Geodesics in the Spaces of Kähler Metrics and Volume Forms

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

Complex Geometry and Cauchy-Riemann Equation
August 23, 2016
Center for Advanced Study, Oslo
(M, ω) compact Kähler manifold
We can write $\{\omega\} \simeq \mathcal{H} / \sim$, where

$$
\mathcal{H}=\left\{\varphi \in C^{\infty}(M): \omega_{\varphi}:=\omega+d d^{c} \varphi>0\right\}
$$

is the space of Kähler potentials, and

$$
\varphi_{1} \sim \varphi_{2} \Leftrightarrow \varphi_{1}-\varphi_{2}=\text { const } .
$$

Riemannian structure on \mathcal{H} (Mabuchi, 1987 / Donaldson, 1999)

$$
\langle\langle\psi, \eta\rangle\rangle:=\frac{1}{V} \int_{M} \psi \eta \omega_{\varphi}^{n}, \quad \psi, \eta \in T_{\varphi} \mathcal{H} \simeq C^{\infty}(M)
$$

where $V=\int_{M} \omega^{n}$.
Levi-Civita connection: if $\varphi \in C^{\infty}([0,1], \mathcal{H}) \subset C^{\infty}(M \times[0,1])$ and ψ is a vector field along φ (i.e. $\psi \in C^{\infty}(M \times[0,1])$, then

$$
\nabla_{\dot{\varphi}} \psi=\dot{\psi}-\langle\nabla \psi, \nabla \dot{\varphi}\rangle
$$

so that $\frac{d}{d t}\langle\langle\psi, \eta\rangle\rangle=\left\langle\left\langle\nabla_{\dot{\varphi}} \psi, \eta\right\rangle\right\rangle+\left\langle\left\langle\psi, \nabla_{\dot{\varphi}} \eta\right\rangle\right\rangle$.

Normalization Aubin-Yau functional $I: \mathcal{H} \rightarrow \mathbb{R}$ is uniquely defined by
$I(0)=0,\left.\quad \frac{d}{d t}\right|_{t=0} I(\varphi+t \psi)=\frac{1}{V} \int_{M} \psi \omega_{\varphi}^{n}, \varphi \in \mathcal{H}, \psi \in C^{\infty}(M)$.
One can show that

$$
I(\varphi)=\frac{1}{n+1} \sum_{p=0}^{n} \frac{1}{V} \int_{M} \varphi \omega_{\varphi}^{p} \wedge \omega^{n-p}
$$

Then $\mathcal{H}_{0}=I^{-1}(0) \simeq\{\omega\}$ defines a natural Riemannian structure on $\{\omega\}$ which is independent of the choice of ω.

Geodesics A curve $\varphi:[0,1] \rightarrow \mathcal{H}$ is a geodesic if $\nabla_{\dot{\varphi}} \dot{\varphi}=0$, that is

$$
\ddot{\varphi}-|\nabla \dot{\varphi}|^{2}=0
$$

Locally write $u=g+\varphi$, where $\omega=d d^{c} g$. Then it is equivalent to

$$
u_{t t}-u^{i \bar{j}} u_{t i} u_{t \bar{j}}=0
$$

which is equivalent to

$$
\operatorname{det}\left(\begin{array}{cccc}
& & & u_{1 t} \\
& \left(u_{j \bar{k}}\right) & & \vdots \\
& & & u_{n t} \\
u_{t \overline{1}} & \ldots & u_{t \bar{n}} & u_{t t}
\end{array}\right)=0 .
$$

This means that

$$
\left(\omega+d d^{c} \varphi\right)^{n+1}=0
$$

where $t=\log \left|z_{n+1}\right|$ (Semmes, $1992 /$ Donaldson, 1999).

To find a geodesic connecting $\varphi_{0}, \varphi_{1} \in \mathcal{H}$ one has to solve HCMA

$$
\left(\omega+d d^{c} \varphi\right)^{n+1}=0
$$

in $M \times\left\{0 \leq \log \left|z_{n+1}\right| \leq 1\right\}$ with boundary condition.
Donaldson Conjecture, 1999: Every $\varphi_{0}, \varphi_{1} \in \mathcal{H}$ can be joined by a smooth geodesic.

Consequence: uniqueness of constant scalar curvature (csc) metrics up to holomorphic automorphisms
X.X. Chen, 2000: There exists unique, weak ($\omega+d d^{c} \varphi \geq 0$), almost $C^{1,1}\left(\Delta \varphi \in L^{\infty}\right)$ geodesic.
Lempert-Vivas, 2013: A geodesic need not be C^{3}.
Darvas-Lempert, 2012: A geodesic need not be C^{2}.
Remaining question: Are geodesics fully $C^{1,1}$?
B., 2012: If $\operatorname{bisec}(M) \geq 0$ then geodesics are $C^{1,1}$.

Theorem Assume that (M, ω) is a compact Kähler manifold with boundary (possibly empty). Let $\varphi \in C^{4}(M)$ be such that $\omega_{\varphi}>0$ and $\omega_{\varphi}^{n}=f \omega^{n}$. Then

$$
\left|\nabla^{2} \varphi\right| \leq C
$$

where C depends only on upper bounds for $n,|R|,|\nabla R|,|\varphi|$, $|\nabla \varphi|, \Delta \varphi, \sup _{\partial M}\left|\nabla^{2} \varphi\right|, \|\left. f^{1 / n}\right|_{C^{1,1}(M)},\left|\nabla\left(f^{1 / 2 n}\right)\right|$ and a lower positive bound for f. If M has nonnegative bisectional curvature then the estimate is independent of the latter.
Sketch of proof $\alpha:=\left|\nabla^{2} \varphi\right|+|\nabla \varphi|^{2}-A \varphi$, where

$$
\left|\nabla^{2} \varphi\right|=\max _{X \neq 0} \frac{\langle\nabla x \nabla \varphi, X\rangle}{|X|^{2}}
$$

and $A \gg 0 . \alpha$ attains max for some $x_{0} \in M$ and $X \in T_{x_{0}} M$.

$$
\widetilde{\alpha}=\frac{\langle\nabla x \nabla \varphi, X\rangle}{|X|^{2}}+|\nabla \varphi|^{2}-A \varphi
$$

also attains max at x_{0} but is smooth! Then

$$
\frac{\partial^{2}}{\partial z^{p} \partial \bar{z}^{p}}\left(\frac{\left\langle\nabla_{X} \nabla \varphi, X\right\rangle}{g_{j \bar{k}} X^{j} \bar{X}^{k}}\right)=\cdots+X^{j} \bar{X}^{k} R_{j \bar{k} p \bar{p}} D_{X}^{2} \varphi
$$

Weak Solutions to CMA

Kołodziej, 1998 Let (M, ω) be the compact Kähler manifold. If $f \in L^{p}(M)$ for some $p>1$ is such that $f \geq 0$ and $\int_{M} f \omega^{n}=\int_{M} \omega^{n}$ then there exists unique (up to an additive constant) $\varphi \in C(M)$ such that $\omega_{\varphi} \geq 0$ and

$$
\omega_{\varphi}^{n}=f \omega^{n}
$$

Yau, 1978: $f>0, f \in C^{\infty} \Rightarrow \varphi \in C^{\infty}$
B., 2002: $f \geq 0, f^{1 /(n-1)} \in C^{1,1} \Rightarrow \Delta \varphi \in L^{\infty}$
B., 2009: $f \geq 0, f^{1 / n} \in C^{0,1} \Rightarrow \varphi \in C^{0,1}$
$\operatorname{bisec}(M) \geq 0, f \geq 0, f^{1 / n} \in C^{1,1} \Rightarrow \varphi \in C^{1,1}$

Space of volume forms (Donaldson, 2010)

(M, g) compact Riemannian manifold $d V_{0}=\sqrt{\operatorname{det}\left(g_{i j}\right)}$ Riemannian volume form on $M, V_{0}=\int_{M} d V_{0}$

$$
\mathcal{V}:=\left\{d V \text { volume form on } M \text { with } \int_{M} d V=V_{0}\right\}
$$

Then every element of \mathcal{V} can be written in the form $d V=(\Delta \varphi+1) d V_{0}$, and $\mathcal{V}=\mathcal{H} / \sim$, where

$$
\mathcal{H}=\left\{\varphi \in C^{\infty}(M): \Delta \varphi+1>0 .\right\}
$$

and $\varphi_{1} \sim \varphi_{2} \Leftrightarrow \varphi_{1}-\varphi_{2}=$ const.
Riemannian structure on \mathcal{H}
$\langle\langle\psi, \eta\rangle\rangle=\frac{1}{V_{0}} \int_{M} \psi \eta(1+\Delta \varphi) d V_{0}, \quad \varphi \in \mathcal{H}, \psi, \eta \in T_{\varphi} \mathcal{H} \simeq C^{\infty}(M)$.
Levi-Civita connection: if $\varphi \in C^{\infty}([0,1], \mathcal{H}) \subset C^{\infty}(M \times[0,1])$ and ψ is a vector field along φ (i.e. $\psi \in C^{\infty}(M \times[0,1])$, then

$$
\nabla_{\dot{\varphi}} \psi=\dot{\psi}-\frac{\langle\nabla \psi, \nabla \dot{\varphi}\rangle}{\Delta \varphi+1}
$$

Geodesics $\varphi:[0,1] \rightarrow \mathcal{H}$ is a geodesic if

$$
(\Delta \varphi+1) \varphi_{t t}-\left|\nabla \varphi_{t}\right|^{2}=0
$$

Chen-He, 2011: Given $\varphi_{0}, \varphi_{1} \in \mathcal{H}$, there exists unique, weak, almost $C^{1,1}$ geodesic connecting them.
By Darvas-Lempert we cannot expect better regularity than C^{2}.
B.-Gu If M has nonnegative sectional curvature then geodesics are $C^{1,1}$.

Sketch of proof Define

$$
\alpha=\left|\nabla^{2} \varphi\right|+|\nabla \varphi|^{2}+A\left(-\varphi+t^{2} / 2\right) .
$$

Then α attains max for some $\left(x_{0}, t_{0}\right) \in M \times(0,1)$ and $X \in T_{x_{0}} M$. We may assume $X=e_{1}$, then

$$
\widetilde{\alpha}=\nabla_{11} \varphi+|\nabla \varphi|^{2}+A\left(-\varphi+t^{2} / 2\right)
$$

One can show that

$$
\nabla_{11} \nabla_{i i} \varphi-\nabla_{i i} \nabla_{11} \varphi=-2 R_{11 i i}\left(\nabla_{11} \varphi-\nabla_{i i} \varphi\right)-\nabla_{i} R_{1 i 1}^{m} \varphi_{m}-\nabla_{1} R_{1 i i}^{m} \varphi_{m} \leq C .
$$

Relation to Nahm's equations $T_{1}, T_{2}, T_{3}:(0,2) \rightarrow U(n)$

$$
\frac{d T_{1}}{d t}=\left[T_{2}, T_{3}\right], \quad \frac{d T_{2}}{d t}=\left[T_{3}, T_{1}\right], \quad \frac{d T_{3}}{d t}=\left[T_{1}, T_{2}\right] .
$$

Fixing $B \in G L(n, \mathbb{C})$, Donaldson (1984) showed that they are equivalent to a 2 nd order ODE for $h(t)$ valued in the space of positive Hermitian matrices $\mathcal{H} \simeq G L(n, \mathbb{C}) / U(n)$ which is Euler-Lagrange for the Lagrangian

$$
E(h)=\int\left(\left|\frac{d h}{d t}\right|_{\mathcal{H}}^{2}+V_{B}(h)\right) d t
$$

where $V_{B}(h)=\operatorname{Tr}\left(h B h^{-1} B^{*}\right)$. He proved that given $h_{0}, h_{1} \in \mathcal{H}$ one can find unique $h(t)$ joining them. $(h(t)$ is a path of a particle moving under the influence of a potential $-V_{B}$.)
If M is a Riemann surface then the space of Kähler potentials \mathcal{H} behaves similarly as $\mathcal{G}^{c} / \mathcal{G}$, where \mathcal{G} is the group of area preserving diffeomorphisms (although \mathcal{G}^{c} does not really exist!).

Recent developments (Székelyhidi, Tossatti-Weinkove, Chu-Tossatti-Weinkove, Székelyhidi-Tossatti-Weinkove, ...)
Various C^{2}-estimates
Lemma Let φ be a C^{4} function defined near $x_{0} \in \mathbb{R}^{n}$. Assume that $D^{2} \varphi$ is diagonal at x_{0} and $\varphi_{11}>\varphi_{i i}, i>1$, there. Near x_{0} define $\lambda:=\lambda_{\max }\left(D^{2} \varphi\right)$. Then at x_{0} we have $\lambda=\varphi_{11}, \lambda_{p}=\varphi_{11 p}$ and

$$
\lambda_{p p}=\varphi_{11 p p}+2 \sum_{i>1} \frac{\varphi_{1 i p}^{2}}{\varphi_{11}-\varphi_{i i}}
$$

Thank you!

