I=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}\left(\Delta, T_{K}\right), \varphi(0)=0\right\}$.
Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+i K)$
Corollary. $\lambda_{2 n}(I) \leq\left(\frac{4}{\pi}\right)^{2 n}\left(\lambda_{n}(K)\right)^{2}$
Conjecture. $\lambda_{2 n}(I) \leq\left(\frac{4}{\pi}\right)^{n}\left(\lambda_{n}(K)\right)^{2}$

$$
K_{T_{K}}(0) \geq\left(\frac{\pi}{4}\right)^{n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \quad \text { (equality for cubes) }
$$

By the Lempert theory, if K is smooth, symmetric, strongly convex in \mathbb{R}^{n},

$$
\nu: \partial K \rightarrow S^{n-1}
$$

is the Gauss map, then ∂I is parametrized by

$$
\frac{1}{4} \int_{0}^{2 \pi} e^{i t} \nu^{-1}\left(\frac{\operatorname{Re}\left(e^{i t} \bar{w}\right)}{\left|\operatorname{Re}\left(e^{i t} \bar{w}\right)\right|}\right) d t, \quad w \in S^{2 n-1}
$$

