Local Regularity of the Monge-Ampère Equation

Zbigniew Błocki (Jagiellonian University, Kraków, Poland)

http://gamma.im.uj.edu.pl/~blocki

NORDAN 2010 Göteborg, May 8, 2010 We are interested in local regularity of (RMA) $det(u_{x_ix_j}) = f > 0$ (for convex solutions in domains in \mathbb{R}^n) and (CMA) $det(u_{z_i\bar{z}_j}) = f > 0$ (for continuous psh solutions in domains in \mathbb{C}^n).

Remark. 1. In a way (RMA) is a special case of (CMA). 2. Makes no sense to allow $f \ge 0$.

Natural question: $f \in C^{\infty} \Rightarrow u \in C^{\infty}$?

Real Monge-Ampère Equation

Example (Pogorelov, 1971). $u(x) = (x_1^2 + 1)|x'|^{2\beta}$, $\beta \ge 0$, where $x' = (x_2, \ldots, x_n)$. Then

 $\det(u_{x_ix_j}) = c(1+x_1^2)^{n-2} [(2\beta-1)-(2\beta+1)x_1^2] |x'|^{2(\beta n+1-n)}.$

- $\bullet~u$ is convex near the origin iff $\beta>1/2$
- det $(u_{x_i x_j})$ is smooth and > 0 iff $\beta = 1 1/n$.

Example only works for $n \ge 3!!!!!$

Theorem.
$$n = 2, f \in C^{\infty} \Rightarrow u \in C^{\infty}$$

Theorem (Aleksandrov, 1942). $n = 2, \det(u_{x_i x_j}) \ge c > 0 \implies u$ is strictly convex

Theorem (Pogorelov, 1971). $\Omega \subset \mathbb{R}^n, \ u = 0 \text{ on } \partial\Omega, \ f \in C^{\infty}(\Omega) \Rightarrow u \in C^{\infty}(\Omega)$ Coming back to Pogorelov's example $(n \ge 3)$:

$$u = (x_1^2 + 1)|x'|^{2(1-1/n)},$$

so that $f = c(1 + x_1^2)^{n-2}$. Then

$$u \in W_{loc}^{2,p} \Leftrightarrow p < \frac{1}{2}n(n-1)$$

and

$$u \in C^{1,\alpha} \Leftrightarrow \alpha \le 1 - \frac{2}{n}.$$

Theorem (Urbas, 1988). If $n \ge 3$ and

 \bullet either $u\in W^{2,p}_{loc}$ for some p>n(n-1)/2 \bullet or $u\in C^{1,\alpha}$ for some $\alpha>1-2/n$ then

$$f \in C^{\infty} \Rightarrow u \in C^{\infty}.$$

Complex Monge-Ampère Equation

Example.
$$u(z) = (1 + |z_1|^2)|z'|^{2(1-1/n)}$$
 is psh in \mathbb{C}^n ,

$$\det(u_{z_i\bar{z}_j}) = c(1 + |z_1|^2)^{n-2}$$
In particular, $u(z_1, z_2) = 2(1 + |z_1|^2)|z_2|$ satisfies

$$\det(u_{z_i\bar{z}_j}) = 1.$$

No two-dimensional phenomenon in the complex case!

$$u \in W_{loc}^{2,p} \Leftrightarrow p < n(n-1), \quad u \in C^{1,\alpha} \Leftrightarrow \alpha \le 1 - \frac{2}{n}.$$

Theorem (B.-S. Dinew). If $u \in W_{loc}^{2,p}$ for some p > n(n-1) then $f \in C^{\infty} \Rightarrow u \in C^{\infty}$. More precisely we have

Theorem. Assume $\Omega \subset \mathbb{C}^n$, $n \geq 2$, $u \in PSH \cap W^{2,p}(\Omega)$ for some p > n(n-1) solves $\det(u_{z_i\bar{z}_i}) = f > 0,$ where $f \in C^{1,1}(\Omega)$. Then $\Delta u \in L^{\infty}_{loc}(\Omega)$ and for $\Omega' \subset \subset \Omega$ $\sup \Delta u \leq C,$ Ω' where C depends only on n, p, $||f||_{C^{1,1}(\Omega)}$, $\inf_{\Omega} f$, $||\Delta u||_{L^p(\Omega)}$ and $\operatorname{dist}(\Omega', \partial \Omega)$.

Sketch of proof. Assume $u \in C^4$. Then

$$u^{i\bar{j}}(\Delta u)_{i\bar{j}} \ge \Delta(\log f) \ge -C_1.$$

Set $w:=(1-|z|^2)^\alpha(\Delta u)^\beta,\,\alpha,\beta\geq 2.$ After some computations we will get

$$u^{i\bar{j}}w_{i\bar{j}} \ge -C_2(\Delta u)^{\alpha-1} - C_3 w^{1-2/\beta} (\Delta u)^{2\alpha/\beta} \sum_{i,j} |u^{i\bar{j}}|.$$

Fix 1 < q < p/(n(n-1)). Since $||\Delta u||_p$ is under control, it follows that $||u_{i\bar{j}}||_p$ and $||u^{i\bar{j}}||_{p/(n-1)}$ are as well. Set

$$\alpha = 1 + \frac{p}{qn}, \quad \beta = 2\left(1 + \frac{qn}{p}\right).$$

Then

$$||(u^{i\bar{j}}w_{i\bar{j}})_{-}||_{qn} \le C_4(1 + (\sup_B w)^{1-2/\beta}),$$

where $f_{-} := -\min(f, 0)$.

Solve
$$\det(v_{i\bar{j}}) = ((u^{i\bar{j}}w_{i\bar{j}})_{-})^{n}$$
, $v = 0$ on ∂B . Then

$$\sup_{B} w \leq C_{5} \sup_{B} (-v)$$

$$\leq C_{6} ||\det(v_{i\bar{j}})||_{q}^{1/n}$$

$$= C_{6} ||(u^{i\bar{j}}w_{i\bar{j}})_{-}||_{qn}$$

$$\leq C_{7} (1 + (\sup_{B} w)^{1-2/\beta})$$

by Kołodziej's estimate. Therefore

$$w = (1 - |z|^2)^{\alpha} (\Delta u)^{\beta} \le C_8.$$

For u which is just in $W^{2,p}$ we consider

$$T = T_{\varepsilon}u = \frac{n+1}{\varepsilon^2}(u_{\varepsilon} - u),$$

where

$$u_{\varepsilon}(z) = \frac{1}{\lambda(B(z,\varepsilon))} \int_{B(z,\varepsilon)} u \, d\lambda.$$

Then $T_{\varepsilon}u \rightarrow \Delta u$ weakly. One can show that

$$u^{i\bar{j}}T_{i\bar{j}} \ge nf^{-1/n}T_{\varepsilon}(f^{1/n}) \ge -C_9$$

and now we can work as before with T instead of Δu .

Theorem (S. Dinew-X. Zhang-X.W. Zhang). $0 < \alpha < 1$. For $u \in C^{1,1}$ we have

$$f \in C^{\alpha} \Rightarrow u \in C^{2,\alpha}.$$

It would useful to weaken the assumption to $\Delta u \in L^{\infty}_{loc}$. For this the following version of Bedford-Taylor's interior regularity would be sufficient:

Assume v is psh and has bounded Laplacian near \overline{B} . Let u be the psh solution of $\det(u_{i\overline{j}}) = 1$, u = v on ∂B . Then $\Delta u \in L^{\infty}_{loc}(B)$.