Geodesics in the Spaces of Kähler Metrics and Volume Forms

Zbigniew Błocki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

Complex Geometry and Cauchy-Riemann Equation August 23, 2016 Center for Advanced Study, Oslo

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 (M, ω) compact Kähler manifold We can write $\{\omega\} \simeq \mathcal{H}/\sim$, where

$$\mathcal{H} = \{ \varphi \in C^{\infty}(M) \colon \omega_{\varphi} := \omega + dd^{c}\varphi > 0 \}$$

is the space of Kähler potentials, and

$$\varphi_1 \sim \varphi_2 \iff \varphi_1 - \varphi_2 = const.$$

Riemannian structure on \mathcal{H} (Mabuchi, 1987 / Donaldson, 1999)

$$\langle \langle \psi, \eta \rangle \rangle := \frac{1}{V} \int_{\mathcal{M}} \psi \eta \, \omega_{\varphi}^{n}, \quad \psi, \eta \in T_{\varphi} \mathcal{H} \simeq C^{\infty}(\mathcal{M}),$$

where $V = \int_M \omega^n$.

Levi-Civita connection: if $\varphi \in C^{\infty}([0,1], \mathcal{H}) \subset C^{\infty}(M \times [0,1])$ and ψ is a vector field along φ (i.e. $\psi \in C^{\infty}(M \times [0,1])$, then

$$\nabla_{\dot{\varphi}}\psi = \dot{\psi} - \langle \nabla\psi, \nabla\dot{\varphi} \rangle,$$

so that
$$\frac{d}{dt}\langle\langle\psi,\eta\rangle\rangle = \langle\langle\nabla_{\dot{\varphi}}\psi,\eta\rangle\rangle + \langle\langle\psi,\nabla_{\dot{\varphi}}\eta\rangle\rangle$$
.

Normalization Aubin-Yau functional $I : \mathcal{H} \to \mathbb{R}$ is uniquely defined by

$$I(0) = 0, \quad \left. \frac{d}{dt} \right|_{t=0} I(\varphi + t\psi) = \frac{1}{V} \int_{M} \psi \omega_{\varphi}^{n}, \ \varphi \in \mathcal{H}, \ \psi \in C^{\infty}(M).$$

One can show that

$$I(\varphi) = \frac{1}{n+1} \sum_{p=0}^{n} \frac{1}{V} \int_{M} \varphi \, \omega_{\varphi}^{p} \wedge \omega^{n-p}.$$

Then $\mathcal{H}_0 = I^{-1}(0) \simeq \{\omega\}$ defines a natural Riemannian structure on $\{\omega\}$ which is independent of the choice of ω .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Geodesics A curve $\varphi : [0,1] \to \mathcal{H}$ is a *geodesic* if $\nabla_{\dot{\varphi}} \dot{\varphi} = 0$, that is

$$\ddot{\varphi} - |\nabla \dot{\varphi}|^2 = \mathbf{0}.$$

Locally write $u = g + \varphi$, where $\omega = dd^c g$. Then it is equivalent to

$$u_{tt}-u^{i\bar{j}}u_{ti}u_{t\bar{j}}=0$$

which is equivalent to

$$\det \begin{pmatrix} & & u_{1t} \\ & (u_{j\bar{k}}) & \vdots \\ & & & u_{nt} \\ u_{t\bar{1}} & \dots & u_{t\bar{n}} & u_{tt} \end{pmatrix} = 0.$$

This means that

$$(\omega + dd^c \varphi)^{n+1} = 0,$$

where $t = \log |z_{n+1}|$ (Semmes, 1992 / Donaldson, 1999).

To find a geodesic connecting $\varphi_0, \varphi_1 \in \mathcal{H}$ one has to solve HCMA

$$(\omega + dd^c \varphi)^{n+1} = 0$$

in $M \times \{0 \le \log |z_{n+1}| \le 1\}$ with boundary condition.

Donaldson Conjecture, 1999: Every $\varphi_0, \varphi_1 \in \mathcal{H}$ can be joined by a smooth geodesic.

Consequence: uniqueness of constant scalar curvature (csc) metrics up to holomorphic automorphisms

X.X. Chen, 2000: There exists unique, weak $(\omega + dd^c \varphi \ge 0)$, almost $C^{1,1}$ $(\Delta \varphi \in L^{\infty})$ geodesic.

Lempert-Vivas, 2013: A geodesic need not be C^3 .

Darvas-Lempert, 2012: A geodesic need not be C^2 .

Remaining question: Are geodesics fully $C^{1,1}$?

B., **2012**: If $bisec(M) \ge 0$ then geodesics are $C^{1,1}$.

Theorem Assume that (M, ω) is a compact Kähler manifold with boundary (possibly empty). Let $\varphi \in C^4(M)$ be such that $\omega_{\varphi} > 0$ and $\omega_{\varphi}^n = f\omega^n$. Then

$$|\nabla^2 \varphi| \le C,$$

where C depends only on upper bounds for n, |R|, $|\nabla R|$, $|\varphi|$, $|\nabla \varphi|$, $\Delta \varphi$, $\sup_{\partial M} |\nabla^2 \varphi|$, $||f^{1/n}||_{C^{1,1}(M)}$, $|\nabla(f^{1/2n})|$ and a lower positive bound for f. If M has nonnegative bisectional curvature then the estimate is independent of the latter.

Sketch of proof $\alpha:=|\nabla^2\varphi|+|\nabla\varphi|^2-A\varphi,$ where

$$|\nabla^2 \varphi| = \max_{X \neq 0} \frac{\langle \nabla_X \nabla \varphi, X \rangle}{|X|^2}$$

and $A \gg 0$. α attains max for some $x_0 \in M$ and $X \in T_{x_0}M$.

$$\widetilde{\alpha} = \frac{\langle \nabla_{\boldsymbol{X}} \nabla \varphi, \boldsymbol{X} \rangle}{|\boldsymbol{X}|^2} + |\nabla \varphi|^2 - A\varphi$$

also attains max at x_0 but is smooth! Then

$$\frac{\partial^2}{\partial z^p \partial \bar{z}^p} \left(\frac{\langle \nabla_X \nabla \varphi, X \rangle}{g_{j\bar{k}} X^j \bar{X}^k} \right) = \dots + X^j \bar{X}^k R_{j\bar{k}p\bar{p}} D_X^2 \varphi.$$

Weak Solutions to CMA

Kołodziej, 1998 Let (M, ω) be the compact Kähler manifold. If $f \in L^p(M)$ for some p > 1 is such that $f \ge 0$ and $\int_M f\omega^n = \int_M \omega^n$ then there exists unique (up to an additive constant) $\varphi \in C(M)$ such that $\omega_{\varphi} \ge 0$ and

$$\omega_{\varphi}^n = f\omega^n.$$

Yau, 1978: f > 0, $f \in C^{\infty} \Rightarrow \varphi \in C^{\infty}$ B., 2002: $f \ge 0$, $f^{1/(n-1)} \in C^{1,1} \Rightarrow \Delta \varphi \in L^{\infty}$ B., 2009: $f \ge 0$, $f^{1/n} \in C^{0,1} \Rightarrow \varphi \in C^{0,1}$ bisec(M) > 0, f > 0, $f^{1/n} \in C^{1,1} \Rightarrow \varphi \in C^{1,1}$

Space of volume forms (Donaldson, 2010)

(M,g) compact Riemannian manifold $dV_0 = \sqrt{\det(g_{ij})}$ Riemannian volume form on M , $V_0 = \int_M dV_0$

$$\mathcal{V} := \{ dV \text{ volume form on } M \text{ with } \int_M dV = V_0 \}$$

Then every element of $\mathcal V$ can be written in the form $dV = (\Delta \varphi + 1)dV_0$, and $\mathcal V = \mathcal H/\sim$, where

$$\mathcal{H} = \{ arphi \in \mathcal{C}^\infty(\mathcal{M}) \colon \Delta arphi + 1 > 0. \}$$

and $\varphi_1 \sim \varphi_2 \iff \varphi_1 - \varphi_2 = const.$

Riemannian structure on \mathcal{H}

$$\langle\langle\psi,\eta\rangle\rangle = \frac{1}{V_0}\int_M\psi\eta\,(1+\Delta\varphi)dV_0, \ \varphi\in\mathcal{H}, \ \psi,\eta\in T_{\varphi}\mathcal{H}\simeq C^\infty(M).$$

Levi-Civita connection: if $\varphi \in C^{\infty}([0,1], \mathcal{H}) \subset C^{\infty}(M \times [0,1])$ and ψ is a vector field along φ (i.e. $\psi \in C^{\infty}(M \times [0,1])$, then

$$abla_{\dot{arphi}}\psi=\dot{\psi}-rac{\langle
abla\psi,
abla\dot{arphi}
angle}{\Deltaarphi+1}.$$

Geodesics $\varphi : [0,1] \rightarrow \mathcal{H}$ is a *geodesic* if

$$(\Delta \varphi + 1)\varphi_{tt} - |\nabla \varphi_t|^2 = 0.$$

Chen-He, 2011: Given $\varphi_0, \varphi_1 \in \mathcal{H}$, there exists unique, weak, almost $C^{1,1}$ geodesic connecting them.

By Darvas-Lempert we cannot expect better regularity than C^2 .

B.-Gu If M has nonnegative sectional curvature then geodesics are $C^{1,1}$.

Sketch of proof Define

$$\alpha = |\nabla^2 \varphi| + |\nabla \varphi|^2 + A(-\varphi + t^2/2).$$

Then α attains max for some $(x_0, t_0) \in M \times (0, 1)$ and $X \in T_{x_0}M$. We may assume $X = e_1$, then

$$\widetilde{\alpha} = \nabla_{11}\varphi + |\nabla\varphi|^2 + A(-\varphi + t^2/2).$$

One can show that

$$\nabla_{11}\nabla_{ii}\varphi - \nabla_{ii}\nabla_{11}\varphi = -2R_{11ii}(\nabla_{11}\varphi - \nabla_{ii}\varphi) - \nabla_{i}R_{1i1}^{m}\varphi_{m} - \nabla_{1}R_{1ii}^{m}\varphi_{m} \leq C$$

Relation to Nahm's equations $T_1, T_2, T_3 : (0,2) \rightarrow U(n)$

$$\frac{dT_1}{dt} = [T_2, T_3], \quad \frac{dT_2}{dt} = [T_3, T_1], \quad \frac{dT_3}{dt} = [T_1, T_2].$$

Fixing $B \in GL(n, \mathbb{C})$, Donaldson (1984) showed that they are equivalent to a 2nd order ODE for h(t) valued in the space of positive Hermitian matrices $\mathcal{H} \simeq GL(n, \mathbb{C})/U(n)$ which is Euler-Lagrange for the Lagrangian

$$E(h) = \int \left(\left| \frac{dh}{dt} \right|_{\mathcal{H}}^2 + V_B(h) \right) dt,$$

where $V_B(h) = Tr(hBh^{-1}B^*)$. He proved that given $h_0, h_1 \in \mathcal{H}$ one can find unique h(t) joining them. (h(t) is a path of a particle moving under the influence of a potential $-V_B$.)

If M is a Riemann surface then the space of Kähler potentials \mathcal{H} behaves similarly as $\mathcal{G}^c/\mathcal{G}$, where \mathcal{G} is the group of area preserving diffeomorphisms (although \mathcal{G}^c does not really exist!).

Recent developments (Székelyhidi, Tossatti-Weinkove, Chu-Tossatti-Weinkove, Székelyhidi-Tossatti-Weinkove, ...) Various *C*²-estimates

Lemma Let φ be a C^4 function defined near $x_0 \in \mathbb{R}^n$. Assume that $D^2 \varphi$ is diagonal at x_0 and $\varphi_{11} > \varphi_{ii}$, i > 1, there. Near x_0 define $\lambda := \lambda_{max}(D^2 \varphi)$. Then at x_0 we have $\lambda = \varphi_{11}$, $\lambda_p = \varphi_{11p}$ and

$$\lambda_{pp} = \varphi_{11pp} + 2\sum_{i>1} \frac{\varphi_{1ip}^2}{\varphi_{11} - \varphi_{ii}}.$$

Thank you!

<□ > < @ > < E > < E > E のQ @