
Bergman Kernel and Kobayashi Pseudodistance
in Convex Domains

Zbigniew B locki
Uniwersytet Jagielloński, Kraków, Poland
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Ω ⊂ Cn, w ∈ Ω

KΩ(w) = sup{|f (w)|2 : f ∈ O(Ω),

∫
Ω

|f |2dλ ≤ 1}

(Bergman kernel on the diagonal)

Gw (z) = GΩ(z ,w)

= sup{u(z) : u ∈ PSH−(Ω) : lim
z→w

(
u(z)− log |z − w |

)
<∞}

(pluricomplex Green function)

Theorem 0 Assume Ω is pseudoconvex in Cn. Then for w ∈ Ω and t ≤ 0

KΩ(w) ≥ 1

e−2ntλ({Gw < t})
.

Optimal constant: “=” if Ω = B(w , r).



Proof 1 Using Donnelly-Fefferman’s estimate for ∂̄ one can prove

KΩ(w) ≥ 1

c(n, t)λ({Gw < t})
, (1)

where

c(n, t) =

(
1 +

C

Ei(−nt)

)2

, Ei(a) =

∫ ∞
a

ds

ses

(B. 2005). Now use the tensor power trick: Ω̃ = Ω× · · · × Ω ⊂ Cnm,
w̃ = (w , . . . ,w) for m� 0. Then

KΩ̃(w̃) = (KΩ(w))m, λ({Gw̃ < t}) = (λ({Gw < t}))m,

and by (1) for Ω̃

KΩ(w) ≥ 1

c(nm, t)1/mλ({Gw < t})
.

But lim
m→∞

c(nm, t)1/m = e−2nt .



Proof 2 (Lempert) By Berndtsson’s result on log-(pluri)subharmonicity of
the Bergman kernel for sections of a pseudoconvex domain it follows that
logK{Gw<t}(w) is convex for t ∈ (−∞, 0]. Therefore

t 7−→ 2nt + logK{Gw<t}(w)

is convex and bounded, hence non-decreasing. It follows that

KΩ(w) ≥ e2ntK{Gw<t}(w) ≥ e2nt

λ({Gw < t})
.

Berndtsson-Lempert: This method can be improved to show the
Ohsawa-Takegoshi extension theorem with optimal constant.



Theorem 0 Assume Ω is pseudoconvex in Cn. Then for w ∈ Ω and t ≤ 0

KΩ(w) ≥ 1

e−2ntλ({Gw < t})
.

What happens when t → −∞? For n = 1 Theorem 0 immediately gives:

Theorem (Suita conjecture) For a domain Ω ⊂ C one has

KΩ(w) ≥ cΩ(w)2/π, w ∈ Ω, (2)

where cΩ(w) = exp
(

limz→w (GΩ(z ,w)− log |z − w |)
)

(logarithmic capacity of C \ Ω w.r.t. w).

Theorem (Guan-Zhou) Equality holds in (2) iff Ω ' ∆ \ F , where ∆ is
the unit disk and F a closed polar subset.
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πKΩ

c2
Ω

for Ω = {e−5 < |z | < 1} as a function of 2 log |w |



What happens with e−2ntλ({Gw < t}) as t → −∞ for arbitrary n? For
convex Ω using Lempert’s theory one can get

Proposition If Ω is bounded, smooth and strongly convex in Cn then for
w ∈ Ω

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IKΩ (w)),

where IKΩ (w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).

Corollary If Ω ⊂ Cn is convex then

KΩ(w) ≥ 1

λ(IKΩ (w))
, w ∈ Ω.

For general Ω one can prove

Theorem If Ω is bounded and hyperconvex in Cn and w ∈ Ω then

lim
t→−∞

e−2ntλ({Gw < t}) = λ(IAΩ (w)),

where IAΩ (w) = {X ∈ Cn : limζ→0

(
Gw (w + ζX )− log |ζ|

)
≤ 0}

(Azukawa indicatrix)



Corollary (SCV version of the Suita conjecture) If Ω ⊂ Cn is
pseudoconvex and w ∈ Ω then

KΩ(w) ≥ 1

λ(IAΩ (w))
.

Remark 1. For n = 1 one has λ(IAΩ (w)) = π/cΩ(w)2.

2. If Ω is convex then IAΩ (w) = IKΩ (w).

Conjecture For Ω pseudoconvex and w ∈ Ω the function

t 7−→ e−2ntλ({Gw < t})

is non-decreasing in t.

It would easily follow if we knew that the function

t 7−→ log λ({Gw < t})

is convex on (−∞, 0]. Fornæss however constructed a counterexample to
this (already for n = 1).



Theorem The conjecture is true for n = 1.

Proof It is be enough to prove that f ′(t) ≥ 0 where

f (t) := log λ({Gw < t})− 2t

and t is a regular value of Gw . By the co-area formula

λ({Gw < t}) =

∫ t

−∞

∫
{Gw=s}

dσ

|∇Gw |
ds

and therefore

f ′(t) =

∫
{Gw=t}

dσ

|∇Gw |
λ({Gw < t})

− 2.

By the Schwarz inequality∫
{Gw=t}

dσ

|∇Gw |
≥ (σ({Gw = t}))2∫

{Gw=t}
|∇Gw |dσ

=
(σ({Gw = t}))2

2π
.



The isoperimetric inequality gives

(σ({Gw = t}))2 ≥ 4πλ({Gw < t})

and we obtain f ′(t) ≥ 0.

The conjecture for arbitrary n is equivalent to the following pluricomplex
isoperimetric inequality for smooth strongly pseudoconvex Ω∫

∂Ω

dσ

|∇Gw |
≥ 2nλ(Ω).

The conjecture also turns out to be closely related to the problem of
symmetrization of the complex Monge-Ampère equation.



What about the corresponding upper bound in the Suita conjecture?
Not true in general:

Proposition Let Ω = {r < |z | < 1}. Then

KΩ(
√
r)

(cΩ(
√
r))2

≥ −2 log r

π3
.

It would be interesting to find un upper bound of the Bergman kernel for
domains in C in terms of logarithmic capacity which would in particular
imply the ⇒ part in the well known equivalence (due to Carleson)

KΩ > 0 ⇔ cΩ > 0

(c2
Ω ≤ πKΩ being a quantitative version of ⇐).



The upper bound for the Bergman kernel holds for convex domains:

Theorem For a convex Ω and w ∈ Ω set

FΩ(w) :=
(
KΩ(w)λ(IKΩ (w))

)1/n
.

Then FΩ(w) ≤ 4.

Sketch of proof Denote I := int IKΩ (w) and assume that w = 0. One can
show that I ⊂ 2 Ω. Then

KΩ(0)λ(I ) ≤ KI/2(0)λ(I ) =
λ(I )

λ(I/2)
= 4n.

If Ω is in addition symmetric w.r.t. w then FΩ(w) ≤ 16/π2 = 1.621 . . . .

Remark The proof of the optimal lower bound FΩ ≥ 1 used ∂̄.
The proof of the (probably) non-optimal upper bound FΩ ≤ 4 is much
more elementary!



For convex domains

FΩ(w) =
(
λ(IΩ(w))KΩ(w))

)1/n

is a biholomorphically invariant function satisfying 1 ≤ FΩ ≤ 4.

• Find an example with FΩ 6≡ 1.

• What are the properties of the function w 7−→ λ(IΩ(w))?

• What is the optimal upper bound for FΩ?



Formulas for some convex complex ellipsoids in C2

E(p, q) = {z ∈ C2 : |z1|2p + |z2|2q < 1}, p, q ≥ 1/2.

Blank-Fan-Klein-Krantz-Ma-Pang (1992) found implicit formulas
for the Kobayashi function of E(m, 1). They can be made explicit for
m = 1/2. Using this one can prove

Theorem For Ω = {|z1|+ |z2|2 < 1} and b ∈ [0, 1) one has

λ(IΩ((b, 0))) =
π2

3
(1− b)3(1 + 3b + 3b2 − b3)

and

λ(IΩ((b, 0)))KΩ((b, 0)) = 1 +
(1− b)3b2

3(1 + b)3
.
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FΩ((b, 0)) for Ω = {|z1|+ |z2|2 < 1}



Although the Kobayashi function of E(m, 1) is given by implicit formulas,
it turns out that the volume of the Kobayashi indicatrix can be computed
explicitly:

Theorem For Ω = {|z1|2m + |z2|2 < 1}, m ≥ 1/2, and b ∈ [0, 1) one has

λ(IΩ((b, 0)))

= π2

[
− m − 1

2m(3m − 2)(3m − 1)
b6m+2 − 3(m − 1)

2m(m − 2)(m + 1)
b2m+2

+
m

2(m − 2)(3m − 2)
b6 +

3m

3m − 1
b4 − 4m − 1

2m
b2 +

m

m + 1

]
.

For m = 2/3

λ(IΩ((b, 0))) =
π2

80

(
−65b6 + 40b6 log b + 160b4 − 27b10/3 − 100b2 + 32

)
,

and m = 2

λ(IΩ((b, 0))) =
π2

240

(
−3b14 − 25b6 − 120b6 log b + 288b4 − 420b2 + 160

)
.



About the proof Main tool: Jarnicki-Pflug-Zeinstra (1993) formula for
geodesics in convex complex ellipsoids. If

C ⊃ U 3 z 7−→ (f (z), g(z)) ∈ ∂I

is a parametrization of an S1-invariant portion of ∂I then the volume of
the corresponding part of I is given by

π

2

∫
U

|H(z)|dλ(z), (3)

where

H = |f |2(|gz̄ |2 − |gz |2) + |g |2(|fz̄ |2 − |fz |2) + 2Re
(
f ḡ(fzgz − fz̄gz̄)

)
.

Both H and the integral (3) are computed with the help of Mathematica.
The same method is used for computations in other ellipsoids.



For Ω = {|z1|2m + |z2|2 < 1} the formula for the Bergman kernel is well
known:

KΩ(w) =
1

π2
(1−|w2|2)1/m−2 (1/m + 1)(1− |w2|2)1/m + (1/m − 1)|w1|2(

(1− |w2|2)1/m − |w1|2
)3 ,

so that

KΩ((b, 0)) =
m + 1 + (1−m)b2

π2m(1− b2)3
.

Since for t ∈ R and a ∈ ∆ the mapping

Ω 3 z 7−→
(
e it

(1− |a|2)1/2m

(1− āz2)1/m
z1,

z2 − a

1− āz2

)
is a holomorphic automorphism of Ω, FΩ((b, 0)) for b ∈ [0, 1) attains all
values of FΩ in Ω.
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FΩ((b, 0)) in Ω = {|z1|2m + |z2|2 < 1} for m = 1/2, 4, 8, 16, 32, 64, 128

sup
0<b<1

FΩ((b, 0))→ 1.010182 . . . as m→∞

(highest value of FΩ obtained so far in arbitrary dimension)



Theorem For Ω = {|z1|+ |z2| < 1} and b ∈ [0, 1) one has

λ(IΩ((b, 0))) =
π2

6
(1− b)4

(
(1− b)4 + 8b

)
and

λ(IΩ((b, 0)))KΩ((b, 0)) = 1 + b2 (1− b)4

(1 + b)4
.

The Bergman kernel for this ellipsoid was found by Hahn-Pflug (1988):

KΩ(w) =
2

π2
· 3(1− |w |2)2(1 + |w |2) + 4|w1|2|w2|2(5− 3|w |2)(

(1− |w |2)2 − 4|w1|2|w2|2
)3 ,

so that

KΩ((b, 0)) =
6(1 + b2)

π2(1− b2)4
.

In all examples so far the function w 7→ λ(IΩ(w)) is analytic. Is it true in
general?



Theorem For Ω = {|z1|+ |z2| < 1} and b ∈ [0, 1/4] one has

λ(IΩ((b, b))) =
π2

6

(
30b8− 64b7 + 80b6− 80b5 + 76b4− 16b3− 8b2 + 1

)
.



Since KΩ((b, b)) =
2(3− 6b2 + 8b4)

π2(1− 4b2)3
, we get the following picture:
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FΩ((b, b)) in Ω = {|z1|+ |z2| < 1} for b ∈ [0, 1/4]



Since KΩ((b, b)) =
2(3− 6b2 + 8b4)

π2(1− 4b2)3
, we get the following picture:
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FΩ((b, b)) in Ω = {|z1|+ |z2| < 1} for b ∈ [0, 1/4]

By either of the estimates 1 ≤ FΩ ≤ 4, the function b 7→ FΩ((b, b))
cannot be analytic on (0, 1/2)!



Theorem For Ω = {|z1|+ |z2| < 1} and b ∈ [0, 1/4] one has

λ(IΩ((b, b))) =
π2

6

(
30b8− 64b7 + 80b6− 80b5 + 76b4− 16b3− 8b2 + 1

)
.

For b ∈ [1/4, 1/2)

λ(IΩ((b, b))) =
2π2b(1− 2b)3

(
−2b3 + 3b2 − 6b + 4

)
3(1− b)2

+
π
(

30b10 − 124b9 + 238b8 − 176b7 − 260b6 + 424b5 − 76b4 − 144b3 + 89b2 − 18b + 1
)

6(1− b)2

× arccos

(
−1 +

4b − 1

2b2

)

+
π(1− 2b)

(
−180b7 + 444b6 − 554b5 + 754b4 − 1214b3 + 922b2 − 305b + 37

)
72(1− b)

√
4b − 1

+
4πb(1− 2b)4

(
7b2 + 2b − 2

)
3(1− b)2

arctan
√

4b − 1

+
4πb2(1− 2b)4(2− b)

(1− b)2
arctan

1− 3b

(1− b)
√

4b − 1
.



By χ−(b), resp. χ+(b), denote λ(IΩ((b, b))) for b ≤ 1/4, resp. b ≥ 1/4.
Then at b = 1/4

χ− = χ+ =
15887

196608
π2, χ′− = χ′+ = −3521

6144
π2,

χ′′− = χ′′+ = − 215

1536
π2, χ

(3)
− = χ

(3)
+ =

1785

64
π2,

but

χ
(4)
− =

1549

16
π2, χ

(4)
+ =∞.

Corollary For Ω = {|z1|+ |z2| < 1} the function w 7→ λ(IΩ(w)) is not
C 3,1 at w = (1/4, 1/4).
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Mahler Conjecture

K - convex symmetric body in Rn

K ′ := {y ∈ Rn : x · y ≤ 1 for every x ∈ K}

Mahler volume := λ(K )λ(K ′)

Mahler volume is an invariant of the Banach space defined by K : it is
independent of linear transformations and of the choice of inner product.

Blaschke-Santaló Inequality (1949) Mahler volume is maximized by balls

Mahler Conjecture (1938) Mahler volume is minimized by cubes

True for n = 2:

�
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Hansen-Lima bodies: starting from an interval they are produced by
taking products of lower dimensional HL bodies and their duals.

n = 2
'

n = 3
6'



Equivalent SCV formulation (Nazarov, 2012)

For u ∈ L2(K ′) we have

|û(0)|2 =

∣∣∣∣∫
K ′

u dλ

∣∣∣∣2 ≤ λ(K ′)||u||2L2(K ′) = (2π)−nλ(K ′)||û||2L2(Rn)

with equality for u = χK ′ . Therefore

λ(K ′) = (2π)n sup
f∈P

|f (0)|2

||f ||2L2(Rn)

,

where P = {û : u ∈ L2(K ′)} ⊂ O(Cn). By the Paley-Wiener thm

P = {f ∈ O(Cn) : |f (z)| ≤ CeC |z|, |f (iy)| ≤ CeqK (y)},

where qK is the Minkowski function for K . Therefore the Mahler
conjecture is equivalent to finding f ∈ P with f (0) = 1 and∫

Rn

|f (x)|2dλ(x) ≤ n!
(π

2

)n
λ(K ).



Bourgain-Milman Inequality

Bourgain-Milman (1987) There exists c > 0 such that

λ(K )λ(K ′) ≥ cn
4n

n!
.

Mahler Conjecture: c = 1

G. Kuperberg (2006) c = π/4

Nazarov (2012) SCV proof using Hörmander’s estimate (c = (π/4)3)

Consider the tube domain TK := intK + iRn ⊂ Cn. Then(π
4

)2n 1

(λn(K ))2
≤ KTK

(0) ≤ n!

πn

λn(K ′)

λn(K )
.

Therefore

λn(K )λn(K ′) ≥
(π

4

)3n 4n

n!
.



The upper bound KTK
(0) ≤ n!

πn

λn(K ′)

λn(K )
easily follows from Rothaus’

formula (1968):

KTK
(0) = (2π)−n

∫
Rn

dλ

JK
,

where

JK (y) =

∫
K

e−2x·ydλ(x).

To show the lower bound KTK
(0) ≥

(π
4

)2n 1

(λn(K ))2
we can use the

estimate:

KTK
(0) ≥ 1

λ2n(ITK
(0))

and

Proposition ITK
(0) ⊂ 4

π
(K + iK )

Conjecture KTK
(0) ≥

(π
4

)n 1

(λn(K ))2

This would be optimal, since we have equality for cubes.



However, one can check that for K = {|x1|+ |x2|+ |x3| ≤ 1} we have

KTK
(0) >

(π
4

)3 1

(λ3(K ))2
.

This shows that Nazarov’s proof of the Bourgain-Milman inequality
cannot give the Mahler conjecture directly.



Thank you!


