Bergman Kernel and Kobayashi Pseudodistance in Convex Domains

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki
(Joint work with Włodzimierz Zwonek)

NORDAN

Reykjavík, April 26, 2015
$\Omega \subset \mathbb{C}^{n}, w \in \Omega$

$$
K_{\Omega}(w)=\sup \left\{|f(w)|^{2}: f \in \mathcal{O}(\Omega), \int_{\Omega}|f|^{2} d \lambda \leq 1\right\}
$$

(Bergman kernel on the diagonal)

$$
\begin{aligned}
G_{w}(z) & =G_{\Omega}(z, w) \\
& =\sup \left\{u(z): u \in P S H^{-}(\Omega): \overline{\lim }_{z \rightarrow w}(u(z)-\log |z-w|)<\infty\right\}
\end{aligned}
$$

(pluricomplex Green function)

Theorem 0 Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $w \in \Omega$ and $t \leq 0$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}
$$

Optimal constant: " $=$ " if $\Omega=B(w, r)$.

Proof 1 Using Donnelly-Fefferman's estimate for $\bar{\partial}$ one can prove

$$
\begin{equation*}
K_{\Omega}(w) \geq \frac{1}{c(n, t) \lambda\left(\left\{G_{w}<t\right\}\right)}, \tag{1}
\end{equation*}
$$

where

$$
c(n, t)=\left(1+\frac{C}{E i(-n t)}\right)^{2}, \quad E i(a)=\int_{a}^{\infty} \frac{d s}{s e^{s}}
$$

(B. 2005). Now use the tensor power trick: $\widetilde{\Omega}=\Omega \times \cdots \times \Omega \subset \mathbb{C}^{n m}$, $\widetilde{w}=(w, \ldots, w)$ for $m \gg 0$. Then

$$
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda\left(\left\{G_{\widetilde{w}}<t\right\}\right)=\left(\lambda\left(\left\{G_{w}<t\right\}\right)\right)^{m},
$$

and by (1) for $\widetilde{\Omega}$

$$
K_{\Omega}(w) \geq \frac{1}{c(n m, t)^{1 / m} \lambda\left(\left\{G_{w}<t\right\}\right)}
$$

But $\lim _{m \rightarrow \infty} c(n m, t)^{1 / m}=e^{-2 n t}$.

Proof 2 (Lempert) By Berndtsson's result on log-(pluri)subharmonicity of the Bergman kernel for sections of a pseudoconvex domain it follows that $\log K_{\left\{G_{w}<t\right\}}(w)$ is convex for $t \in(-\infty, 0]$. Therefore

$$
t \longmapsto 2 n t+\log K_{\left\{G_{w}<t\right\}}(w)
$$

is convex and bounded, hence non-decreasing. It follows that

$$
K_{\Omega}(w) \geq e^{2 n t} K_{\left\{G_{w}<t\right\}}(w) \geq \frac{e^{2 n t}}{\lambda\left(\left\{G_{w}<t\right\}\right)}
$$

Berndtsson-Lempert: This method can be improved to show the Ohsawa-Takegoshi extension theorem with optimal constant.

Theorem 0 Assume Ω is pseudoconvex in \mathbb{C}^{n}. Then for $w \in \Omega$ and $t \leq 0$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)}
$$

What happens when $t \rightarrow-\infty$? For $n=1$ Theorem 0 immediately gives:
Theorem (Suita conjecture) For a domain $\Omega \subset \mathbb{C}$ one has

$$
\begin{equation*}
K_{\Omega}(w) \geq c_{\Omega}(w)^{2} / \pi, \quad w \in \Omega \tag{2}
\end{equation*}
$$

where $c_{\Omega}(w)=\exp \left(\lim _{z \rightarrow w}\left(G_{\Omega}(z, w)-\log |z-w|\right)\right)$
(logarithmic capacity of $\mathbb{C} \backslash \Omega$ w.r.t. w).
Theorem (Guan-Zhou) Equality holds in (2) iff $\Omega \simeq \Delta \backslash F$, where Δ is the unit disk and F a closed polar subset.

What happens with $e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)$ as $t \rightarrow-\infty$ for arbitrary n ? For convex Ω using Lempert's theory one can get

Proposition If Ω is bounded, smooth and strongly convex in \mathbb{C}^{n} then for $w \in \Omega$

$$
\lim _{t \rightarrow-\infty} e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)=\lambda\left(l_{\Omega}^{K}(w)\right),
$$

where $I_{\Omega}^{K}(w)=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0)=w\right\}$ (Kobayashi indicatrix).
Corollary If $\Omega \subset \mathbb{C}^{n}$ is convex then

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}^{K}(w)\right)}, \quad w \in \Omega
$$

For general Ω one can prove
Theorem If Ω is bounded and hyperconvex in \mathbb{C}^{n} and $w \in \Omega$ then

$$
\lim _{t \rightarrow-\infty} e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)=\lambda\left(l_{\Omega}^{A}(w)\right)
$$

where $I_{\Omega}^{A}(w)=\left\{X \in \mathbb{C}^{n}: \overline{\lim }_{\zeta \rightarrow 0}\left(G_{w}(w+\zeta X)-\log |\zeta|\right) \leq 0\right\}$
(Azukawa indicatrix)

Corollary (SCV version of the Suita conjecture) If $\Omega \subset \mathbb{C}^{n}$ is pseudoconvex and $w \in \Omega$ then

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}^{A}(w)\right)}
$$

Remark 1. For $n=1$ one has $\lambda\left(I_{\Omega}^{A}(w)\right)=\pi / c_{\Omega}(w)^{2}$.
2. If Ω is convex then $I_{\Omega}^{A}(w)=I_{\Omega}^{K}(w)$.

Conjecture For Ω pseudoconvex and $w \in \Omega$ the function

$$
t \longmapsto e^{-2 n t} \lambda\left(\left\{G_{w}<t\right\}\right)
$$

is non-decreasing in t.
It would easily follow if we knew that the function

$$
t \longmapsto \log \lambda\left(\left\{G_{w}<t\right\}\right)
$$

is convex on $(-\infty, 0]$. Fornæss however constructed a counterexample to this (already for $n=1$).

Theorem The conjecture is true for $n=1$.
Proof It is be enough to prove that $f^{\prime}(t) \geq 0$ where

$$
f(t):=\log \lambda\left(\left\{G_{w}<t\right\}\right)-2 t
$$

and t is a regular value of G_{w}. By the co-area formula

$$
\lambda\left(\left\{G_{w}<t\right\}\right)=\int_{-\infty}^{t} \int_{\left\{G_{w}=s\right\}} \frac{d \sigma}{\left|\nabla G_{w}\right|} d s
$$

and therefore

$$
f^{\prime}(t)=\frac{\int_{\left\{G_{w}=t\right\}} \frac{d \sigma}{\left|\nabla G_{w}\right|}}{\lambda\left(\left\{G_{w}<t\right\}\right)}-2 .
$$

By the Schwarz inequality

$$
\int_{\left\{G_{w}=t\right\}} \frac{d \sigma}{\left|\nabla G_{w}\right|} \geq \frac{\left(\sigma\left(\left\{G_{w}=t\right\}\right)\right)^{2}}{\int_{\left\{G_{w}=t\right\}}\left|\nabla G_{w}\right| d \sigma}=\frac{\left(\sigma\left(\left\{G_{w}=t\right\}\right)\right)^{2}}{2 \pi} .
$$

The isoperimetric inequality gives

$$
\left(\sigma\left(\left\{G_{w}=t\right\}\right)\right)^{2} \geq 4 \pi \lambda\left(\left\{G_{w}<t\right\}\right)
$$

and we obtain $f^{\prime}(t) \geq 0$.

The conjecture for arbitrary n is equivalent to the following pluricomplex isoperimetric inequality for smooth strongly pseudoconvex Ω

$$
\int_{\partial \Omega} \frac{d \sigma}{\left|\nabla G_{w}\right|} \geq 2 n \lambda(\Omega)
$$

The conjecture also turns out to be closely related to the problem of symmetrization of the complex Monge-Ampère equation.

What about the corresponding upper bound in the Suita conjecture? Not true in general:

Proposition Let $\Omega=\{r<|z|<1\}$. Then

$$
\frac{K_{\Omega}(\sqrt{r})}{\left(c_{\Omega}(\sqrt{r})\right)^{2}} \geq \frac{-2 \log r}{\pi^{3}}
$$

It would be interesting to find un upper bound of the Bergman kernel for domains in \mathbb{C} in terms of logarithmic capacity which would in particular imply the \Rightarrow part in the well known equivalence (due to Carleson)

$$
K_{\Omega}>0 \Leftrightarrow c_{\Omega}>0
$$

($c_{\Omega}^{2} \leq \pi K_{\Omega}$ being a quantitative version of \Leftarrow).

The upper bound for the Bergman kernel holds for convex domains:
Theorem For a convex Ω and $w \in \Omega$ set

$$
F_{\Omega}(w):=\left(K_{\Omega}(w) \lambda\left(l_{\Omega}^{K}(w)\right)\right)^{1 / n} .
$$

Then $F_{\Omega}(w) \leq 4$.
Sketch of proof Denote $I:=\operatorname{int} I_{\Omega}^{K}(w)$ and assume that $w=0$. One can show that $I \subset 2 \Omega$. Then

$$
K_{\Omega}(0) \lambda(I) \leq K_{I / 2}(0) \lambda(I)=\frac{\lambda(I)}{\lambda(I / 2)}=4^{n} .
$$

If Ω is in addition symmetric w.r.t. w then $F_{\Omega}(w) \leq 16 / \pi^{2}=1.621 \ldots$
Remark The proof of the optimal lower bound $F_{\Omega} \geq 1$ used $\bar{\partial}$. The proof of the (probably) non-optimal upper bound $F_{\Omega} \leq 4$ is much more elementary!

For convex domains

$$
\left.F_{\Omega}(w)=\left(\lambda\left(I_{\Omega}(w)\right) K_{\Omega}(w)\right)\right)^{1 / n}
$$

is a biholomorphically invariant function satisfying $1 \leq F_{\Omega} \leq 4$.

- Find an example with $F_{\Omega} \not \equiv 1$.
- What are the properties of the function $w \longmapsto \lambda\left(I_{\Omega}(w)\right)$?
- What is the optimal upper bound for F_{Ω} ?

Formulas for some convex complex ellipsoids in \mathbb{C}^{2}

$$
\mathcal{E}(p, q)=\left\{z \in \mathbb{C}^{2}:\left|z_{1}\right|^{2 p}+\left|z_{2}\right|^{2 q}<1\right\}, \quad p, q \geq 1 / 2
$$

Blank-Fan-Klein-Krantz-Ma-Pang (1992) found implicit formulas for the Kobayashi function of $\mathcal{E}(m, 1)$. They can be made explicit for $m=1 / 2$. Using this one can prove

Theorem For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|^{2}<1\right\}$ and $b \in[0,1)$ one has

$$
\lambda\left(I_{\Omega}((b, 0))\right)=\frac{\pi^{2}}{3}(1-b)^{3}\left(1+3 b+3 b^{2}-b^{3}\right)
$$

and

$$
\lambda\left(I_{\Omega}((b, 0))\right) K_{\Omega}((b, 0))=1+\frac{(1-b)^{3} b^{2}}{3(1+b)^{3}} .
$$

$F_{\Omega}((b, 0))$ for $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|^{2}<1\right\}$

Although the Kobayashi function of $\mathcal{E}(m, 1)$ is given by implicit formulas, it turns out that the volume of the Kobayashi indicatrix can be computed explicitly:

Theorem For $\Omega=\left\{\left|z_{1}\right|^{2 m}+\left|z_{2}\right|^{2}<1\right\}, m \geq 1 / 2$, and $b \in[0,1)$ one has
$\lambda\left(I_{\Omega}((b, 0))\right)$

$$
\begin{aligned}
=\pi^{2}[& -\frac{m-1}{2 m(3 m-2)(3 m-1)} b^{6 m+2}-\frac{3(m-1)}{2 m(m-2)(m+1)} b^{2 m+2} \\
& \left.+\frac{m}{2(m-2)(3 m-2)} b^{6}+\frac{3 m}{3 m-1} b^{4}-\frac{4 m-1}{2 m} b^{2}+\frac{m}{m+1}\right] .
\end{aligned}
$$

For $m=2 / 3$
$\lambda\left(I_{\Omega}((b, 0))\right)=\frac{\pi^{2}}{80}\left(-65 b^{6}+40 b^{6} \log b+160 b^{4}-27 b^{10 / 3}-100 b^{2}+32\right)$,
and $m=2$
$\lambda\left(I_{\Omega}((b, 0))\right)=\frac{\pi^{2}}{240}\left(-3 b^{14}-25 b^{6}-120 b^{6} \log b+288 b^{4}-420 b^{2}+160\right)$.

About the proof Main tool: Jarnicki-Pflug-Zeinstra (1993) formula for geodesics in convex complex ellipsoids. If

$$
\mathbb{C} \supset U \ni z \longmapsto(f(z), g(z)) \in \partial \prime
$$

is a parametrization of an S^{1}-invariant portion of ∂I then the volume of the corresponding part of I is given by

$$
\begin{equation*}
\frac{\pi}{2} \int_{U}|H(z)| d \lambda(z) \tag{3}
\end{equation*}
$$

where

$$
H=|f|^{2}\left(\left|g_{\bar{z}}\right|^{2}-\left|g_{z}\right|^{2}\right)+|g|^{2}\left(\left|f_{\bar{z}}\right|^{2}-\left|f_{z}\right|^{2}\right)+2 \operatorname{Re}\left(f \bar{g}\left(\overline{f_{z}} g_{z}-\overline{f_{\bar{z}}} g_{\bar{z}}\right)\right)
$$

Both H and the integral (3) are computed with the help of Mathematica. The same method is used for computations in other ellipsoids.

For $\Omega=\left\{\left|z_{1}\right|^{2 m}+\left|z_{2}\right|^{2}<1\right\}$ the formula for the Bergman kernel is well known:
$K_{\Omega}(w)=\frac{1}{\pi^{2}}\left(1-\left|w_{2}\right|^{2}\right)^{1 / m-2} \frac{(1 / m+1)\left(1-\left|w_{2}\right|^{2}\right)^{1 / m}+(1 / m-1)\left|w_{1}\right|^{2}}{\left(\left(1-\left|w_{2}\right|^{2}\right)^{1 / m}-\left|w_{1}\right|^{2}\right)^{3}}$,
so that

$$
K_{\Omega}((b, 0))=\frac{m+1+(1-m) b^{2}}{\pi^{2} m\left(1-b^{2}\right)^{3}}
$$

Since for $t \in \mathbb{R}$ and $a \in \Delta$ the mapping

$$
\Omega \ni z \longmapsto\left(e^{i t} \frac{\left(1-|a|^{2}\right)^{1 / 2 m}}{\left(1-\bar{a} z_{2}\right)^{1 / m}} z_{1}, \frac{z_{2}-a}{1-\bar{a} z_{2}}\right)
$$

is a holomorphic automorphism of $\Omega, F_{\Omega}((b, 0))$ for $b \in[0,1)$ attains all values of F_{Ω} in Ω.

$F_{\Omega}((b, 0))$ in $\Omega=\left\{\left|z_{1}\right|^{2 m}+\left|z_{2}\right|^{2}<1\right\}$ for $m=1 / 2,4,8,16,32,64,128$

$$
\sup _{0<b<1} F_{\Omega}((b, 0)) \rightarrow 1.010182 \ldots \text { as } m \rightarrow \infty
$$

(highest value of F_{Ω} obtained so far in arbitrary dimension)

Theorem For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ and $b \in[0,1)$ one has

$$
\lambda\left(I_{\Omega}((b, 0))\right)=\frac{\pi^{2}}{6}(1-b)^{4}\left((1-b)^{4}+8 b\right)
$$

and

$$
\lambda\left(I_{\Omega}((b, 0))\right) K_{\Omega}((b, 0))=1+b^{2} \frac{(1-b)^{4}}{(1+b)^{4}}
$$

The Bergman kernel for this ellipsoid was found by Hahn-Pflug (1988):

$$
K_{\Omega}(w)=\frac{2}{\pi^{2}} \cdot \frac{3\left(1-|w|^{2}\right)^{2}\left(1+|w|^{2}\right)+4\left|w_{1}\right|^{2}\left|w_{2}\right|^{2}\left(5-3|w|^{2}\right)}{\left(\left(1-|w|^{2}\right)^{2}-4\left|w_{1}\right|^{2}\left|w_{2}\right|^{2}\right)^{3}},
$$

so that

$$
K_{\Omega}((b, 0))=\frac{6\left(1+b^{2}\right)}{\pi^{2}\left(1-b^{2}\right)^{4}}
$$

In all examples so far the function $w \mapsto \lambda\left(I_{\Omega}(w)\right)$ is analytic. Is it true in general?

Theorem For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ and $b \in[0,1 / 4]$ one has
$\lambda\left(I_{\Omega}((b, b))\right)=\frac{\pi^{2}}{6}\left(30 b^{8}-64 b^{7}+80 b^{6}-80 b^{5}+76 b^{4}-16 b^{3}-8 b^{2}+1\right)$.

Since $K_{\Omega}((b, b))=\frac{2\left(3-6 b^{2}+8 b^{4}\right)}{\pi^{2}\left(1-4 b^{2}\right)^{3}}$, we get the following picture:

$F_{\Omega}((b, b))$ in $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ for $b \in[0,1 / 4]$

Since $K_{\Omega}((b, b))=\frac{2\left(3-6 b^{2}+8 b^{4}\right)}{\pi^{2}\left(1-4 b^{2}\right)^{3}}$, we get the following picture:

$F_{\Omega}((b, b))$ in $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ for $b \in[0,1 / 4]$

By either of the estimates $1 \leq F_{\Omega} \leq 4$, the function $b \mapsto F_{\Omega}((b, b))$ cannot be analytic on ($0,1 / 2$)!

Theorem For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ and $b \in[0,1 / 4]$ one has $\lambda\left(I_{\Omega}((b, b))\right)=\frac{\pi^{2}}{6}\left(30 b^{8}-64 b^{7}+80 b^{6}-80 b^{5}+76 b^{4}-16 b^{3}-8 b^{2}+1\right)$.

For $b \in[1 / 4,1 / 2)$

$$
\begin{aligned}
& \lambda\left(I_{\Omega}((b, b))\right)=\frac{2 \pi^{2} b(1-2 b)^{3}\left(-2 b^{3}+3 b^{2}-6 b+4\right)}{3(1-b)^{2}} \\
& \quad+\frac{\pi\left(30 b^{10}-124 b^{9}+238 b^{8}-176 b^{7}-260 b^{6}+424 b^{5}-76 b^{4}-144 b^{3}+89 b^{2}-18 b+1\right)}{6(1-b)^{2}} \\
& \quad \times \arccos \left(-1+\frac{4 b-1}{2 b^{2}}\right) \\
& \quad+\frac{\pi(1-2 b)\left(-180 b^{7}+444 b^{6}-554 b^{5}+754 b^{4}-1214 b^{3}+922 b^{2}-305 b+37\right)}{72(1-b)} \sqrt{4 b-1} \\
& \quad+\frac{4 \pi b(1-2 b)^{4}\left(7 b^{2}+2 b-2\right)}{3(1-b)^{2}} \arctan \sqrt{4 b-1} \\
& \quad+\frac{4 \pi b^{2}(1-2 b)^{4}(2-b)}{(1-b)^{2}} \arctan \frac{1-3 b}{(1-b) \sqrt{4 b-1}} .
\end{aligned}
$$

By $\chi_{-}(b)$, resp. $\chi_{+}(b)$, denote $\lambda\left(I_{\Omega}((b, b))\right)$ for $b \leq 1 / 4$, resp. $b \geq 1 / 4$. Then at $b=1 / 4$

$$
\begin{array}{ll}
\chi_{-}=\chi_{+}=\frac{15887}{196608} \pi^{2}, & \chi_{-}^{\prime}=\chi_{+}^{\prime}=-\frac{3521}{6144} \pi^{2}, \\
\chi_{-}^{\prime \prime}=\chi_{+}^{\prime \prime}=-\frac{215}{1536} \pi^{2}, & \chi_{-}^{(3)}=\chi_{+}^{(3)}=\frac{1785}{64} \pi^{2}
\end{array}
$$

but

$$
\chi_{-}^{(4)}=\frac{1549}{16} \pi^{2}, \quad \chi_{+}^{(4)}=\infty .
$$

Corollary For $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ the function $w \mapsto \lambda\left(I_{\Omega}(w)\right)$ is not $C^{3,1}$ at $w=(1 / 4,1 / 4)$.

$F_{\Omega}((b, b))$ in $\Omega=\left\{\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$ for $b \in[0,1 / 2)$

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Mahler volume is an invariant of the Banach space defined by K : it is independent of linear transformations and of the choice of inner product. Blaschke-Santaló Inequality (1949) Mahler volume is maximized by balls Mahler Conjecture (1938) Mahler volume is minimized by cubes True for $n=2$:

Hansen-Lima bodies: starting from an interval they are produced by taking products of lower dimensional HL bodies and their duals.

$$
n=2
$$

$$
n=3
$$

Equivalent SCV formulation (Nazarov, 2012)

For $u \in L^{2}\left(K^{\prime}\right)$ we have

$$
|\widehat{u}(0)|^{2}=\left|\int_{K^{\prime}} u d \lambda\right|^{2} \leq \lambda\left(K^{\prime}\right)\|u\|_{L^{2}\left(K^{\prime}\right)}^{2}=(2 \pi)^{-n} \lambda\left(K^{\prime}\right)\|\widehat{u}\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
$$

with equality for $u=\chi_{K^{\prime}}$. Therefore

$$
\lambda\left(K^{\prime}\right)=(2 \pi)^{n} \sup _{f \in \mathcal{P}} \frac{|f(0)|^{2}}{\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}},
$$

where $\mathcal{P}=\left\{\widehat{u}: u \in L^{2}\left(K^{\prime}\right)\right\} \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$. By the Paley-Wiener thm

$$
\mathcal{P}=\left\{f \in \mathcal{O}\left(\mathbb{C}^{n}\right):|f(z)| \leq C e^{C|z|}, \quad|f(i y)| \leq C e^{q_{\kappa}(y)}\right\}
$$

where q_{K} is the Minkowski function for K. Therefore the Mahler conjecture is equivalent to finding $f \in \mathcal{P}$ with $f(0)=1$ and

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d \lambda(x) \leq n!\left(\frac{\pi}{2}\right)^{n} \lambda(K)
$$

Bourgain-Milman Inequality

Bourgain-Milman (1987) There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!} .
$$

Mahler Conjecture: $c=1$
G. Kuperberg (2006) $c=\pi / 4$

Nazarov (2012) SCV proof using Hörmander's estimate $\left(c=(\pi / 4)^{3}\right)$
Consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} .
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!} .
$$

The upper bound $K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)}$ easily follows from Rothaus' formula (1968):

$$
K_{T_{K}}(0)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \frac{d \lambda}{J_{K}},
$$

where

$$
J_{K}(y)=\int_{K} e^{-2 x \cdot y} d \lambda(x) .
$$

To show the lower bound $K_{T_{K}}(0) \geq\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}}$ we can use the estimate:

$$
K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}\left(I_{T_{K}}(0)\right)}
$$

and
Proposition $I_{T_{K}}(0) \subset \frac{4}{\pi}(K+i K)$
Conjecture $K_{T_{K}}(0) \geq\left(\frac{\pi}{4}\right)^{n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}}$
This would be optimal, since we have equality for cubes.

However, one can check that for $K=\left\{\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \leq 1\right\}$ we have

$$
K_{T_{K}}(0)>\left(\frac{\pi}{4}\right)^{3} \frac{1}{\left(\lambda_{3}(K)\right)^{2}}
$$

This shows that Nazarov's proof of the Bourgain-Milman inequality cannot give the Mahler conjecture directly.

Thank you!

