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Bergman Completeness

Ω bounded domain in Cn

H2(Ω) = O(Ω) ∩ L2(Ω)

KΩ(·, ·) Bergman kernel

f (w) =

∫
Ω
f KΩ(·,w) dλ, w ∈ Ω, f ∈ H2(Ω)

KΩ(w) = KΩ(w ,w)

= sup{|f (w)|2 : f ∈ H2(Ω), ||f || ≤ 1}

Ω is called Bergman complete if it is complete w.r.t. the Bergman
metric BΩ = i∂∂̄ logKΩ



Kobayashi Criterion (1959) If

lim
w→∂Ω

|f (w)|2

KΩ(w)
= 0, f ∈ H2(Ω),

then Ω is Bergman complete.

The opposite is not true even for n = 1 (Zwonek, 2001).

Kobayashi Criterion easily follows using the embedding

ι : Ω 3 w 7−→ [KΩ(·,w)] ∈ P(H2(Ω))

and the fact that ι∗ωFS = BΩ.

Since ι is distance decreasing,

distBΩ (z ,w) ≥ arccos
|KΩ(z ,w)|√
KΩ(z)KΩ(w)

.



Some Pluripotential Theory

Ω is called hyperconvex if it admits a negative plurisubharmonic
(psh) exhaustion function (u ∈ PSH−(Ω) s.th. u = 0 on ∂Ω).

Demailly (1985) If Ω is pseudoconvex with Lipschitz boundary then
it is hyperconvex.

Pluricomplex Green function For a pole w ∈ Ω we set

GΩ(·,w) = Gw = sup{v ∈ PSH−(Ω) : v ≤ log | · −w |+ C}

Lempert (1981) Ω convex ⇒ GΩ symmetric

Demailly (1985) Ω hyperconvex ⇒ eGΩ ∈ C (Ω̄× Ω)

Open Problem eGΩ ∈ C (Ω̄× Ω̄ \∆∂Ω)

Equivalently: G (·,wk)→ 0 loc. uniformly as wk → ∂Ω?

True if ∂Ω ∈ C 2 (Herbort, 2000)



Demailly (1985) If Ω is hyperconvex then Gw = GΩ(·,w) is the
unique solution to

u ∈ PSH(Ω) ∩ C (Ω̄ \ {w})
(ddcu)n = (2π)nδw

u = 0 on ∂Ω

u ≤ log | · −w |+ C

B. (1995) If Ω is hyperconvex then ∃! u = uΩ s.th.
u ∈ PSH(Ω) ∩ C (Ω̄)

(ddcu)n = 1 dλ

u = 0 on ∂Ω.

Open Problem u ∈ C∞(Ω)

Pogorelov (1971) True for the analogous solution of the real
Monge-Ampère equation (for any bounded convex domain in Rn

without any regularity assumptions).



B.-Y. Chen, Pflug - B. (1998) / Herbort (1999)
Hyperconvex domains are Bergman complete

Herbort If Ω is pseudoconvex then

|f (w)|2

KΩ(w)
≤ cn

∫
{Gw<−1}

|f |2dλ, w ∈ Ω, f ∈ H2(Ω).

Corollary lim
w→∂Ω

λ({Gw < −1})=0 ⇒ Ω is Bergman complete

Proposition If Ω is hyperconvex then

lim
w→∂Ω

||Gw ||Ln(Ω) = 0.

Sketch of proof ||Gw ||nn =
∫

Ω |Gw |n(ddcuΩ)n

≤ n!||uΩ||n−1
∞

∫
Ω
|uΩ|(ddcGw )n ≤ C (n, λ(Ω)) |uΩ(w)|



Lower Bound for the Bergman Distance

Diederich-Ohsawa (1994), B. (2005) If Ω is pseudoconvex with C 2

boundary then

distBΩ (·,w) ≥
log δ−1

Ω

C log log δ−1
Ω

,

where δΩ(z) = distΩ(z , ∂Ω).

Pluripotential theory is the main tool in proving this estimate, in
particular we have the following:

B. (2005) If Ω is pseudoconvex and z ,w ∈ Ω are such that

{Gz < −1} ∩ {Gw < −1} = ∅

then
distBΩ (z ,w) ≥ cn > 0.

Open Problem distBΩ (·,w) ≥ 1
C log δ−1

Ω



From Herbort’s estimate

|f (w)|2

KΩ(w)
≤ cn

∫
{Gw<−1}

|f |2dλ, w ∈ Ω, f ∈ H2(Ω),

for f ≡ 1 we get

KΩ(w) ≥ 1

cnλ({Gw < −1})
.

To find the optimal constant cn here turns out to have very
interesting consequences!

Herbort (1999) cn = 1 + 4e4n+3+R2
, where Ω ⊂ B(z0,R)

(Main tool: Hörmander’s estimate for ∂̄)

B. (2005) cn = (1 + 4/Ei(n))2, where Ei(t) =

∫ ∞
t

ds

ses

(Main tool: Donnelly-Fefferman’s estimate for ∂̄)



Suita Conjecture

D bounded domain in C

cD(z) := exp lim
ζ→z

(GD(ζ, z)− log |ζ − z |)

(logarithmic capacity of C \ D w.r.t. z)

cD |dz | is an invariant metric (Suita metric)

CurvcD |dz| = −(log cD)zz̄
c2
D

Suita Conjecture (1972): CurvcD |dz| ≤ −1

• “=” if D is simply connected

• “<” if D is an annulus (Suita)

• Enough to prove for D with smooth boundary

• “=” on ∂D if D has smooth boundary
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CurvcD |dz| for D = {e−5 < |z | < 1} as a function of log |z |
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Curv(log KD)zz̄ |dz|2 for D = {e−5 < |z | < 1} as a function of log |z |



∂2

∂z∂z̄
(log cD) = πKD (Suita)

Therefore the Suita conjecture is equivalent to

c2
D ≤ πKD .

Ohsawa (1995) observed that it is really an extension problem: for
z ∈ D find holomorphic f in D such that f (z) = 1 and∫

D
|f |2dλ ≤ π

(cD(z))2
.

Using the methods of the Ohsawa-Takegoshi extension theorem he
showed the estimate

c2
D ≤ CπKD

with C = 750.

C = 2 (B., 2007)
C = 1.95388 . . . (Guan-Zhou-Zhu, 2011)



Ohsawa-Takegoshi extension theorem (1987)
with optimal constant (B., 2013)
0 ∈ D ⊂ C, Ω ⊂ Cn−1 × D, Ω pseudoconvex,
ϕ ∈ PSH(Ω)
f holomorphic in Ω′ := Ω ∩ {zn = 0}
Then there exists a holomorphic extension F of f to Ω such that∫

Ω
|F |2e−ϕdλ ≤ π

cD(0)2

∫
Ω′
|f |2e−ϕdλ′.

For n = 1 and ϕ ≡ 0 we get the Suita conjecture.

Main tool: Hörmander’s estimate for ∂̄
B.-Y. Chen (2011) proved that the Ohsawa-Takegoshi theorem
(without optimal constant) follows form Hörmander’s estimate.



Tensor Power Trick

We have

KΩ(w) ≥ 1

cnλ({Gw < −1})

where cn = (1 + 4/Ei(n))2.

Take m� 0 and set Ω̃ := Ωm ⊂ Cnm, w̃ := (w , . . . ,w). Then

K
Ω̃

(w̃) = (KΩ(w))m, λ2nm({Gw̃ < −1}) = (λ2n({Gw < −1})m.

Therefore

KΩ(w) ≥ 1

c
1/m
nm λ({Gw < −1})

but
lim

m→∞
c

1/m
nm = e2n.



Repeating this argument for any sublevel set we get

Theorem 1 Assume Ω is pseudoconvex in Cn. Then for a ≥ 0 and
w ∈ Ω

KΩ(w) ≥ 1

e2naλ({Gw < −a})
.

Lempert recently noticed that this estimate can also be proved
using Berndtsson’s result on positivity of direct image bundles.

What happens when a→∞?

For n = 1 we get KΩ ≥ c2
Ω/π (another proof of Suita conjecture).

For n ≥ 1 and Ω convex using Lempert’s theory one can obtain:

Theorem 2 If Ω is a convex domain in Cn then for w ∈ Ω

KΩ(w) ≥ 1

λ(IΩ(w))
,

IΩ(w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).



Mahler Conjecture

K - convex symmetric body in Rn

K ′ := {y ∈ Rn : x · y ≤ 1 for every x ∈ K}

Mahler volume := λ(K )λ(K ′)

Mahler volume is an invariant of the Banach space defined by K :
it is independent of linear transformations and of the choice of
inner product.

Santaló Inequality (1949) Mahler volume is maximized by balls

Mahler Conjecture (1938) Mahler volume is minimized by cubes

Hansen-Lima bodies: starting from an interval they are produced
by taking products of lower dimensional HL bodies and their duals.
n = 2: square
n = 3: cube & octahedron
n = 4: . . .



Bourgain-Milman (1987) There exists c > 0 such that

λ(K )λ(K ′) ≥ cn
4n

n!
.

Mahler Conjecture: c = 1

G. Kuperberg (2006) c = π/4

Nazarov (2012)

I equivalent SCV formulation of the Mahler Conjecture via the
Fourier transform and the Paley-Wiener theorem

I proof of the Bourgain-Milman Inequality (c = (π/4)3) using
Hörmander’s estimate for ∂̄



K - convex symmetric body in Rn

Nazarov: consider TK := intK + iRn ⊂ Cn. Then(π
4

)2n 1

(λn(K ))2
≤ KTK

(0) ≤ n!

πn
λn(K ′)

λn(K )
.

Therefore

λn(K )λn(K ′) ≥
(π

4

)3n 4n

n!
.

To show the lower bound we can use Theorem 2:

KTK
(0) ≥ 1

λ2n(ITK
(0))

.

Proposition ITK
(0) ⊂ 4

π
(K + iK )

In particular, λ2n(ITK
(0)) ≤

(
4

π

)2n

(λn(K ))2

Conjecture λ2n(ITK
(0)) ≤

(
4

π

)n

(λn(K ))2


