Estimates for the Bergman Kernel and Logarithmic Capacity

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki
(j.w. Włodzimierz Zwonek)

Complex Geometry and PDEs
American University of Beirut, May 22-26, 2017

Notation

$\Omega \subset \mathbb{C}^{n}$ domain, $w \in \Omega$
$K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\}$
(Bergman kernel on the diagonal)

$$
\begin{aligned}
G_{w}(z) & =G_{\Omega}(z, w) \\
& =\sup \left\{u(z): u \in P S H^{-}(\Omega): \overline{\lim }_{z \rightarrow w}(u(z)-\log |z-w|)<\infty\right\}
\end{aligned}
$$

(pluricomplex Green function)

For $n=1$ one can define
$c_{\Omega}(w)=\exp \left(\lim _{z \rightarrow w}\left(G_{\Omega}(z, w)-\log |z-w|\right)\right) \quad$ (logarithmic capacity)
B. 2013 For $\Omega \subset \mathbb{C}$ we have $c_{\Omega}^{2} \leq \pi K_{\Omega}$ (Suita conjecture)

Original proof: $\bar{\partial}$-equation, special ODE, optimal version of the Ohsawa-Takegoshi extension theorem

Guan-Zhou $2015 "=" \Leftrightarrow \Omega \simeq \Delta \backslash F$, where Δ is the unit disk and F is closed and polar
B. 2014 If Ω is pseudoconvex in $\mathbb{C}^{n}, w \in \Omega$ and $t \leq 0$ then

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}
$$

For $n=1$ we have

$$
\lim _{t \rightarrow-\infty} \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}=\frac{c_{\Omega}(w)^{2}}{\pi} .
$$

Proof 1 (sketch) Using Donnelly-Fefferman estimate for $\bar{\partial}$ one can show

$$
K_{\Omega}(w) \geq \frac{1}{c_{n} \lambda\left(\left\{G_{w}<-1\right\}\right)}
$$

where $c_{n}=(1+4 / E i(n))^{2}$ and $E i(t)=\int_{t}^{\infty} \frac{d s}{s e^{s}}$ (Herbort 1999, B. 2005)

Now use the tensor power trick: $\widetilde{\Omega}=\Omega \times \cdots \times \Omega \subset \mathbb{C}^{n m}$, $\widetilde{w}=(w, \ldots, w)$ for $m \gg 0$. Then

$$
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda\left(\left\{G_{\widetilde{w}}<-1\right\}\right)=\left(\lambda\left(\left\{G_{w}<-1\right\}\right)\right)^{m},
$$

and for $\widetilde{\Omega}$ we get

$$
K_{\Omega}(w) \geq \frac{1}{c_{n m}^{1 / m} \lambda\left(\left\{G_{w}<-1\right\}\right)}
$$

But $\lim _{m \rightarrow \infty} c_{n m}^{1 / m}=e^{2 n}$. Similarly we can get the estimate for every t.

Proof 2 (Lempert) By Berndtsson's result on log-(pluri)subharmonicity of the Bergman kernel for sections of a pseudoconvex domain (Maitani-Yamaguchi in dimension two) it follows that $\log K_{\left\{G_{w}<t\right\}}(w)$ is convex for $t \in(-\infty, 0]$. Therefore

$$
t \longmapsto 2 n t+\log K_{\left\{G_{w}<t\right\}}(w)
$$

is convex and bounded, hence non-decreasing. It follows that

$$
K_{\Omega}(w) \geq e^{2 n t} K_{\left\{G_{w}<t\right\}}(w) \geq \frac{e^{2 n t}}{\lambda\left(\left\{G_{w}<t\right\}\right)}
$$

Berndtsson-Lempert: This method can be improved to show the Ohsawa-Takegoshi extension theorem with optimal constant.

Proof 1 uses infinitely many dimensions, whereas Proof 2 works in dimension $n+1$. No known proof in dimension n.

Convex Domains

B. 2014 If $\Omega \subset \mathbb{C}^{n}$ is convex then

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}^{K}(w)\right)}, \quad w \in \Omega
$$

where $I_{\Omega}^{K}(w)=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0)=w\right\}$ (Kobayashi indicatrix).

Extremely accurate estimate:
B.-Zwonek 2015 For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|^{2}<1\right\}$ and $w=(b, 0), b \in[0,1)$ one has

$$
\lambda\left(l_{\Omega}^{K}(w)\right) K_{\Omega}(w)=1+\frac{(1-b)^{3} b^{2}}{3(1+b)^{3}} \leq 1.0047
$$

B.-Zwonek 2015 If $\Omega \subset \mathbb{C}^{n}$ is convex then

$$
K_{\Omega}(w) \leq \frac{4^{n}}{\lambda\left(I_{\Omega}^{K}(w)\right)}, \quad w \in \Omega
$$

General Case

B. 2014 If $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex then

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}, \quad w \in \Omega, t \leq 0
$$

B.-Zwonek 2015 If $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex then

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}^{A}(w)\right)}, \quad w \in \Omega
$$

where $I_{\Omega}^{A}(w)=\left\{X \in \mathbb{C}^{n}: \overline{\lim }_{\zeta \rightarrow 0}\left(G_{w}(w+\zeta X)-\log |\zeta|\right)<0\right\}$
(Azukawa indicatrix).
Conjecture For Ω pseudoconvex and $w \in \Omega$ the function

$$
t \longmapsto e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)
$$

is non-decreasing in t.

It would easily follow if we knew that the function

$$
\begin{equation*}
t \longmapsto \log \lambda\left(\left\{G_{w}<t\right\}\right)-2 t \tag{1}
\end{equation*}
$$

is convex on $(-\infty, 0]$. Fornæss however constructed a counterexample to this (already for $n=1$). Generalizing his example one can show

Theorem If t_{0} is a critical value of G_{w} then

$$
\left.\frac{d}{d t} \lambda\left(\left\{G_{w}<t\right\}\right)\right|_{t=t_{0}}=\infty .
$$

In particular, the function (1) is not convex.
B.-Zwonek 2015 For $n=1$ the function (1) is non-decreasing.

The conjecture for arbitrary n is equivalent to the following pluricomplex isoperimetric inequality for smooth strongly pseudoconvex Ω

$$
\int_{\partial \Omega} \frac{d \sigma}{\left|\nabla G_{w}\right|} \geq 2 n \lambda(\Omega) .
$$

Conjecture If $\Omega \Subset \mathbb{C}^{n}$ is smooth and strongly pseudoconvex and K is the Levi curvature of $\partial \Omega$ then

$$
\int_{\partial \Omega} K d \sigma \geq c_{n} \sqrt{\lambda(\Omega)}
$$

Carleson (1963) showed that for $\Omega \subset \mathbb{C}$ the Bergman space

$$
A^{2}(\Omega):=\mathcal{O} \cap L^{2}(\Omega)
$$

is trivial iff $\mathbb{C} \backslash \Omega$ is polar. In other words,

$$
K_{\Omega}(w)=0 \Leftrightarrow c_{\Omega}(w)=0 .
$$

The Suita inequality $c_{\Omega}^{2} \leq \pi K_{\Omega}$ is a quantitative version of \Rightarrow.
Theorem For $\Omega \subset \mathbb{C}, w \in \Omega$ and $0<r<\delta_{\Omega}(w):=\operatorname{dist}(w, \partial \Omega)$ we have

$$
K_{\Omega}(w) \leq \frac{1}{-2 \pi r^{2} \max _{z \in \bar{\Delta}(w, r)} G_{\Omega}(z, w)}
$$

Corollary \exists uniform constant $C>0$ s.th. for $w \in \Omega \subset \mathbb{C}$, we have

$$
K_{\Omega}(w) \leq \frac{C}{\delta_{\Omega}(w)^{2} \log \left(1 /\left(\delta_{\Omega}(w) c_{\Omega}(w)\right)\right)}
$$

Wiegerinck Conjecture

Wiegerinck, 1984

- $\forall k \in \mathbb{N} \exists \Omega \subset \mathbb{C}^{2}$ s.th. $\operatorname{dim} A^{2}(\Omega)=k$
- Conjecture If $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex then either $A^{2}(\Omega)=\{0\}$ or $\operatorname{dim} A^{2}(\Omega)=\infty$
- True for $n=1$

For $w \in \Omega \subset \mathbb{C}$ and $j=0,1, \ldots$ define

$$
\begin{aligned}
K_{\Omega}^{(j)}(w):=\sup \left\{\left|f^{(j)}(w)\right|^{2}\right. & : f \in A^{2}(\Omega),\|f\| \leq 1 \\
& \left.f(w)=f^{\prime}(w)=\cdots=f^{(j-1)}(w)=0\right\}
\end{aligned}
$$

Similarly as before one can show that

$$
\frac{j!(j+1)!}{\pi}\left(c_{\Omega}(w)\right)^{2 j+2} \leq K_{\Omega}^{(j)}(w) \leq \frac{C_{j}}{\delta_{\Omega}(w)^{2+j} \log \left(1 /\left(\delta_{\Omega}(w) c_{\Omega}(w)\right)\right)} .
$$

Balanced Domains

A domain $\Omega \subset \mathbb{C}^{n}$ is called balanced if $z \in \Omega, \zeta \in \Delta \Rightarrow \zeta z \in \Omega$. Then

$$
K_{\Omega}(0)=\frac{1}{\lambda(\Omega)}
$$

Since for any domain Ω and $w \in \Omega$ the Azukawa indicatrix

$$
I_{\Omega}^{A}(w)=\left\{X \in \mathbb{C}^{n}: \varlimsup_{\zeta \rightarrow 0}\left(G_{w}(w+\zeta X)-\log |\zeta|\right)<0\right\}
$$

is a balanced domain, it follows that for pseudoconvex domains one has

$$
K_{\Omega}(w) \geq K_{l_{\Omega}^{A}(w)}(0)
$$

Similarly for $j=0,1, \ldots$ and $X \in \mathbb{C}^{n}$

$$
K_{\Omega}^{(j)}(w ; X) \geq K_{l_{\Omega}^{A}(w)}^{(j)}(0 ; X),
$$

where

$$
\begin{aligned}
K_{\Omega}^{(j)}(w ; X):=\sup \left\{\left|f^{(j)}(w) \cdot X\right|^{2}\right. & : f \in A^{2}(\Omega),\|f\| \leq 1 \\
& \left.f(w)=f^{\prime}(w)=\cdots=f^{(j-1)}(w)=0\right\}
\end{aligned}
$$

Corollary $\operatorname{dim} A^{2}\left(I_{\Omega}^{A}(w)\right)=\infty \Rightarrow \operatorname{dim} A^{2}(\Omega)=\infty$
Pflug-Zwonek 2016
Wiegerinck conjecture holds for balanced domains in \mathbb{C}^{2}
Problem $K_{\Omega}(w)>0 \Leftrightarrow \lambda\left(I_{\Omega}^{A}(w)\right)<\infty$
A good upper bound for the Bergman kernel in terms of pluripotential theory would be needed.

Some Partial Results

Theorem If $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex and such that $\operatorname{dim} A^{2}(\Omega)<\infty$ then for $w \in \Omega$ and $t \leq 0$

$$
A^{2}\left(\left\{G_{w}<t\right\}\right)=\left\{\left.f\right|_{\left\{G_{w}<t\right\}}: f \in A^{2}(\Omega)\right\} .
$$

Sketch of proof We may assume that $G:=G_{w} \not \equiv-\infty$. Clearly \supset and it is enough to prove that

$$
\operatorname{dim} A^{2}(\{G<t\}) \leq \operatorname{dim} A^{2}(\Omega) .
$$

Take linearly independent $f_{1}, \ldots, f_{k} \in A^{2}(\{G<t\})$. One can find m such that the m-jets of f_{1}, \ldots, f_{k} at w are linearly independent. Let $\chi \in C^{\infty}(\mathbb{R})$ be such that $\chi(s)=1$ for $s \leq t-3, \chi(s)=0$ for $s \geq t-1$ and $\left|\chi^{\prime}\right| \leq 1$.

Set

$$
\begin{aligned}
\alpha & :=\bar{\partial}\left(f_{j} \chi \circ G\right)=f_{j} \chi^{\prime} \circ G \bar{\partial} G, \\
\varphi & :=2(n+m+1) G, \\
\psi & :=-\log (-G) .
\end{aligned}
$$

Since

$$
i \bar{\alpha} \wedge \alpha \leq\left|f_{j}\right|^{2} G^{2} i \partial \bar{\partial} \psi,
$$

it follows from the Donnelly-Fefferman estimate that one can find a solution to $\bar{\partial} u=\alpha$ with

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq 4 \int_{\Omega}\left|f_{j}\right|^{2} G^{2} e^{-\varphi} d \lambda
$$

Therefore $F_{j}:=f_{j} \not \circ G-u \in A^{2}(\Omega)$ and F_{j} has the same m-jet at w as f_{j} and thus F_{1}, \ldots, F_{k} are also linearly independent.

Theorem Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex and such that for some $w \in \Omega$ and $t \leq 0$ the set $\left\{G_{w}<t\right\}$ does not satisfy the Liouville property. Then $A^{2}(\Omega)$ is either trivial or infinitely dimensional.

Theorem Let $\Omega \subset \mathbb{C}^{n}$ be pseudoconvex and $w_{j} \in \Omega$ be an infinite sequence, not contained in any analytic subset of Ω, and such that for some $t<0$ and all $j \neq k$ one has $\left\{G_{w_{j}}<t\right\} \cap\left\{G_{w_{k}}<t\right\}=\emptyset$. Then $A^{2}(\Omega)$ is either trivial or infinitely dimensional.

Example (Siciak 1985) There exists a pseudoconvex balanced dense domain Ω in \mathbb{C}^{2} such that $\operatorname{dim} A^{2}(\Omega)=\infty$.

Thank you!

