Bergman Kernel and Pluripotential Theory

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

İstanbul Analysis Seminar
March 21, 2014

Bergman Completeness

Ω bounded domain in \mathbb{C}^{n}
$H^{2}(\Omega)=\mathcal{O}(\Omega) \cap L^{2}(\Omega)$
$K_{\Omega}(\cdot, \cdot)$ Bergman kernel

$$
\begin{aligned}
& f(w)=\int_{\Omega} f \overline{K_{\Omega}(\cdot, w)} d \lambda, \quad w \in \Omega, f \in H^{2}(\Omega) \\
& \begin{aligned}
K_{\Omega}(w) & =K_{\Omega}(w, w) \\
& =\sup \left\{|f(w)|^{2}: f \in H^{2}(\Omega),\|f\| \leq 1\right\}
\end{aligned}
\end{aligned}
$$

Ω is called Bergman complete if it is complete w.r.t. the Bergman metric $B_{\Omega}=i \partial \bar{\partial} \log K_{\Omega}$

Kobayashi Criterion (1959) If

$$
\lim _{w \rightarrow \partial \Omega} \frac{|f(w)|^{2}}{K_{\Omega}(w)}=0, \quad f \in H^{2}(\Omega)
$$

then Ω is Bergman complete.

The opposite is not true even for $n=1$ (Zwonek, 2001).

Kobayashi Criterion easily follows using the embedding

$$
\iota: \Omega \ni w \longmapsto\left[K_{\Omega}(\cdot, w)\right] \in \mathbb{P}\left(H^{2}(\Omega)\right)
$$

and the fact that $\iota^{*} \omega_{F S}=B_{\Omega}$.
Since ι is distance decreasing,

$$
\operatorname{dist}_{\Omega}^{B}(z, w) \geq \arccos \frac{\left|K_{\Omega}(z, w)\right|}{\sqrt{K_{\Omega}(z) K_{\Omega}(w)}}
$$

Some Pluripotential Theory

Ω is called hyperconvex if it admits a negative plurisubharmonic (psh) exhaustion function ($u \in P S H^{-}(\Omega)$ s.th. $u=0$ on $\partial \Omega$).
Demailly (1985) If Ω is pseudoconvex with Lipschitz boundary then it is hyperconvex.

Pluricomplex Green function For a pole $w \in \Omega$ we set

$$
G_{\Omega}(\cdot, w)=G_{w}=\sup \left\{v \in P S H^{-}(\Omega): v \leq \log |\cdot-w|+C\right\}
$$

Lempert (1981) Ω convex $\Rightarrow G_{\Omega}$ symmetric
Demailly (1985) Ω hyperconvex $\Rightarrow e^{G_{\Omega}} \in C(\bar{\Omega} \times \Omega)$
Open Problem $e^{G_{\Omega}} \in C\left(\bar{\Omega} \times \bar{\Omega} \backslash \Delta_{\partial \Omega}\right)$
Equivalently: $G\left(\cdot, w_{k}\right) \rightarrow 0$ loc. uniformly as $w_{k} \rightarrow \partial \Omega$?
True if $\partial \Omega \in C^{2}$ (Herbort, 2000)

Demailly (1985) If Ω is hyperconvex then $G_{w}=G_{\Omega}(\cdot, w)$ is the unique solution to

$$
\left\{\begin{array}{l}
u \in P S H(\Omega) \cap C(\bar{\Omega} \backslash\{w\}) \\
\left(d d^{c} u\right)^{n}=(2 \pi)^{n} \delta_{w} \\
u=0 \text { on } \partial \Omega \\
u \leq \log |\cdot-w|+C
\end{array}\right.
$$

B. (2000) If Ω is smooth and strongly pseudoconvex then $G_{w} \in C^{1,1}(\bar{\Omega} \backslash\{w\})$.
B. (1995) If Ω is hyperconvex then \exists ! $u=u_{\Omega}$ s.th.

$$
\left\{\begin{array}{l}
u \in P S H(\Omega) \cap C(\bar{\Omega}) \\
\left(d d^{c} u\right)^{n}=1 d \lambda \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

B.-Y. Chen, Pflug - B. / Herbort (1998)

Hyperconvex domains are Bergman complete
Herbort If Ω is pseudoconvex then

$$
\frac{|f(w)|^{2}}{K_{\Omega}(w)} \leq c_{\left\{G_{w}<-1\right\}}|f|^{2} d \lambda, \quad w \in \Omega, f \in H^{2}(\Omega)
$$

Corollary $\lim _{w \rightarrow \partial \Omega} \lambda\left(\left\{G_{w}<-1\right\}\right)=0 \Rightarrow \Omega$ is Bergman complete
Proposition If Ω is hyperconvex then

$$
\lim _{w \rightarrow \partial \Omega}\left\|G_{w}\right\|_{L^{n}(\Omega)}=0
$$

Sketch of proof $\left\|G_{w}\right\|_{n}^{n}=\int_{\Omega}\left|G_{w}\right|^{n}\left(d d^{c} u_{\Omega}\right)^{n}$

$$
\leq n!\left\|u_{\Omega}\right\|_{\infty}^{n-1} \int_{\Omega}\left|u_{\Omega}\right|\left(d d^{c} G_{w}\right)^{n} \leq C(n, \lambda(\Omega))\left|u_{\Omega}(w)\right|
$$

Lower Bound for the Bergman Distance

Diederich-Ohsawa (1994), B. (2005) If Ω is pseudoconvex with C^{2} boundary then

$$
\operatorname{dist}_{\Omega}^{B}(\cdot, w) \geq \frac{\log \delta_{\Omega}^{-1}}{C \log \log \delta_{\Omega}^{-1}}
$$

where $\delta_{\Omega}(z)=\operatorname{dist}_{\Omega}(z, \partial \Omega)$.
Pluripotential theory is the main tool in proving this estimate, in particular we have the following:
B. (2005) If Ω is pseudoconvex and $z, w \in \Omega$ are such that

$$
\left\{G_{z}<-1\right\} \cap\left\{G_{w}<-1\right\}=\emptyset
$$

then

$$
\operatorname{dist}_{\Omega}^{B}(z, w) \geq c_{n}>0
$$

Open Problem $\operatorname{dist}_{\Omega}^{B}(\cdot, w) \geq \frac{1}{C} \log \delta_{\Omega}^{-1}$

From Herbort's estimate

$$
\frac{|f(w)|^{2}}{K_{\Omega}(w)} \leq c_{n} \int_{\left\{G_{w}<-1\right\}}|f|^{2} d \lambda, \quad w \in \Omega, f \in H^{2}(\Omega)
$$

for $f \equiv 1$ we get

$$
K_{\Omega}(w) \geq \frac{1}{c_{n} \lambda\left(\left\{G_{w}<-1\right\}\right)}
$$

To find the optimal constant c_{n} here turns out to have very interesting consequences!

Herbort (1999) $c_{n}=1+4 \mathrm{e}^{4 n+3+R^{2}}$, where $\Omega \subset B\left(z_{0}, R\right)$
(Main tool: Hörmander's estimate for $\bar{\partial}$)
B. (2005) $c_{n}=(1+4 / E i(n))^{2}$, where $E i(t)=\int_{t}^{\infty} \frac{d s}{s e^{s}}$
(Main tool: Donnelly-Fefferman's estimate for $\bar{\partial}$)

Suita Conjecture

D bounded domain in \mathbb{C}

$$
c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)
$$

$$
\text { (logarithmic capacity of } \mathbb{C} \backslash D \text { w.r.t. z) }
$$

$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita Conjecture (1972): $\quad \operatorname{Curv}_{c_{D}|d z|} \leq-1$

- " $=$ " if D is simply connected
- " $<$ " if D is an annulus (Suita)
- Enough to prove for D with smooth boundary
- "=" on ∂D if D has smooth boundary

$\operatorname{Curv}_{c_{D}|d z|}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $\log |z|$

$\operatorname{Curv}_{\left(\log K_{D}\right)_{z \bar{z}}|d z|^{2}}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $\log |z|$

$$
\left.\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D} \quad \text { (Suita }\right)
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

Ohsawa (1995) observed that it is really an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

Using the methods of the Ohsawa-Takegoshi extension theorem he showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$.
$C=2$
(B., 2007)
$C=1.95388 \ldots$.
(Guan-Zhou-Zhu, 2011)

Ohsawa-Takegoshi extension theorem (1987) with optimal constant (B., 2013)
$0 \in D \subset \mathbb{C}, \quad \Omega \subset \mathbb{C}^{n-1} \times D, \quad \Omega$ pseudoconvex,
$\varphi \in \operatorname{PSH}(\Omega)$
f holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{c_{D}(0)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

For $n=1$ and $\varphi \equiv 0$ we get the Suita conjecture.

Main tool: Hörmander's estimate for $\bar{\partial}$
B.-Y. Chen (2011) proved that the Ohsawa-Takegoshi theorem (without optimal constant) follows form Hörmander's estimate.

Tensor Power Trick

We have

$$
K_{\Omega}(w) \geq \frac{1}{c_{n} \lambda\left(\left\{G_{w}<-1\right\}\right)}
$$

where $c_{n}=(1+4 / E i(n))^{2}$.
Take $m \gg 0$ and set $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w)$. Then

$$
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda_{2 n m}\left(\left\{G_{\widetilde{w}}<-1\right\}\right)=\left(\lambda_{2 n}\left(\left\{G_{w}<-1\right\}\right)^{m} .\right.
$$

Therefore

$$
K_{\Omega}(w) \geq \frac{1}{c_{n m}^{1 / m} \lambda\left(\left\{G_{w}<-1\right\}\right)}
$$

but

$$
\lim _{m \rightarrow \infty} c_{n m}^{1 / m}=e^{2 n} .
$$

Repeating this argument for any sublevel set we get
Theorem 1 Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $t \leq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}
$$

Lempert recently noticed that this estimate can also be proved using Berndtsson's result on positivity of direct image bundles.
What happens when $t \rightarrow-\infty$?
For $n=1$ we get $K_{\Omega} \geq c_{\Omega}^{2} / \pi$ (another proof of Suita Conjecture).
Theorem 2 If Ω is a convex domain in \mathbb{C}^{n} then for $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}(w)\right)}
$$

$I_{\Omega}(w)=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0)=w\right\}$ (Kobayashi indicatrix).

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Mahler volume is an invariant of the Banach space defined by K : it is independent of linear transformations and of the choice of inner product.
Santaló Inequality (1949) Mahler volume is maximized by balls Mahler Conjecture (1938) Mahler volume is minimized by cubes Hansen-Lima bodies: starting from an interval they are produced by taking products of lower dimensional HL bodies and their duals.
$n=2$: square
$n=3$: cube \& octahedron
$n=4: \ldots$

Bourgain-Milman (1987) There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!}
$$

Mahler Conjecture: $c=1$
G. Kuperberg (2006) $c=\pi / 4$

Nazarov (2012)

- equivalent SCV formulation of the Mahler Conjecture via the Fourier transform and the Paley-Wiener theorem
- proof of the Bourgain-Milman Inequality $\left(c=(\pi / 4)^{3}\right)$ using Hörmander's estimate for $\bar{\partial}$
K - convex symmetric body in \mathbb{R}^{n}
Nazarov: consider $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} .
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!} .
$$

To show the lower bound we can use Theorem 2:

$$
K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}\left(I_{T_{K}}(0)\right)}
$$

Proposition $I_{T_{K}}(0) \subset \frac{4}{\pi}(K+i K)$
In particular, $\lambda_{2 n}\left(I_{T_{K}}(0)\right) \leq\left(\frac{4}{\pi}\right)^{2 n}\left(\lambda_{n}(K)\right)^{2}$
Conjecture $\lambda_{2 n}\left(I_{T_{K}}(0)\right) \leq\left(\frac{4}{\pi}\right)^{n}\left(\lambda_{n}(K)\right)^{2}$

Lempert Theory (1981)

Ω - bounded strongly convex domain in \mathbb{C}^{n} with smooth boundary $\varphi \in \mathcal{O}(\Delta, \Omega) \cap C(\bar{\Delta}, \bar{\Omega})$ is a geodesic if and only if $\varphi(\partial \Delta) \subset \partial \Omega$ and there exists $h \in \mathcal{O}\left(\Delta, \mathbb{C}^{n}\right) \cap C\left(\bar{\Delta}, \mathbb{C}^{n}\right)$ s.th. the vector $e^{i t} \overline{h\left(e^{i t}\right)}$ is outer normal to $\partial \Omega$ at $\varphi\left(e^{i t}\right)$ for every $t \in \mathbb{R}$.
$\exists F \in \mathcal{O}(\Omega, \Delta)$ a left-inverse to φ (i.e. $\left.F \circ \varphi=i d_{\Delta}\right)$ s.th.

$$
(z-\varphi(F(z))) \cdot h(F(z))=0, \quad z \in \Omega
$$

Lempert's Theory for Tube Domains (S. Zajạc, 2013)

$\Omega=T_{K}$, where K is smooth and strongly convex in \mathbb{R}^{n}
Since $\operatorname{Im}\left(e^{i t} \overline{h\left(e^{i t}\right)}\right)=0, h$ must be of the form

$$
h(\zeta)=\bar{w}+\zeta b+\zeta^{2} w
$$

for some $w \in \mathbb{C}^{n}$ and $b \in \mathbb{R}^{n}$. Therefore

$$
\operatorname{Re} \varphi\left(e^{i t}\right)=\nu^{-1}\left(\frac{b+2 \operatorname{Re}\left(e^{i t} w\right)}{\left|b+2 \operatorname{Re}\left(e^{i t} w\right)\right|}\right)
$$

where $\nu: \partial K \rightarrow S^{n-1}$ is the Gauss map.

By the Schwarz formula

$$
\varphi(\zeta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+\zeta}{e^{i t}-\zeta} \nu^{-1}\left(\frac{b+2 \operatorname{Re}\left(e^{i t} w\right)}{\left|b+2 \operatorname{Re}\left(e^{i t} w\right)\right|}\right) d t+i \operatorname{Im} \varphi(0)
$$

If K is in addition symmetric then all geodesics in T_{K} with $\varphi(0)=0$ are of the form

$$
\varphi(\zeta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+\zeta}{e^{i t}-\zeta} \nu^{-1}\left(\frac{\operatorname{Re}\left(e^{i t} w\right)}{\left|\operatorname{Re}\left(e^{i t} w\right)\right|}\right) d t
$$

for some $w \in\left(\mathbb{C}^{n}\right)_{*}$. Then

$$
\varphi^{\prime}(0)=\frac{1}{\pi} \int_{0}^{2 \pi} e^{i t} \nu^{-1}\left(\frac{\operatorname{Re}\left(e^{i t} \bar{w}\right)}{\left|\operatorname{Re}\left(e^{i t} \bar{w}\right)\right|}\right) d t
$$

parametrizes $\partial I_{T_{K}}(0)$ for $w \in S^{2 n-1}$.
Conjecture $\lambda_{2 n}\left(I_{T_{K}}(0)\right) \leq\left(\frac{4}{\pi}\right)^{n}\left(\lambda_{n}(K)\right)^{2}$

