Hörmander's $\bar{\partial}$ -estimate, Some Generalizations, and New Applications

> Zbigniew Błocki (Uniwersytet Jagielloński, Kraków, Poland)

http://gamma.im.uj.edu.pl/~blocki

Abel Symposium in honor of Professor Yum-Tong Siu Trondheim, July 4, 2013 We will discuss applications of Hörmander's $L^2\text{-estimate}$ for $\bar\partial$ in the following problems:

- 1. Suita Conjecture (1972) from potential theory
- 2. Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)
- 3. Mahler Conjecture (1938) from convex analysis

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

$$\begin{split} c_D(z) &:= \exp \lim_{\zeta \to z} \left(G_D(\zeta,z) - \log |\zeta - z| \right) \\ & \quad \text{(logarithmic capacity of } \mathbb{C} \setminus D \text{ w.r.t. } z \text{)} \end{split}$$

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

$$\begin{split} c_D(z) &:= \exp \lim_{\zeta \to z} \left(G_D(\zeta, z) - \log |\zeta - z| \right) \\ & \text{(logarithmic capacity of } \mathbb{C} \setminus D \text{ w.r.t. } z \text{)} \end{split}$$

 $c_D |dz|$ is an invariant metric (Suita metric)

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

$$\begin{split} c_D(z) &:= \exp \lim_{\zeta \to z} \left(G_D(\zeta, z) - \log |\zeta - z| \right) \\ & \text{(logarithmic capacity of } \mathbb{C} \setminus D \text{ w.r.t. } z \text{)} \end{split}$$

 $c_D |dz|$ is an invariant metric (Suita metric)

$$Curv_{c_D|dz|} = -\frac{(\log c_D)_{z\bar{z}}}{c_D^2}$$

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

$$\begin{split} c_D(z) &:= \exp \lim_{\zeta \to z} \left(G_D(\zeta, z) - \log |\zeta - z| \right) \\ & \text{(logarithmic capacity of } \mathbb{C} \setminus D \text{ w.r.t. } z \text{)} \end{split}$$

 $c_D |dz|$ is an invariant metric (Suita metric)

$$Curv_{c_D|dz|} = -\frac{(\log c_D)_{z\bar{z}}}{c_D^2}$$

Suita Conjecture (1972): $Curv_{c_D|dz|} \leq -1$

Green function for bounded domain D in \mathbb{C} :

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \text{ (if } D \text{ is regular)} \end{cases}$$

$$\begin{split} c_D(z) &:= \exp \lim_{\zeta \to z} \left(G_D(\zeta, z) - \log |\zeta - z| \right) \\ & \text{(logarithmic capacity of } \mathbb{C} \setminus D \text{ w.r.t. } z \text{)} \end{split}$$

 $c_D |dz|$ is an invariant metric (Suita metric)

$$Curv_{c_D|dz|} = -\frac{(\log c_D)_{z\bar{z}}}{c_D^2}$$

Suita Conjecture (1972): $Curv_{c_D|dz|} \leq -1$

- "=" if D is simply connected
- "<" if D is an annulus (Suita)
- \bullet Enough to prove for D with smooth boundary
- "=" on ∂D if D has smooth boundary

 $Curv_{c_D \left | dz \right |}$ for $D = \{e^{-5} < |z| < 1\}$ as a function of $t = -2 \log |z|$

 $Curv_{K_D|dz|^2}$ for $D=\{e^{-10}<|z|<1\}$ as a function of $t=-2\log|z|$

 $Curv_{(\log K_D)z\bar{z}\,|dz|^2}$ for $D=\{e^{-5}<|z|<1\}$ as a function of $t=-2\log|z|$

$$\frac{\partial^2}{\partial z \partial \bar{z}} (\log c_D) = \pi K_D \quad \text{(Suita)}$$

$$K_D(z) := \sup\{|f(z)|^2 : f \in \mathcal{O}(D), \ \int_D |f|^2 d\lambda \le 1\}.$$

$$\frac{\partial^2}{\partial z \partial \bar{z}} (\log c_D) = \pi K_D \quad \text{(Suita)}$$

$$K_D(z) := \sup\{|f(z)|^2 : f \in \mathcal{O}(D), \ \int_D |f|^2 d\lambda \le 1\}.$$

Therefore the Suita conjecture is equivalent to

$$c_D^2 \le \pi K_D$$
.

$$\frac{\partial^2}{\partial z \partial \bar{z}} (\log c_D) = \pi K_D \quad \text{(Suita)}$$

$$K_D(z) := \sup\{|f(z)|^2 : f \in \mathcal{O}(D), \ \int_D |f|^2 d\lambda \le 1\}.$$

Therefore the Suita conjecture is equivalent to

$$c_D^2 \le \pi K_D.$$

It is thus an extension problem: for $z\in D$ find holomorphic f in D such that f(z)=1 and

$$\int_D |f|^2 d\lambda \le \frac{\pi}{(c_D(z))^2}.$$

$$\frac{\partial^2}{\partial z \partial \bar{z}} (\log c_D) = \pi K_D \quad \text{(Suita)}$$

$$K_D(z) := \sup\{|f(z)|^2 : f \in \mathcal{O}(D), \ \int_D |f|^2 d\lambda \le 1\}.$$

Therefore the Suita conjecture is equivalent to

$$c_D^2 \le \pi K_D.$$

It is thus an extension problem: for $z\in D$ find holomorphic f in D such that f(z)=1 and

$$\int_D |f|^2 d\lambda \leq \frac{\pi}{(c_D(z))^2}.$$

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension theorem, showed the estimate

$$c_D^2 \le C\pi K_D$$

with C = 750.

$$\frac{\partial^2}{\partial z \partial \bar{z}} (\log c_D) = \pi K_D \quad \text{(Suita)}$$

$$K_D(z) := \sup\{|f(z)|^2 : f \in \mathcal{O}(D), \ \int_D |f|^2 d\lambda \le 1\}.$$

Therefore the Suita conjecture is equivalent to

$$c_D^2 \le \pi K_D.$$

It is thus an extension problem: for $z\in D$ find holomorphic f in D such that f(z)=1 and

$$\int_D |f|^2 d\lambda \leq \frac{\pi}{(c_D(z))^2}.$$

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension theorem, showed the estimate

$$c_D^2 \le C\pi K_D$$

with C = 750.

C = 2 (B., 2007) C = 1.95388... (Guan-Zhou-Zhu, 2011)

- Ω bounded pseudoconvex domain in \mathbb{C}^n , φ psh in Ω
- H complex affine subspace of \mathbb{C}^n
- f holomorphic in $\Omega':=\Omega\cap H$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda',$$

where C depends only on n and the diameter of Ω .

- Ω bounded pseudoconvex domain in \mathbb{C}^n , φ psh in Ω
- H complex affine subspace of \mathbb{C}^n
- f holomorphic in $\Omega':=\Omega\cap H$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda',$$

where C depends only on n and the diameter of Ω .

Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times \{|z_n < 1\}$ and $H = \{z_n = 0\}$ then $C = 4\pi$.

- Ω bounded pseudoconvex domain in \mathbb{C}^n , φ psh in Ω
- H complex affine subspace of \mathbb{C}^n
- f holomorphic in $\Omega':=\Omega\cap H$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda',$$

where C depends only on n and the diameter of Ω .

Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times \{|z_n < 1\}$ and $H = \{z_n = 0\}$ then $C = 4\pi$.

Problem. Can we improve to $C = \pi$?

- Ω bounded pseudoconvex domain in \mathbb{C}^n , φ psh in Ω
- H complex affine subspace of \mathbb{C}^n
- f holomorphic in $\Omega':=\Omega\cap H$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda',$$

where C depends only on n and the diameter of Ω .

Siu / Berndtsson (1996): If $\Omega \subset \mathbb{C}^{n-1} \times \{|z_n < 1\}$ and $H = \{z_n = 0\}$ then $C = 4\pi$.

Problem. Can we improve to $C = \pi$?

B.-Y. Chen (2011): Ohsawa-Takegoshi extension theorem can be deduced directly from Hörmander's estimate for $\bar{\partial}$ -equation!

K - convex symmetric body in \mathbb{R}^n

 $K':=\{y\in \mathbb{R}^n: x\cdot y\leq 1 \text{ for every } x\in K\}$

 $\mathsf{Mahler \ volume}:=\lambda(K)\lambda(K')$

K - convex symmetric body in \mathbb{R}^n

$$K' := \{ y \in \mathbb{R}^n : x \cdot y \le 1 \text{ for every } x \in K \}$$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

K - convex symmetric body in \mathbb{R}^n

$$K' := \{ y \in \mathbb{R}^n : x \cdot y \le 1 \text{ for every } x \in K \}$$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

K - convex symmetric body in \mathbb{R}^n

$$K' := \{ y \in \mathbb{R}^n : x \cdot y \le 1 \text{ for every } x \in K \}$$

 $\mathsf{Mahler \ volume}:=\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

K - convex symmetric body in \mathbb{R}^n

 $K':=\{y\in \mathbb{R}^n: x\cdot y\leq 1 \text{ for every } x\in K\}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

K - convex symmetric body in \mathbb{R}^n

 $K':=\{y\in \mathbb{R}^n: x\cdot y\leq 1 \text{ for every } x\in K\}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

K - convex symmetric body in \mathbb{R}^n

 $K':=\{y\in \mathbb{R}^n: x\cdot y\leq 1 \text{ for every } x\in K\}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

K - convex symmetric body in \mathbb{R}^n

 $K' := \{ y \in \mathbb{R}^n : x \cdot y \le 1 \text{ for every } x \in K \}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

True for n = 2:

Bourgain-Milman (1987): There exists c > 0 such that

$$\lambda(K)\lambda(K') \ge c^n \frac{4^n}{n!}.$$

Mahler Conjecture: c = 1

K - convex symmetric body in \mathbb{R}^n

 $K' := \{ y \in \mathbb{R}^n : x \cdot y \le 1 \text{ for every } x \in K \}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

True for n = 2:

Bourgain-Milman (1987): There exists c > 0 such that

$$\lambda(K)\lambda(K') \ge c^n \frac{4^n}{n!}.$$

Mahler Conjecture: c = 1, G. Kuperberg (2006): $c = \pi/4$

K - convex symmetric body in \mathbb{R}^n

 $K':=\{y\in \mathbb{R}^n: x\cdot y\leq 1 \text{ for every } x\in K\}$

Mahler volume := $\lambda(K)\lambda(K')$

Santaló Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mahler volume is minimized by cubes.

True for n = 2:

Bourgain-Milman (1987): There exists c > 0 such that

$$\lambda(K)\lambda(K') \ge c^n \frac{4^n}{n!}.$$

Mahler Conjecture: c = 1, G. Kuperberg (2006): $c = \pi/4$

Nazarov (2012): One can show the Bourgain-Milman inequality with $c = (\pi/4)^3$ using Hörmander's estimate.

Hörmander's Estimate (1965)

 $\begin{array}{l} \Omega \text{ - pseudoconvex in } \mathbb{C}^n, \ \varphi \text{ - smooth, strongly psh in } \Omega\\ \alpha = \sum_j \alpha_j d\bar{z}_j \in L^2_{loc,(0,1)}(\Omega), \ \bar{\partial}\alpha = 0\\ \text{Then one can find } u \in L^2_{loc}(\Omega) \text{ with } \ \bar{\partial}u = \alpha \text{ and}\\ \int |u|^2 e^{-\varphi} d\lambda \leq \int |\alpha|^2 e^{-\varphi} d\lambda \end{array}$

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \varphi} e^{-\varphi} d\lambda$$

Here $|\alpha|^2_{i\partial\bar{\partial}\varphi} = \sum_{j,k} \varphi^{j\bar{k}} \bar{\alpha}_j \alpha_k$, where $(\varphi^{j\bar{k}}) = (\partial^2 \varphi / \partial z_j \partial \bar{z}_k)^{-1}$ is the length of α w.r.t. the Kähler metric $i\partial\bar{\partial}\varphi$.

Hörmander's Estimate (1965)

 $\begin{array}{l} \Omega \text{ - pseudoconvex in } \mathbb{C}^n, \ \varphi \text{ - smooth, strongly psh in } \Omega\\ \alpha = \sum_j \alpha_j d\bar{z}_j \in L^2_{loc,(0,1)}(\Omega), \ \bar{\partial}\alpha = 0\\ \text{Then one can find } u \in L^2_{loc}(\Omega) \text{ with } \bar{\partial}u = \alpha \text{ and}\\ \int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda. \end{array}$

Here $|\alpha|^2_{i\partial\bar{\partial}\varphi} = \sum_{j,k} \varphi^{j\bar{k}} \bar{\alpha}_j \alpha_k$, where $(\varphi^{j\bar{k}}) = (\partial^2 \varphi / \partial z_j \partial \bar{z}_k)^{-1}$ is the length of α w.r.t. the Kähler metric $i\partial\bar{\partial}\varphi$.

The estimate also makes sense for non-smooth φ : instead of $|\alpha|^2_{i\partial\bar\partial\varphi}$ one has to take any nonnegative $H\in L^\infty_{loc}(\Omega)$ with

 $i\bar{\alpha}\wedge\alpha\leq H\,i\partial\bar{\partial}\varphi$

(B., 2005).

Donnelly-Fefferman (1982)

 $\begin{array}{l} \Omega, \ \alpha, \ \varphi \ \text{as before} \\ \psi \ \text{psh in} \ \Omega \ \text{s.th.} \ |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \ \text{(that is } i\partial\psi \wedge \bar{\partial}\psi \leq i\partial\bar{\partial}\psi \text{)} \\ \text{Then one can find} \ u \in L^2_{loc}(\Omega) \ \text{with} \ \bar{\partial}u = \alpha \ \text{and} \end{array}$

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} d\lambda,$$

where C is an absolute constant.

Donnelly-Fefferman (1982)

 $\begin{array}{l} \Omega, \ \alpha, \ \varphi \ \text{as before} \\ \psi \ \text{psh in} \ \Omega \ \text{s.th.} \ |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \ \text{(that is } i\partial\psi \wedge \bar{\partial}\psi \leq i\partial\bar{\partial}\psi \text{)} \\ \text{Then one can find} \ u \in L^2_{loc}(\Omega) \ \text{with} \ \bar{\partial}u = \alpha \ \text{and} \end{array}$

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} d\lambda,$$

where C is an absolute constant.

Berndtsson (1996)

 Ω , α , φ , ψ as before Then, if $0 \leq \delta < 1$, one can find $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$
Donnelly-Fefferman (1982)

 $\begin{array}{l} \Omega, \ \alpha, \ \varphi \ \text{as before} \\ \psi \ \text{psh in} \ \Omega \ \text{s.th.} \ |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \ \text{(that is } i\partial\psi \wedge \bar{\partial}\psi \leq i\partial\bar{\partial}\psi \text{)} \\ \text{Then one can find} \ u \in L^2_{loc}(\Omega) \ \text{with} \ \bar{\partial}u = \alpha \ \text{and} \end{array}$

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq C \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} d\lambda,$$

where C is an absolute constant.

Berndtsson (1996)

 Ω , α , φ , ψ as before Then, if $0 \leq \delta < 1$, one can find $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

The above constant was obtained in B. 2004 and is optimal (B. 2012). Therefore C = 4 is optimal in Donnelly-Fefferman.

Donnelly-Fefferman (1982)

 $\begin{array}{l} \Omega, \ \alpha, \ \varphi \ \text{as before} \\ \psi \ \text{psh in} \ \Omega \ \text{s.th.} \ |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \ \text{(that is } i\partial\psi \wedge \bar{\partial}\psi \leq i\partial\bar{\partial}\psi \text{)} \\ \text{Then one can find} \ u \in L^2_{loc}(\Omega) \ \text{with} \ \bar{\partial}u = \alpha \ \text{and} \end{array}$

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \le C \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{-\varphi} d\lambda,$$

where C is an absolute constant.

Berndtsson (1996)

 Ω , α , φ , ψ as before Then, if $0 \leq \delta < 1$, one can find $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \le \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

The above constant was obtained in B. 2004 and is optimal (B. 2012). Therefore C = 4 is optimal in Donnelly-Fefferman.

Berndtsson's estimate is not enough to obtain Ohsawa-Takegoshi (it would be if it were true for $\delta = 1$).

Berndtsson's Estimate

$$\begin{array}{l} \Omega \ \text{-pseudoconvex} \\ \alpha \in L^2_{loc,(0,1)}(\Omega), \ \bar{\partial}\alpha = 0 \\ \varphi, \ \psi \ \text{-psh}, \ |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \\ \text{Then, if } 0 \leq \delta < 1, \ \text{one can find } u \in L^2_{loc}(\Omega) \ \text{with } \bar{\partial}u = \alpha \ \text{and} \end{array}$$

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \leq \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda.$$

Berndtsson's Estimate

 Ω - pseudoconvex $\alpha \in L^2_{loc,(0,1)}(\Omega), \, \bar{\partial}\alpha = 0 \\ \varphi, \, \psi \text{ - psh, } |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1 \\ \text{Then, if } 0 \leq \delta < 1 \text{, one can find } u \in L^2_{loc}(\Omega) \text{ with } \bar{\partial}u = \alpha \text{ and }$

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \le \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda$$

Theorem. Ω , α , φ , ψ as above Assume in addition that $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq \delta < 1$ on $\operatorname{supp} \alpha$. Then there exists $u \in L^2_{loc}(\Omega)$ solving $\bar{\partial}u = \alpha$ with

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}) e^{\psi - \varphi} d\lambda \leq \frac{1}{(1 - \sqrt{\delta})^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\psi - \varphi} d\lambda.$$

Berndtsson's Estimate

 Ω - pseudoconvex $\alpha \in L^2_{loc,(0,1)}(\Omega), \ \bar{\partial}\alpha = 0$ $\varphi, \ \psi \text{ - psh, } |\bar{\partial}\psi|^2_{i\bar{\partial}\bar{\partial}\psi} \leq 1$ Then, if $0 \leq \delta < 1$, one can find $u \in L^2_{loc}(\Omega)$ with $\bar{\partial}u = \alpha$ and

$$\int_{\Omega} |u|^2 e^{\delta \psi - \varphi} d\lambda \le \frac{4}{(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial \bar{\partial} \psi} e^{\delta \psi - \varphi} d\lambda$$

Theorem. Ω , α , φ , ψ as above Assume in addition that $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq \delta < 1$ on $\operatorname{supp} \alpha$. Then there exists $u \in L^2_{loc}(\Omega)$ solving $\bar{\partial}u = \alpha$ with

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi}) e^{\psi - \varphi} d\lambda \leq \frac{1}{(1 - \sqrt{\delta})^2} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\psi} e^{\psi - \varphi} d\lambda.$$

From this estimate one can obtain Ohsawa-Takegoshi and Suita with C = 1.95388... (obtained earlier by Guan-Zhou-Zhu).

 $\begin{array}{l} \text{Theorem. } \Omega \text{ - pseudoconvex in } \mathbb{C}^n \text{, } \varphi \text{ - psh in } \Omega \\ \alpha \in L^2_{loc,(0,1)}(\Omega) \text{, } \bar{\partial}\alpha = 0 \\ \psi \in W^{1,2}_{loc}(\Omega) \text{ locally bounded from above, s.th.} \end{array}$

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

$$\begin{split} & |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega\\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases} \end{split}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.)

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar\partial u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

u - minimal solution to $\bar{\partial} u = \alpha$ in $L^2(\Omega, e^{\psi - \varphi})$

$$\left. \bar{\partial}\psi \right|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{ in } \Omega \\ \leq \delta < 1 & \text{ on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

 $\begin{array}{l} u \text{ - minimal solution to } \bar{\partial}u = \alpha \text{ in } L^2(\Omega, e^{\psi - \varphi}) \\ \Rightarrow u \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{\psi - \varphi}) \end{array}$

$$\left. \bar{\partial}\psi \right|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{ in } \Omega \\ \leq \delta < 1 & \text{ on supp } \alpha. \end{cases}$$

Then there exists $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

 $\begin{array}{l} u \text{ - minimal solution to } \bar{\partial}u = \alpha \text{ in } L^2(\Omega, e^{\psi - \varphi}) \\ \Rightarrow u \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{\psi - \varphi}) \\ \Rightarrow v := u e^{\psi} \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{-\varphi}) \end{array}$

$$\left. \bar{\partial}\psi \right|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{ in } \Omega \\ \leq \delta < 1 & \text{ on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar\partial u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

$$\begin{array}{l} u \text{ - minimal solution to } \bar{\partial}u = \alpha \text{ in } L^2(\Omega, e^{\psi-\varphi}) \\ \Rightarrow u \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{\psi-\varphi}) \\ \Rightarrow v := u e^{\psi} \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{-\varphi}) \\ \Rightarrow v \text{ - minimal solution to } \bar{\partial}v = \beta := e^{\psi}(\alpha + u\bar{\partial}\psi) \text{ in } L^2(\Omega, e^{-\varphi}) \end{array}$$

$$\left. \bar{\partial}\psi \right|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{ in } \Omega \\ \leq \delta < 1 & \text{ on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Proof. (Some ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

 $\begin{array}{l} u \text{ - minimal solution to } \bar{\partial}u = \alpha \text{ in } L^2(\Omega, e^{\psi-\varphi}) \\ \Rightarrow u \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{\psi-\varphi}) \\ \Rightarrow v := u e^{\psi} \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{-\varphi}) \\ \Rightarrow v \text{ - minimal solution to } \bar{\partial}v = \beta := e^{\psi}(\alpha + u\bar{\partial}\psi) \text{ in } L^2(\Omega, e^{-\varphi}) \\ \text{By Hörmander's estimate} \end{array}$

$$\int_{\Omega} |v|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda$$

$$\int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda \leq \int_{\Omega} |\alpha + u \, \bar{\partial} \psi|^2_{i \partial \bar{\partial} \varphi} e^{2\psi - \varphi} d\lambda$$

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &\leq \int_{\Omega} |\alpha + u \,\bar{\partial} \psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left(|\alpha|^2_{i\partial\bar{\partial}\varphi} + 2|u|\sqrt{H} |\alpha|_{i\partial\bar{\partial}\varphi} + |u|^2 H \right) e^{2\psi - \varphi} d\lambda, \end{split}$$

where $H = |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}$.

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &\leq \int_{\Omega} |\alpha + u \, \bar{\partial} \psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left(|\alpha|^2_{i\partial\bar{\partial}\varphi} + 2|u|\sqrt{H} |\alpha|_{i\partial\bar{\partial}\varphi} + |u|^2 H \right) e^{2\psi - \varphi} d\lambda, \end{split}$$

where $H=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}.$ For t>0 we will get

$$\begin{split} \int_{\Omega} |u|^2 (1-H) e^{2\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left[|\alpha|^2_{i\partial\bar{\partial}\varphi} \left(1 + t^{-1} \frac{H}{1-H} \right) + t |u|^2 (1-H) \right] e^{2\psi - \varphi} d\lambda \\ &\leq \left(1 + t^{-1} \frac{\delta}{1-\delta} \right) \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda \\ &\qquad + t \int_{\Omega} |u|^2 (1-H) e^{2\psi - \varphi} d\lambda. \end{split}$$

$$\begin{split} \int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda &\leq \int_{\Omega} |\alpha + u \, \bar{\partial} \psi|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left(|\alpha|^2_{i\partial\bar{\partial}\varphi} + 2|u|\sqrt{H} |\alpha|_{i\partial\bar{\partial}\varphi} + |u|^2 H \right) e^{2\psi - \varphi} d\lambda, \end{split}$$

where $H=|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}.$ For t>0 we will get

$$\begin{split} \int_{\Omega} |u|^2 (1-H) e^{2\psi - \varphi} d\lambda \\ &\leq \int_{\Omega} \left[|\alpha|^2_{i\partial\bar{\partial}\varphi} \left(1 + t^{-1} \frac{H}{1-H} \right) + t |u|^2 (1-H) \right] e^{2\psi - \varphi} d\lambda \\ &\leq \left(1 + t^{-1} \frac{\delta}{1-\delta} \right) \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda \\ &\qquad + t \int_{\Omega} |u|^2 (1-H) e^{2\psi - \varphi} d\lambda. \end{split}$$

We will obtain the required estimate if we take $t:=1/(\delta^{-1/2}+1).$

 $\begin{array}{l} \text{Theorem. } \Omega \text{ - pseudoconvex in } \mathbb{C}^n \text{, } \varphi \text{ - psh in } \Omega \\ \alpha \in L^2_{loc,(0,1)}(\Omega) \text{, } \bar{\partial}\alpha = 0 \\ \psi \in W^{1,2}_{loc}(\Omega) \text{ locally bounded from above, s.th.} \end{array}$

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

$$\begin{split} & |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega\\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases} \end{split}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar\partial u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants:

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1$ and $\delta < 1$ set $\widetilde{\varphi} := \varphi + \psi$ and $\widetilde{\psi} = \frac{1+\delta}{2}\psi$.

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1$ and $\delta < 1$ set $\widetilde{\varphi} := \varphi + \psi$ and $\widetilde{\psi} = \frac{1+\delta}{2}\psi$. Then $2\widetilde{\psi} - \widetilde{\varphi} = \delta\psi - \varphi$ and $|\bar{\partial}\widetilde{\psi}|^2_{i\partial\bar{\partial}\widetilde{\varphi}} \leq \frac{(1+\delta)^2}{4} =: \widetilde{\delta}$.

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi} \begin{cases} \leq 1 & \text{in } \Omega \\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u\in L^2_{loc}(\Omega)$ with $\bar{\partial}u=\alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \leq \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Remarks. 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.

2. This theorem implies Donnelly-Fefferman and Berndtsson's estimates with optimal constants: for psh φ, ψ with $|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\psi} \leq 1$ and $\delta < 1$ set $\widetilde{\varphi} := \varphi + \psi$ and $\widetilde{\psi} = \frac{1+\delta}{2}\psi$. Then $2\widetilde{\psi} - \widetilde{\varphi} = \delta\psi - \varphi$ and $|\bar{\partial}\widetilde{\psi}|^2_{i\partial\bar{\partial}\widetilde{\varphi}} \leq \frac{(1+\delta)^2}{4} =: \widetilde{\delta}$. We will get Berndtsson's estimate with the constant

$$\frac{1+\sqrt{\tilde{\delta}}}{(1-\sqrt{\tilde{\delta}})(1-\tilde{\delta})} = \frac{4}{(1-\delta)^2}.$$

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

(For n = 1 and $\varphi \equiv 0$ we obtain the Suita Conjecture.)

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

(For n = 1 and $\varphi \equiv 0$ we obtain the Suita Conjecture.)

Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega'}$.

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

(For n = 1 and $\varphi \equiv 0$ we obtain the Suita Conjecture.)

Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega'}$.

 $\varepsilon > 0$

G $\widetilde{\varphi}$ ψ

$$\begin{split} \alpha &:= \bar{\partial} \left(f(z') \chi(-2 \log |z_n|) \right), \\ \text{where } \chi(t) &= 0 \text{ for } t \leq -2 \log \varepsilon \text{ and } \chi(\infty) = 1. \\ G &:= G_D(\cdot, 0) \\ \widetilde{\varphi} &:= \varphi + 2G + \eta(-2G) \\ \psi &:= \gamma(-2G) \end{split}$$

 $F := f(z')\chi(-2\log|z_n|) - u$, where u is a solution of $\bar{\partial}u = \alpha$ given by the previous thm.

Crucial ODE Problem

Find $g \in C^{0,1}(\mathbb{R}_+)$, $h \in C^{1,1}(\mathbb{R}_+)$ such that h' < 0, h'' > 0, $\lim_{t \to \infty} (g(t) + \log t) = \lim_{t \to \infty} (h(t) + \log t) = 0$

and

$$\left(1 - \frac{(g')^2}{h''}\right)e^{2g-h+t} \ge 1.$$

Crucial ODE Problem

Find $g \in C^{0,1}(\mathbb{R}_+)$, $h \in C^{1,1}(\mathbb{R}_+)$ such that h' < 0, h'' > 0, $\lim_{t \to \infty} (g(t) + \log t) = \lim_{t \to \infty} (h(t) + \log t) = 0$

and

$$\left(1 - \frac{(g')^2}{h''}\right)e^{2g-h+t} \ge 1.$$

Solution:

$$h(t) := -\log(t + e^{-t} - 1)$$

$$g(t) := -\log(t + e^{-t} - 1) + \log(1 - e^{-t}).$$

Crucial ODE Problem

Find $g \in C^{0,1}(\mathbb{R}_+)$, $h \in C^{1,1}(\mathbb{R}_+)$ such that h' < 0, h'' > 0, $\lim_{t \to \infty} (g(t) + \log t) = \lim_{t \to \infty} (h(t) + \log t) = 0$

and

$$\left(1 - \frac{(g')^2}{h''}\right)e^{2g-h+t} \ge 1.$$

Solution:

$$h(t) := -\log(t + e^{-t} - 1)$$

$$g(t) := -\log(t + e^{-t} - 1) + \log(1 - e^{-t}).$$

Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with optimal constant (and obtained some generalizations) but used essentially the same ODE.

$$\begin{split} K_{\Omega}(w) &= \sup\{|f(w)|^{2} : f \in \mathcal{O}(\Omega), \ \int_{\Omega} |f|^{2} d\lambda \leq 1\} \\ G_{\Omega}(\cdot, w) &= \sup\{v \in PSH^{-}(\Omega), \ \overline{\lim_{z \to w}}(v(z) - \log|z - w|) < \infty\} \\ (\text{pluricomplex Green function}) \end{split}$$

 $K_\Omega(w) = \sup\{|f(w)|^2 : f \in \mathcal{O}(\Omega), \ \int_\Omega |f|^2 d\lambda \le 1\} \text{ (Bergman kernel)}$

$$G_{\Omega}(\cdot, w) = \sup\{v \in PSH^{-}(\Omega), \ \overline{\lim_{z \to w}}(v(z) - \log|z - w|) < \infty\}$$
(pluricomplex Green function)

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^n . Then for $a \ge 0$ and $w \in \Omega$

$$K_{\Omega}(w) \ge \frac{1}{e^{2na}\lambda(\{G_{\Omega}(\cdot, w) < -a\})}.$$

 $K_{\Omega}(w) = \sup\{|f(w)|^2 : f \in \mathcal{O}(\Omega), \ \int_{\Omega} |f|^2 d\lambda \le 1\}$ (Bergman kernel)

$$G_{\Omega}(\cdot, w) = \sup\{v \in PSH^{-}(\Omega), \ \overline{\lim_{z \to w}}(v(z) - \log|z - w|) < \infty\}$$
(pluricomplex Green function)

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^n . Then for $a \ge 0$ and $w \in \Omega$

$$K_{\Omega}(w) \ge \frac{1}{e^{2na}\lambda(\{G_{\Omega}(\cdot, w) < -a\})}.$$

Corollary 1. If n = 1 then

$$K_{\Omega}(w) \ge \frac{c_{\Omega}(w)^2}{\pi}.$$

 $K_{\Omega}(w) = \sup\{|f(w)|^2 : f \in \mathcal{O}(\Omega), \ \int_{\Omega} |f|^2 d\lambda \le 1\}$ (Bergman kernel)

$$G_{\Omega}(\cdot, w) = \sup\{v \in PSH^{-}(\Omega), \ \overline{\lim_{z \to w}}(v(z) - \log|z - w|) < \infty\}$$
(pluricomplex Green function)

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^n . Then for $a \ge 0$ and $w \in \Omega$

$$K_{\Omega}(w) \ge \frac{1}{e^{2na}\lambda(\{G_{\Omega}(\cdot, w) < -a\})}.$$

Corollary 1. If n = 1 then

$$K_{\Omega}(w) \ge \frac{c_{\Omega}(w)^2}{\pi}$$

Corollary 2. If Ω is convex in \mathbb{C}^n then for $w \in \Omega$

$$K_{\Omega}(w) \ge \frac{1}{\lambda_{2n}(I_{\Omega}(w))},$$

where $I_{\Omega}(w) = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, \Omega), \ \varphi(0) = w\}$ (Kobayashi indicatrix).

Theorem. Assume Ω is pseudoconvex in \mathbb{C}^n . Then for $a \ge 0$ and $w \in \Omega$

$$K_{\Omega}(w) \ge \frac{1}{e^{2na}\lambda(\{G_{\Omega}(\cdot, w) < -a\})}.$$

Sketch of proof. May assume that Ω is bounded, smooth and strongly pseudoconvex. $G := G_{\Omega,w}$. Using Donnelly-Fefferman with

$$\begin{split} \varphi &:= 2nG, \quad \psi := -\log(-G), \\ \alpha &:= \bar{\partial}(\chi \circ G) = \chi' \circ G \,\bar{\partial}G, \\ \chi(t) &:= \begin{cases} 0 & t \ge -a, \\ \int_a^{-t} \frac{e^{-ns}}{s} \, ds & t < -a, \\ f &:= \chi \circ G - u \in \mathcal{O}(\Omega) \end{split}$$

we will get

$$K_{\Omega}(w) \ge \frac{|f(w)|^2}{||f||^2} \ge \frac{c_{n,a}}{\lambda(\{G < -a\})},$$

where

$$c_{n,a} = \frac{\operatorname{Ei}(na)^2}{(\operatorname{Ei}(na) + \sqrt{C})^2}, \quad \operatorname{Ei}(a) = \int_a^\infty \frac{e^{-s}}{s} \, ds.$$
Tensor power trick.

Tensor power trick. $\widetilde{\Omega}:=\Omega^m\subset\mathbb{C}^{nm},\,\widetilde{w}:=(w,\ldots,w),\,m\gg 0$

Tensor power trick. $\widetilde{\Omega} := \Omega^m \subset \mathbb{C}^{nm}$, $\widetilde{w} := (w, \dots, w)$, $m \gg 0$ $K_{\widetilde{\Omega}}(\widetilde{w}) = (K_{\Omega}(w))^m$, $\lambda_{2nm}(\{G_{\widetilde{\Omega},\widetilde{w}} < -a\}) = (\lambda_{2n}(\{G < -a\})^m$. Tensor power trick. $\widetilde{\Omega} := \Omega^m \subset \mathbb{C}^{nm}$, $\widetilde{w} := (w, \dots, w)$, $m \gg 0$ $K_{\widetilde{\Omega}}(\widetilde{w}) = (K_{\Omega}(w))^m$, $\lambda_{2nm}(\{G_{\widetilde{\Omega},\widetilde{w}} < -a\}) = (\lambda_{2n}(\{G < -a\})^m$. $(K_{\Omega}(w))^m \ge \frac{c_{nm,a}}{(\lambda_{2n}(\{G < -a\}))^m}$ Tensor power trick. $\widetilde{\Omega} := \Omega^m \subset \mathbb{C}^{nm}$, $\widetilde{w} := (w, \dots, w)$, $m \gg 0$ $K_{\widetilde{\Omega}}(\widetilde{w}) = (K_{\Omega}(w))^m$, $\lambda_{2nm}(\{G_{\widetilde{\Omega},\widetilde{w}} < -a\}) = (\lambda_{2n}(\{G < -a\})^m$. $(K_{\Omega}(w))^m \ge \frac{c_{nm,a}}{(\lambda_{2n}(\{G < -a\}))^m}$ but

$$\lim_{m \to \infty} c_{nm,a}^{1/m} = e^{-2na}$$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(1)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(2)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

Therefore

$$\lambda_n(K)\lambda_n(K') \ge \left(\frac{\pi}{4}\right)^{3n} \frac{4^n}{n!}.$$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(3)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

Therefore

$$\lambda_n(K)\lambda_n(K') \ge \left(\frac{\pi}{4}\right)^{3n} \frac{4^n}{n!}.$$

To show the lower bound in (1) we can use Corollary 2: $K_{T_K}(0) \geq \frac{1}{\lambda_{2n}(I)}, \text{ where } I = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, T_K), \ \varphi(0) = 0\}.$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(4)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

Therefore

$$\lambda_n(K)\lambda_n(K') \ge \left(\frac{\pi}{4}\right)^{3n} \frac{4^n}{n!}.$$

To show the lower bound in (1) we can use Corollary 2: $K_{T_K}(0) \ge \frac{1}{\lambda_{2n}(I)}$, where $I = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, T_K), \ \varphi(0) = 0\}$.

Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+iK)$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(5)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

Therefore

$$\lambda_n(K)\lambda_n(K') \ge \left(\frac{\pi}{4}\right)^{3n} \frac{4^n}{n!}.$$

To show the lower bound in (1) we can use Corollary 2: $K_{T_K}(0) \geq \frac{1}{\lambda_{2n}(I)}, \text{ where } I = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, T_K), \ \varphi(0) = 0\}.$

Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+iK)$

Corollary.
$$\lambda_{2n}(I) \leq \left(\frac{4}{\pi}\right)^{2n} (\lambda_n(K))^2$$

K - convex symmetric body in \mathbb{R}^n Nazarov: consider the tube domain $T_K:=\mathrm{int}K+i\mathbb{R}^n\subset\mathbb{C}^n.$ Then

(6)
$$\left(\frac{\pi}{4}\right)^{2n} \frac{1}{(\lambda_n(K))^2} \le K_{T_K}(0) \le \frac{n!}{\pi^n} \frac{\lambda_n(K')}{\lambda_n(K)}.$$

Therefore

$$\lambda_n(K)\lambda_n(K') \ge \left(\frac{\pi}{4}\right)^{3n} \frac{4^n}{n!}.$$

To show the lower bound in (1) we can use Corollary 2: $K_{T_K}(0) \geq \frac{1}{\lambda_{2n}(I)}, \text{ where } I = \{\varphi'(0) : \varphi \in \mathcal{O}(\Delta, T_K), \ \varphi(0) = 0\}.$

Proposition (Nazarov). $I \subset \frac{4}{\pi}(K+iK)$

Corollary.
$$\lambda_{2n}(I) \leq \left(\frac{4}{\pi}\right)^{2n} (\lambda_n(K))^2$$

Conjecture. $\lambda_{2n}(I) \leq \left(\frac{4}{\pi}\right)^n (\lambda_n(K))^2$
 $K_{T_K}(0) \geq \left(\frac{\pi}{4}\right)^n \frac{1}{(\lambda_n(K))^2}$ (equality for cubes)

By the Lempert theory, if K is smooth, symmetric, strongly convex in \mathbb{R}^n ,

$$\nu: \partial K \to S^{n-1}$$

is the Gauss map, then ∂I is parametrized by

$$\frac{1}{4}\int_0^{2\pi}e^{it}\,\nu^{-1}\left(\frac{\operatorname{Re}\left(e^{it}\bar{w}\right)}{|\operatorname{Re}\left(e^{it}\bar{w}\right)|}\right)dt,\quad w\in S^{2n-1}$$