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We will discuss applications of Hérmander’s L2-estimate for O in the
following problems:

1. Suita Conjecture (1972) from potential theory
2. Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)
3. Mabhler Conjecture (1938) from convex analysis
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Suita Conjecture (1972):  Curvep |z < —1

e “="if D is simply connected

e “<" if D is an annulus (Suita)

e Enough to prove for D with smooth boundary

e “=" on 9D if D has smooth boundary



Curv
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where K is the Bergman kernel on the diagonal:

Kp(z) :=sup{|f(2)]> : f € O(D / |£12dx < 1}.

(logep) =nKp  (Suita)

Therefore the Suita conjecture is equivalent to
CQD <nKp.

It is thus an extension problem: for z € D find holomorphic f in D such

that f(z) =1 and
< —
1< ot

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension
theorem, showed the estimate

4 < CnKp
with C = 750.

C=2 (B., 2007)
C =1.95388... (Guan-Zhou-Zhu, 2011)
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Q) - bounded pseudoconvex domain in C™, ¢ - psh in

H - complex affine subspace of C™

f - holomorphic in Q' := QN H

Then there exists a holomorphic extension F' of f to € such that

/ |[F|?2e=?d\ < C/ If|2e=%dN,
Q Q
where C' depends only on n and the diameter of .

Siu / Berndtsson (1996): If @ C C*~1 x {|z5, < 1} and H = {z,, = 0}
then C' = 4.

Problem. Can we improve to C = «?

B.-Y. Chen (2011): Ohsawa-Takegoshi extension theorem can be deduced
directly from Hormander's estimate for 0-equation!
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K - convex symmetric body in R™
K :={ycR":z.-y<1foreveryzc K}
Mahler volume := A(K)A(K")
Santalé Inequality (1949): Mahler volume is maximized by balls.

Mahler Conjecture (1938): Mabhler volume is minimized by cubes.

True for n = 2:

Bourgain-Milman (1987): There exists ¢ > 0 such that

n

AK)NK) > cn%‘

Mahler Conjecture: ¢ =1, G. Kuperberg (2006): ¢ = /4

Nazarov (2012): One can show the Bourgain-Milman inequality with
c = (m/4)3 using Hérmander's estimate.
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) - pseudoconvex in C”, ¢ - smooth, strongly psh in €2

a=3;a;dz; € L?oc,(O,l)(Q)' O =0
Then one can find u € L?, (Q) with du = « and

/Q\u\Qe_‘Pd)\S/Sl\a|?85¢e_¢d>\.

Here |o¢|?65¢ =2k gojE&jak, where (@7F) = (02%0/02;0zk) " is the

length of & w.r.t. the Kahler metric i00.

The estimate also makes sense for non-smooth : instead of |a|f85¢ one
has to take any nonnegative H € L{° () with

iaAa < Hiddp
(B., 2005).
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The above constant was obtained in B. 2004 and is optimal (B. 2012).
Therefore C = 4 is optimal in Donnelly-Fefferman.

Berndtsson's estimate is not enough to obtain Ohsawa-Takegoshi (it would
be if it were true for § = 1).
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Theorem. Q, «, ¢, Y as aPove
Assume in addition that ‘8w|?85’¢) < § <1 on supp a.

Then there exists u € L2 () solving du = « with
1

2 a,1,12 - 2 —
/Qm (1= 91%5,)e” sodxgmfﬂm\m%ew ¢ dA.

From this estimate one can obtain Ohsawa-Takegoshi and Suita with
C =1.95388... (obtained earlier by Guan-Zhou-Zhu).
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By Hormander's estimate
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Therefore

/|u\2 24— “’d/\</ o+ u B[, 2P Pdx
</Q(|a|?8gw+2|u\\/ﬁ|a\iaéw+|u|2H) 2V=¢ g,
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ul?(1 — H)e2?—?d\
|l
Q

H
</Q {\ahfm (1+t 1— >+t|u| (1—H)] Y =Pd)

1 27
(1 +t- >/| Z98,€ Y—PdN

+t/ (1 — H)e2—%dx.
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Therefore
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— 1 94)|2 i
where H = |81’D‘i85<p' For ¢ > 0 we will get
/ [ul2(1 — H)e2—2d)
Q
< o) 1+t~ 1 a +tlu?(1 — H)| e2¥~%dA
o O‘zf)c’w — u e

1 21)—
(1 +i- >/| Zaéww@d,\
+t/ |u|2(1—H)eQ”’_“’d>\.
Q

We will obtain the required estimate if we take ¢ := 1/(672/2 +1).
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Then there exists u € L? () with du = o and

_ _ 14+V6 _
2 2 2 2
[ = 1002, e ean < S / a2, 5,,€*P~2dA.
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Theorem. 2 - pseudoconvex in C™, ¢ - psh in
a € Lloc ©, 1)(Q), Oa =0

veWwh 2( Q) locally bounded from above, s.th.

loc
Bl <1 in Q
109 <§<1 onsuppa.

Then there exists u € L? () with du = o and

_ _ 14+V6 _
2 2 2 2
[ = 1002, e ean < S / a2, 5,,€*P~2dA.

Remarks. 1. Setting ©» = 0 we recover the Hérmander estimate.
2. This theorem implies Donnelly-Fefferman and Berndtsson’s estimates
with optimal constants: for psh ¢, with |31/)\?85w <1landéd <1 set
F=¢+yand =1y
Then 2 5 dd a9 _ 3

en ¢ 90— UJ @ an I ¢‘133~7 4 7
We will get Berndtsson's estimate W|th the constant

1+V5 _ 4
1-Vo—3 1=0)
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Theorem (Ohsawa-Takegoshi with optimal constant)

Q - pseudoconvex in C*~1 x D, where 0 € D C C,

¢ - psh in Q, f - holomorphic in Q' := QN {z, =0}

Then there exists a holomorphic extension F' of f to 2 such that

Fl2e=%d) < L/ fI2e=%dN.
JF = o ©@)2 Jo

(For n =1 and ¢ = 0 we obtain the Suita Conjecture.)

Sketch of proof. By approximation may assume that €2 is bounded,
smooth, strongly pseudoconvex, ¢ is smooth up to the boundary, and f is
holomorphic in a neighborhood of €.
e>0

o= 9(f(z")x(—2log |zn])),
where x(t) =0 for t < —2loge and x(c0) = 1.

G :=Gp(-0)
@ =@+ 2G +n(—2G)
= (-2G)

F = f(z")x(—2log|zn|) — u, where u is a solution of du = a given by the
previous thm.
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Crucial ODE Problem

Find g € C91(R4), h € CY1(R4) such that &' < 0, " >0,
tlirrolo(g(t) +logt) = tlﬁlgo(h(t) +logt) =0

2
(1 - 7(‘23 ) 29t >

Solution:

=
—~

o+
~

Il

—log(t+e t—1)
—log(t+e "t —1) +log(1 —e™b).

Q@

=~
o~

&
Il

Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with
optimal constant (and obtained some generalizations) but used essentially
the same ODE.
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Another approach: general lower bound for the Bergman kernel

Kq(w) =sup{|f(w)?: f € O(), [q|fI?dX < 1} (Bergman kernel)

Gq(-,w) =sup{v € PSH™ (), @ (v(z) —log |z —w|) < oo}
(pluricomplex Green function)

Theorem. Assume €2 is pseudoconvex in C™. Then for a > 0 and w € Q

1
Ko(w) > e2na)\({Ga (-, w) < —a})’

Corollary 1. If n =1 then

CQ('LU)2.

Kq(w) >
Corollary 2. If Q is convex in C™ then for w €
1
>
Azn (In(w))
where Iq(w) = {¢’(0) : ¢ € O(A,Q), ¢(0) =w} (Kobayashi indicatrix).

Kaq(w)



Theorem. Assume €2 is pseudoconvex in C™. Then for a > 0 and w € Q

Kaq(w) > ! .
e2ra\({Gq(-,w) < —a})

Sketch of proof. May assume that 2 is bounded, smooth and strongly
pseudoconvex. G := Gq . Using Donnelly-Fefferman with

p:=2nG, ¢ :=—log(—G),
a:=0(xoG)=x 0GaIG,
0 t> —a,
t) = —t ,—ns
x(t) / ¢ ds t< —a,
a s
fi=x0G—-ueOQ)

we will get
|f(w)|2 Cn,a
K > > ,
()2 T1fp” 2 X{G < —ap)
where i )2 - s
i(na R _ e "
Cn,a = W, EI(CL) = L 5 ds.
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Tensor power trick. Q:=QmcCvm, = (w,...,w), m>0
Kgw) = (Ka(w))™, Aanm({Gg 4 < —a}) = A2n({G < —a})™.
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(Ka(w))™ > oG < —ah)™



Tensor power trick. Q:=QmcCvm, = (w,...,w), m>0

Kg(@) = (Kaw))™,  A2nm({Gg 5 < —a}) = (Aan({G < —a})™.
m Cnm,a
(Het)™ 2 5o < —am

but
. 1 _
lim cné,rfa = 2na,
m—r00
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Application to the Bourgain-Milman Inequality

K - convex symmetric body in R™
Nazarov: consider the tube domain Tk := int K + iR™ C C™. Then

T 2n 1 n! )\n(K/)

o ) G O p
Therefore -
A (K)An () > (Z> -

To show the lower bound in (1) we can use Corollary 2:

Kz, (0) > ﬁ(l) where T = {/(0) : ¢ € O(A, Tx), (0) = 0}.

4
Proposition (Nazarov). I C —(K + iK)
™

Corollary. Aan(I) < (%)M (O (K))?

Conjecture. Aan(I) < (%) " ()2

1
Z) (An(K))2

T\

K1, (0) > ( (equality for cubes)



By the Lempert theory, if K is smooth, symmetric, strongly convex in R",
v:OK — sm1

is the Gauss map, then OI is parametrized by

1 /27r et yt (M) dt, we s 1,
1o [Re (cit)



