Suita Conjecture
 and the Ohsawa-Takegoshi Extension Theorem

Zbigniew Błocki
(Jagiellonian University, Kraków, Poland)

http://gamma.im.uj.edu.pl/~blocki

Hayama Symposium on Complex Analysis in Several Variables XV July 23, 2012

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D \text { (if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita conjecture (1972):

$$
\operatorname{Curv}_{c_{D}|d z|} \leq-1
$$

- "=" if D is simply connected
- " $<$ " if D is an annulus (Suita)
- Enough to prove for D with smooth boundary
- " $=$ " on ∂D if D has smooth boundary

$\operatorname{Curv}_{c_{D}|d z|}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{K_{D}|d z|^{2}}$ for $D=\left\{e^{-10}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{\left(\log K_{D}\right)_{z \bar{z}|d z|^{2}} \text { for } D=\left\{e^{-5}<|z|<1\right\} \text { as a function of } t=-2 \log |z|, ~(z)}$

Suita showed that

$$
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D}
$$

where

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \text { holomorphic in } \mathrm{D}, \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

is the Bergman kernel on the diagonal. Therefore the Suita conjecture is equivalent to the inequality

$$
c_{D}^{2} \leq \pi K_{D}
$$

It is thus an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

Ohsawa (1995), using the methods of the Ohsawa-Takegoshi extension theorem, showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$. This was later improved to $C=2$ (B., 2007) and to $C=1.954$ (Guan-Zhou-Zhu, 2011).

Ohsawa-Takegoshi Extension Theorem, 1987
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C(n, \operatorname{diam} \Omega) \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Theorem (Berndtsson, 1996)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times\left\{\mid z_{n}<1\right\}, \varphi-$ psh in Ω
f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq 4 \pi \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Theorem (Ohsawa, 2001, Ż. Dinew, 2007)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}, \varphi-\operatorname{psh}$ in Ω,
f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{4 \pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

In 2011 B.-Y. Chen showed that the Ohsawa-Takegoshi extension theorem can be shown using directly Hörmander's estimate for $\bar{\partial}$-equation!

Hörmander's Estimate (1965)
Ω - pseudoconvex in \mathbb{C}^{n}, φ - smooth, strongly psh in Ω
$\alpha=\sum_{j} \alpha_{j} d \bar{z}_{j} \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Here $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k} \varphi^{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}$, where $\left(\varphi^{j \bar{k}}\right)=\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)^{-1}$ is the length of α w.r.t. the Kähler metric $i \partial \bar{\partial} \varphi$.

The estimate also makes sense for non-smooth φ : instead of $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}$ one has to take any nonnegative $H \in L_{l o c}^{\infty}(\Omega)$ with

$$
i \bar{\alpha} \wedge \alpha \leq H i \partial \bar{\partial} \varphi
$$

(B., 2005).

Donnelly-Feffermann's Estimate (1982)
Ω - pseudoconvex, φ, ψ-psh in Ω
$|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ (that is $\left.i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi\right)$
$\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq 4 \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda
$$

Berndtsson's Estimate (1996)
$\Omega, \varphi, \psi, \alpha$ as above
Then, if $0 \leq \delta<1$, one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{\delta \psi-\varphi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{\delta \psi-\varphi} d \lambda
$$

Theorem (B. 2004 \& 2012)
The constants in the above estimates are optimal.

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Proof. (Ideas going back to Berndtsson and B.-Y. Chen.) By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
$\Rightarrow v$ - minimal solution to $\bar{\partial} v=\beta:=e^{\psi}(\alpha+u \bar{\partial} \psi)$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
By Hörmander's estimate

$$
\int_{\Omega}|v|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\beta|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Therefore

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda & \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left(|\alpha|_{i \partial \bar{\partial} \varphi}^{2}+2|u| \sqrt{H}|\alpha|_{i \partial \bar{\partial} \varphi}+|u|^{2} H\right) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

where $H=|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}$. For $t>0$ we will get

$$
\begin{aligned}
& \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left[|\alpha|_{i \partial \bar{\partial} \varphi}^{2}\left(1+t^{-1} \frac{H}{1-H}\right)+t|u|^{2}(1-H)\right] e^{2 \psi-\varphi} d \lambda \\
& \leq \\
& \quad\left(1+t^{-1} \frac{\delta}{1-\delta}\right) \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \quad+t \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

We will obtain the required estimate if we take $t:=1 /\left(\delta^{-1 / 2}+1\right)$.

Remark. This estimate implies Donnelly-Feffermann and Berndtsson's estimates: for psh φ, ψ with $|\bar{\partial} \psi|_{i \partial \bar{\partial} \psi}^{2} \leq 1$ and $\delta<1$ set

$$
\widetilde{\varphi}:=(2-\delta) \psi+\varphi
$$

Then $2 \psi-\widetilde{\varphi}=\delta \psi-\varphi$

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \widetilde{\varphi}}^{2} \leq \frac{1}{2-\delta}=: \widetilde{\delta}
$$

and

$$
|\alpha|_{i \partial \bar{\partial} \widetilde{\varphi}}^{2} \leq \widetilde{\delta}|\alpha|_{i \partial \bar{\partial} \psi}^{2} .
$$

We will get Berndtsson's estimate with the constant

$$
\frac{\widetilde{\delta}(1+\sqrt{\widetilde{\delta}})}{(1-\sqrt{\widetilde{\delta}})(1-\widetilde{\delta})}=\frac{1}{(\sqrt{2-\delta}-1)^{2}}
$$

Theorem (Ohsawa-Takegoshi with optimal constant)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega^{\prime}}$.
$\varepsilon>0$

$$
\alpha:=\bar{\partial}\left(f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)\right)
$$

where $\chi(t)=0$ for $t \leq-2 \log \varepsilon$ and $\chi(\infty)=1$.
$G:=G_{D}(\cdot, 0)$
$\widetilde{\varphi}:=\varphi+2 G+\eta(-2 G)$
$\psi:=\gamma(-2 G)$
$F:=f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)-u$, where u is a solution of $\bar{\partial} u=\alpha$ given by the previous thm.

Crucial ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that $h^{\prime}<0, h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Crucial ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that $h^{\prime}<0, h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Solution:

$$
\begin{aligned}
h(t) & :=-\log \left(t+e^{-t}-1\right) \\
g(t) & :=-\log \left(t+e^{-t}-1\right)+\log \left(1-e^{-t}\right)
\end{aligned}
$$

