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D domain in C

cD(z) := exp lim
ζ→z

(GD(ζ, z)− log |ζ − z |)

(logarithmic capacity of C \ D w.r.t. z)

cD |dz | is an invariant metric (Suita metric)

CurvcD |dz| = − (log cD)zz̄
c2
D

Suita Conjecture (1972): CurvcD |dz| ≤ −1

• “=” if D is simply connected

• “<” if D is an annulus (Suita)

• Enough to prove for D with smooth boundary

• “=” on ∂D if D has smooth boundary

We are essentially asking whether the curvature of the Suita metric
satisfies maximum principle.
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CurvcD |dz| for D = {e−5 < |z | < 1} as a function of log |z |



5 10 15 20

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

CurvKD |dz|2 for D = {e−10 < |z | < 1} as a function of −2 log |z |
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Curv(log KD )zz̄ |dz|2 for D = {e−5 < |z | < 1} as a function of log |z |



∂2

∂z∂z̄
(log cD) = πKD (Suita),

KD(z) = sup{|f (z)|2 : f ∈ O(D),

∫
D

|f |2dλ ≤ 1}.

Therefore the Suita conjecture is equivalent to

c2
D ≤ πKD .

Surprisingly, the only sensible approach to this problem turned out to be
by several complex variables! Ohsawa (1995) observed that it is really an
extension problem: for z ∈ D find f ∈ O(D) such that f (z) = 1 and∫

D

|f |2dλ ≤ π

(cD(z))2
.

Using the methods of the Ohsawa-Takegoshi extension theorem he
showed the estimate

c2
D ≤ CπKD

with C = 750.

C = 2 (B., 2007)
C = 1.95388 . . . (Guan-Zhou-Zhu, 2011)



Ohsawa-Takegoshi Extension Theorem

Theorem (1987)
Ω bounded pscvx domain in Cn, ϕ psh in Ω
H complex affine subspace of Cn

f holomorphic in Ω′ := Ω ∩ H
Then there exists a holomorphic extension F of f to Ω such that∫

Ω

|F |2e−ϕdλ ≤ Cπ

∫
Ω′
|f |2e−ϕdλ′,

where C depends only on n and the diameter of Ω.

Siu / Berndtsson (1996)
If Ω ⊂ Cn−1 × {|zn| < 1} and H = {zn = 0} then C = 4.

Problem Can we improve to C = 1?

B.-Y. Chen (2011) Ohsawa-Takegoshi extension theorem can be proved
using directly Hörmander’s estimate for ∂̄-equation!



L2-Estimates for ∂̄

Hörmander (1965)
Ω pscvx in Cn, ϕ smooth, strongly psh in Ω
α =

∑
j αjdz̄j ∈ L2

loc,(0,1)(Ω), ∂̄α = 0

Then one can find u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2e−ϕdλ ≤
∫

Ω

|α|2i∂∂̄ϕe
−ϕdλ.

Here |α|2
i∂∂̄ϕ

=
∑

j,k ϕ
j k̄ ᾱjαk , where (ϕj k̄) = (∂2ϕ/∂zj∂z̄k)−1, is the

length of α w.r.t. the Kähler metric i∂∂̄ϕ.

The estimate also makes sense for non-smooth psh ϕ: instead of |α|2
i∂∂̄ϕ

one has to take any nonnegative H ∈ L∞loc(Ω) with

i ᾱ ∧ α ≤ H i∂∂̄ϕ

(B., 2005).



Berndtsson (1996)
Ω, α, ϕ as before, ψ ∈ PSH(Ω) s.th. i∂ψ ∧ ∂̄ψ ≤ i∂∂̄ψ.
Then, if 0 ≤ δ < 1, one can find u ∈ L2

loc(Ω) with ∂̄u = α and∫
Ω

|u|2eδψ−ϕdλ ≤ 4

(1− δ)2

∫
Ω

|α|2i∂∂̄ψe
δψ−ϕdλ.

For δ = 0 and ϕ ≡ 0 the estimate is due to Donnelly-Fefferman (1982).

The constant 4/(1− δ)2 was obtained in B. 2004 (originally it was
4/(δ(1− δ)2)) and is optimal for every δ (B. 2012).

Berndtsson’s estimate is not enough to obtain Ohsawa-Takegoshi
(it would be if it were true for δ = 1).

Theorem Ω, α, ϕ, ψ as above
Assume in addition that |∂̄ψ|2

i∂∂̄ψ
≤ a < 1 on suppα.

Then there exists u ∈ L2
loc(Ω) solving ∂̄u = α with∫

Ω

|u|2(1− |∂̄ψ|2i∂∂̄ψ)eψ−ϕdλ ≤ 1 +
√
a

1−
√
a

∫
Ω

|α|2i∂∂̄ψe
ψ−ϕdλ.

From this estimate one can get Ohsawa-Takegoshi and Suita with
C = 1.95388 . . . (obtained earlier by Guan-Zhou-Zhu).



Theorem Ω pscvx in Cn, ϕ psh in Ω, α ∈ L2
loc,(0,1)(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2i∂∂̄ϕ

{
≤ 1 in Ω

≤ a < 1 on suppα

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2(1− |∂̄ψ|2i∂∂̄ϕ)e2ψ−ϕdλ ≤ 1 +
√
a

1−
√
a

∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ.

Remarks 1. Setting ψ ≡ 0 we recover the Hörmander estimate.

2. This theorem also implies all previous estimates: for psh ϕ,ψ with
|∂̄ψ|2

i∂∂̄ψ
≤ 1 and δ < 1 set ϕ̃ := ϕ+ ψ and ψ̃ = 1+δ

2 ψ.

Then 2ψ̃ − ϕ̃ = δψ − ϕ and |∂̄ψ̃|2
i∂∂̄ϕ̃

≤ (1+δ)2

4 =: a.

We will get Berndtsson’s estimate with the constant

1 +
√
a

(1−
√
a)(1− a)

=
4

(1− δ)2
.

For δ = 1 we have |∂̄ψ̃|2
i∂∂̄ϕ̃

≤ |∂̄ψ|2
i∂∂̄ψ

.



Theorem Ω pscvx in Cn, ϕ psh in Ω, α ∈ L2
loc,(0,1)(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2i∂∂̄ϕ

{
≤ 1 in Ω

≤ a < 1 on suppα

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2(1− |∂̄ψ|2i∂∂̄ϕ)e2ψ−ϕdλ ≤ 1 +
√
a

1−
√
a

∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ.

Proof (Some ideas going back to Berndtsson and B.-Y. Chen.)
By approximation we may assume that ϕ is smooth up to the boundary
and strongly psh, and ψ is bounded.
u minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)
⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)
⇒ v := ueψ ⊥ ker ∂̄ in L2(Ω, e−ϕ)
⇒ v minimal solution to ∂̄v = β := eψ(α + u∂̄ψ) in L2(Ω, e−ϕ)

Hörmander ⇒
∫

Ω

|v |2e−ϕdλ ≤
∫

Ω

|β|2i∂∂̄ϕe
−ϕdλ



Therefore∫
Ω

|u|2e2ψ−ϕdλ ≤
∫

Ω

|α + u ∂̄ψ|2i∂∂̄ϕe
2ψ−ϕdλ

≤
∫

Ω

(
|α|2i∂∂̄ϕ + 2|u|

√
H|α|i∂∂̄ϕ + |u|2H

)
e2ψ−ϕdλ,

where H = |∂̄ψ|2
i∂∂̄ϕ

. For t > 0 we will get∫
Ω

|u|2(1− H)e2ψ−ϕdλ

≤
∫

Ω

[
|α|2i∂∂̄ϕ

(
1 + t−1 H

1− H

)
+ t|u|2(1− H)

]
e2ψ−ϕdλ

≤
(

1 + t−1 a

1− a

)∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ

+ t

∫
Ω

|u|2(1− H)e2ψ−ϕdλ.

We will obtain the required estimate if we take t := 1/(a−1/2 + 1).



Theorem (Ohsawa-Takegoshi with optimal constant, B. 2013)
Ω pscvx in Cn−1 × D, where 0 ∈ D ⊂ C,
ϕ psh in Ω, f holomorphic in Ω′ := Ω ∩ {zn = 0}
Then there exists a holomorphic extension F of f to Ω such that∫

Ω

|F |2e−ϕdλ ≤ π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′.

Original solution of the L2-extension problem with optimal constant.
For n = 1 and ϕ ≡ 0 we obtain the Suita conjecture.

Crucial ODE Problem Find g ∈ C 0,1(R+), h ∈ C 1,1(R+) s.th. h′ < 0,
h′′ > 0,

lim
t→∞

(g(t) + log t) = lim
t→∞

(h(t) + log t) = 0

and (
1− (g ′)2

h′′

)
e2g−h+t ≥ 1.

Solution h(t) := − log(t + e−t − 1)

g(t) := − log(t + e−t − 1) + log(1− e−t).



Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with
optimal constant (and obtained various generalizations) but used
essentially the same ODE with two unknowns (with essentially the same
solutions).

They also answered the following, more detailed problem posed by Suita:

Theorem (Guan-Zhou, 2013) For any Riemann surface M which is not
biholomorphic to a disc with a polar subset removed and which admits
the Green function one has strict inequality in the Suita conjecture.



Another Approach to Suita Conjecture

KΩ(w) = sup{|f (w)|2 : f ∈ O(Ω),
∫

Ω
|f |2dλ ≤ 1}

(Bergman kernel)

GΩ(·,w) = Gw = sup{v ∈ PSH−(Ω), lim
z→w

(v(z)− log |z − w |) <∞}
(pluricomplex Green function)

Theorem Assume Ω is pscvx in Cn. Then for a ≥ 0 and w ∈ Ω

KΩ(w) ≥ 1

e2naλ({GΩ(·,w) < −a})
.

Optimal constant: “=” if Ω = B(w , r)

For n = 1 letting a→∞ this gives the Suita conjecture:

KΩ(w) ≥ cΩ(w)2

π
.



Sketch of proof Using Donnelly-Fefferman’s estimate for ∂̄ with

ϕ = 2nGw , ψ = − log(−Gw ), α = ∂̄(χ ◦ Gw )

one can prove

KΩ(w) ≥ 1

c(n, t)λ({Gw < t})
, (1)

where

c(n, t) =

(
1 +

C

Ei(−nt)

)2

, Ei(a) =

∫ ∞
a

ds

ses

(B. 2005). Now use the tensor power trick: Ω̃ = Ω× · · · × Ω ⊂ Cnm,
w̃ = (w , . . . ,w) for m� 0. Then

KΩ̃(w̃) = (KΩ(w))m, λ({Gw̃ < t}) = (λ({Gw < t}))m,

and by (1) for Ω̃

KΩ(w) ≥ 1

c(nm, t)1/mλ({Gw < t})
.

But lim
m→∞

c(nm, t)1/m = e−2nt .



Proof 2 (Lempert) By Maitani-Yamaguchi / Berndtsson’s result on
log-(pluri)subharmonicity of the Bergman kernel for sections of a
pseudoconvex domain it follows that logK{Gw<t}(w) is convex for
t ∈ (−∞, 0]. Therefore

t 7−→ 2nt + logK{Gw<t}(w)

is convex and bounded, hence non-decreasing. It follows that

KΩ(w) ≥ e2ntK{Gw<t}(w) ≥ e2nt

λ({Gw < t})
.

Berndtsson-Lempert: This method can be improved to obtain the
Ohsawa-Takegoshi extension theorem with optimal constant (one has to
use Berndtsson’s positivity of direct image bundles).



What happens with e−2ntλ({Gw < t}) as t → −∞ for arbitrary n? For
convex Ω using Lempert’s theory one can get

Proposition If Ω is bounded, smooth and strongly convex in Cn then for
w ∈ Ω

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IKΩ (w)),

where IKΩ (w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).

Corollary If Ω ⊂ Cn is convex then

KΩ(w) ≥ 1

λ(IKΩ (w))
, w ∈ Ω.

For general Ω one can prove

Theorem (B.-Zwonek) If Ω is bounded and hyperconvex in Cn and
w ∈ Ω then

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IAΩ (w)),

where IAΩ (w) = {X ∈ Cn : limζ→0

(
Gw (w + ζX )− log |ζ|

)
≤ 0}

(Azukawa indicatrix)



Corollary (SCV version of the Suita conjecture) If Ω ⊂ Cn is
pseudoconvex and w ∈ Ω then

KΩ(w) ≥ 1

λ(IAΩ (w))
.

Conjecture 1 For Ω pseudoconvex and w ∈ Ω the function

t 7−→ e−2ntλ({Gw < t})

is non-decreasing in t.

It would follow if the function t 7−→ log λ({Gw < t}) was convex on
(−∞, 0]. Fornæss: this doesn’t have to be true even for n = 1.



Theorem (B.-Zwonek) Conjecture 1 is true for n = 1.

Proof It is be enough to prove that f ′(t) ≥ 0 where

f (t) := log λ({Gw < t})− 2t

and t is a regular value of Gw . By the co-area formula

λ({Gw < t}) =

∫ t

−∞

∫
{Gw=s}

dσ

|∇Gw |
ds

and therefore

f ′(t) =

∫
{Gw=t}

dσ

|∇Gw |
λ({Gw < t})

− 2.

By the Schwarz inequality∫
{Gw=t}

dσ

|∇Gw |
≥ (σ({Gw = t}))2∫

{Gw=t}
|∇Gw |dσ

=
(σ({Gw = t}))2

2π
.



The isoperimetric inequality gives

(σ({Gw = t}))2 ≥ 4πλ({Gw < t})

and we obtain f ′(t) ≥ 0.

Conjecture 1 for arbitrary n is equivalent to the following pluricomplex
isoperimetric inequality for smooth strongly pseudoconvex Ω (then
Gw ∈ C 1,1(Ω̄ \ {w}), B.Guan / B., 2000)∫

∂Ω

dσ

|∇Gw |
≥ 2λ(Ω).

Conjecture 1 also turns out to be closely related to the problem of
symmetrization of the complex Monge-Ampère equation.



Theorem (B.-Zwonek) For a convex Ω and w ∈ Ω set

FΩ(w) :=
(
KΩ(w)λ(IKΩ (w))

)1/n
.

Then FΩ(w) ≤ 4. If Ω is in addition symmetric w.r.t. w then
FΩ(w) ≤ 16/π2 = 1.621 . . . .

For convex domains FΩ is thus a biholomorphically invariant function
satisfying 1 ≤ FΩ ≤ 4. Can we find an example with FΩ(w) > 1? Using
Jarnicki-Pflug-Zeinstra’s formula for geodesics in convex complex
ellipsoids (which is based on Lempert’s theory) one can show the
following

Theorem (B.-Zwonek) Define

Ω = {z ∈ Cn : |z1|+ · · ·+ |zn| < 1}.

Then for w = (b, 0, . . . , 0), where 0 < b < 1, one has

KΩ(w)λ(IKΩ (w)) = 1 + (1− b)2n (1 + b)2n − (1− b)2n − 4nb

4nb(1 + b)2n

= 1 +
(1− b)2n

(1 + b)2n

n−1∑
j=1

1

2j + 1

(
2n − 1

2j

)
b2j .
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FΩ(b, 0, . . . , 0) in Ω = {|z1|+ · · ·+ |zn| < 1} for n = 2, 3, . . . , 6.



Theorem (B.-Zwonek) For m ≥ 1/2 set Ω = {|z1|2m + |z2|2 < 1} and
w = (b, 0), 0 < b < 1. Then

KΩ(w)λ(IKΩ (w)) = P
m(1− b2) + 1 + b2

2(1− b2)3(m − 2)m2(m + 1)(3m − 2)(3m − 1)
,

where

P =b6m+2
(
−m3 + 2m2 + m − 2

)
+ b2m+2

(
−27m3 + 54m2 − 33m + 6

)
+ b6m2

(
3m2 + 2m − 1

)
+ 6b4m2

(
3m3 − 5m2 − 4m + 4

)
+ b2

(
−36m5 + 81m4 + 10m3 − 71m2 + 32m − 4

)
+ 2m2

(
9m3 − 27m2 + 20m − 4

)
.

In this domain all values of FΩ are attained for (b, 0), 0 < b < 1.
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FΩ(b, 0) in Ω = {|z1|2m + |z2|2 < 1} for m = 4, 8, 16, 32, 64, 128.

sup
0<b<1

FΩ(b, 0)→ 1.010182 . . . as m→∞



Thank you!


