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Topics

• Suita conjecture (1972) from one-dimensional complex analysis
• Optimal constant in the Ohsawa-Takegoshi extension theorem (1987)

from several complex variables
• Mahler conjecture (1938) and Bourgain-Milman inequality (1987)

from convex analysis

Link: Hörmander’s L2-estimate for ∂̄-equation

Lars Hörmander (24 I 1931 - 25 XI 2012)

• L2 estimates and existence theorems for the ∂̄ operator, Acta Math.
113 (1965), 89–152

• An Introduction to Complex Analysis in Several Variables, Van
Nostrand, 1966 (1st ed.)



Suita Conjecture
Green function for bounded domain D in C:{

∆GD(·, z) = 2πδz

GD(·, z) = 0 on ∂D (if D is regular)

cD(z) := exp lim
ζ→z

(GD(ζ, z)− log |ζ − z |)

(logarithmic capacity of C \ D w.r.t. z)

cD |dz | is an invariant metric (Suita metric)

CurvcD |dz| = − (log cD)zz̄
c2
D

Suita Conjecture (1972) CurvcD |dz| ≤ −1

• “=” if D is simply connected

• “<” if D is an annulus (Suita)

• Enough to prove for D with smooth boundary

• “=” on ∂D if D has smooth boundary

We essentially ask whether CurvcD |dz| satisfies the maximum principle.
In applied math. and physics it is in general a hard problem to compute
the Green function for multiply connected domains, even numerically.
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CurvcD |dz| for D = {e−5 < |z | < 1} as a function of log |z |



In general, curvatures of invariant metrics do not satisfy the maximum
principle: for example the curvature of the Bergman metric for
D = {e−5 < |z | < 1} as a function of log |z | looks as follows
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Reformulation of the Suita conjecture:

∂2

∂z∂z̄
(log cD) = πKD , (Suita)

where KD is the Bergman kernel on the diagonal:

KD(z) := sup{|f (z)|2 : f ∈ O(D),

∫
D

|f |2dλ ≤ 1}.

(Bergman kernel really is the reproducing kernel for the L2 holomorphic
functions:

f (w) =

∫
D

f KD(·,w)dλ, f ∈ O ∩ L2(D), w ∈ D.)



Therefore the Suita conjecture is equivalent to

c2
D ≤ πKD .

Ohsawa (1995) observed that it is really an extension problem: for z ∈ D
find holomorphic f in D such that f (z) = 1 and∫

D

|f |2dλ ≤ π

(cD(z))2
.

Using the methods of the original proof of the Ohsawa-Takegoshi
extension theorem he showed the estimate

c2
D ≤ CπKD

with C = 750.

C = 2 (B., 2007)
C = 1.95388 . . . (Guan-Zhou-Zhu, 2011)



Ohsawa-Takegoshi Extension Theorem

A function ϕ : Ω→ R ∪ {−∞}, Ω ⊂ Cn, is called plurisubharmonic (psh)
if it is u.s.c and subharmonic on every complex line.
Equivalently, (∂2ϕ/∂zj∂z̄k) ≥ 0.

A domain Ω ⊂ Cn is called pseudoconvex (pscvx) if there exists a
plurisubharmonic exhaustion function in Ω, i.e. ϕ ∈ PSH(Ω) such that
{ϕ ≤ t} ⊂⊂ Ω for every t ∈ R.

(Analogy to convex functions and domains.)

Ohsawa-Takegoshi Extension Theorem (1987)
Ω bounded pscvx domain in Cn, ϕ psh in Ω
H complex affine subspace of Cn

f holomorphic in Ω′ := Ω ∩ H
Then there exists a holomorphic extension F of f to Ω such that∫

Ω

|F |2e−ϕdλ ≤ Cπ

∫
Ω′
|f |2e−ϕdλ′,

where C depends only on n and the diameter of Ω.
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Then there exists a holomorphic extension F of f to Ω such that∫
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∫
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where C depends only on n and the diameter of Ω.

Siu / Berndtsson (1996)
If Ω ⊂ Cn−1 × {|zn| < 1} and H = {zn = 0} then C = 4.

Problem Can we improve it to C = 1?

This can be treated as a multidimensional version of the Suita conjecture.

B.-Y. Chen (2011) Ohsawa-Takegoshi extension theorem can be proved
using directly Hörmander’s estimate for ∂̄-equation!



∂̄ - Equation

For a complex-valued function u of n complex variables we define

∂̄u =
∂u

∂z̄1
dz̄1 + · · ·+ ∂u

∂z̄n
dz̄n.

u is holomorphic if and only if ∂̄u = 0. For a (0,1)-form

α = α1dz̄1 + · · ·+ αndz̄n

we set
∂̄α = ∂̄α1 ∧ dz̄1 + · · ·+ ∂̄αn ∧ dz̄n.

We will consider the equation

∂̄u = α.

Since ∂̄2 = 0, the necessary condition is ∂̄α = 0, that is

∂αj

∂z̄k
=
∂αk

∂z̄j
.



Hörmander’s Estimate

Theorem (Hörmander, 1965)
Ω pscvx in Cn, ϕ smooth, strongly psh in Ω
α =

∑
j αjdz̄j ∈ L2

loc,(0,1)(Ω), ∂̄α = 0

Then one can find u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2e−ϕdλ ≤
∫

Ω

|α|2i∂∂̄ϕe
−ϕdλ.

Here |α|2
i∂∂̄ϕ

=
∑

j,k ϕ
j k̄ ᾱjαk , where (ϕj k̄) = (∂2ϕ/∂zj∂z̄k)−1 is the

length of α w.r.t. the Kähler metric i∂∂̄ϕ.

Hörmander’s estimate for (0, 1)-forms is a great tool for constructing
holomorphic functions (even in one variable!).
For α = ∂̄χ and any solution u to

∂̄u = α

the function f = χ− u is holomorphic.



Building up on Donnelly-Fefferman, Berndtsson and B.-Y. Chen one can
show:

Theorem (B., 2013) Ω pscvx in Cn, ϕ smooth, strongly psh in Ω
α ∈ L2

loc,(0,1)(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα
.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2(1− |∂̄ψ|2i∂∂̄ϕ)e2ψ−ϕdλ ≤ 1 +
√
δ

1−
√
δ

∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ.

Remarks 1. Setting ψ ≡ 0 we recover the Hörmander estimate.

2. This theorem implies previous estimates for ∂̄ due to
Donnelly-Fefferman and Berndtsson with optimal constants.

3. Most importantly: it gives the Ohsawa-Takegoshi extension theorem
with optimal constant.



Theorem (B., 2013) Ω pscvx in Cn, ϕ smooth, strongly psh in Ω,
α ∈ L2

loc,(0,1)(Ω), ∂̄α = 0

ψ ∈W 1,2
loc (Ω) locally bounded from above, s.th.

|∂̄ψ|2i∂∂̄ϕ

{
≤ 1 in Ω

≤ δ < 1 on suppα
.

Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and∫

Ω

|u|2(1− |∂̄ψ|2i∂∂̄ϕ)e2ψ−ϕdλ ≤ 1 +
√
δ

1−
√
δ

∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ.

Proof By approximation we may assume that ϕ,ψ are bounded in Ω
u minimal solution to ∂̄u = α in L2(Ω, eψ−ϕ)
⇒ u ⊥ ker ∂̄ in L2(Ω, eψ−ϕ)
⇒ v := ueψ ⊥ ker ∂̄ in L2(Ω, e−ϕ) (twisting)
⇒ v minimal solution to ∂̄v = β := eψ(α + u∂̄ψ) in L2(Ω, e−ϕ)

Hörmander ⇒
∫

Ω

|v |2e−ϕdλ ≤
∫

Ω

|β|2i∂∂̄ϕe
−ϕdλ



Therefore∫
Ω

|u|2e2ψ−ϕdλ ≤
∫

Ω

|α + u ∂̄ψ|2i∂∂̄ϕe
2ψ−ϕdλ

≤
∫

Ω

(
|α|2i∂∂̄ϕ + 2|u|

√
H|α|i∂∂̄ϕ + |u|2H

)
e2ψ−ϕdλ,

where H = |∂̄ψ|2
i∂∂̄ϕ

. For t > 0 we will get∫
Ω

|u|2(1− H)e2ψ−ϕdλ

≤
∫

Ω

[
|α|2i∂∂̄ϕ

(
1 + t−1 H

1− H

)
+ t|u|2(1− H)

]
e2ψ−ϕdλ

≤
(

1 + t−1 δ

1− δ

)∫
Ω

|α|2i∂∂̄ϕe
2ψ−ϕdλ

+ t

∫
Ω

|u|2(1− H)e2ψ−ϕdλ.

We will obtain the required estimate if we take t := 1/(δ−1/2 + 1).



Theorem (Ohsawa-Takegoshi with optimal constant, B. 2013)
Ω pscvx in Cn−1 × D, where 0 ∈ D ⊂ C,
ϕ psh in Ω, f holomorphic in Ω′ := Ω ∩ {zn = 0}
Then there exists a holomorphic extension F of f to Ω such that∫

Ω

|F |2e−ϕdλ ≤ π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′.

(For n = 1 and ϕ ≡ 0 we obtain the Suita conjecture.)

Crucial ODE Problem Find g ∈ C 0,1(R+), h ∈ C 1,1(R+) s.th. h′ < 0,
h′′ > 0,

lim
t→∞

(g(t) + log t) = lim
t→∞

(h(t) + log t) = 0

and (
1− (g ′)2

h′′

)
e2g−h+t ≥ 1.

Solution h(t) := − log(t + e−t − 1)

g(t) := − log(t + e−t − 1) + log(1− e−t).



Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with
optimal constant (and obtained some generalizations) but used
essentially the same ODE.

They also answered the following, more detailed problem posed by Suita:

Theorem (Guan-Zhou) Let M be a Riemann surface admitting a
non-constant bounded subharmonic function. Then one has equality in
the Suita conjecture (at any point) if and only if M ≡ ∆ \ F , where F is
a closed polar subset of ∆.



A General Lower Bound for the Bergman Kernel

Theorem Assume that Ω is pscvx in Cn. Then for t ≤ 0 and w ∈ Ω

KΩ(w) ≥ 1

e−2ntλ({GΩ,w < t})
,

where

GΩ(·,w) = GΩ,w = sup{u ∈ PSH−(Ω), lim
z→w

(u(z)− log |z − w |) <∞}

is the pluricomplex Green function with pole at w .

For n = 1 letting t → −∞ this gives the Suita conjecture:

KΩ(w) ≥ cΩ(w)2

π
.



Proof 1 (sketch) Using the Donnelly-Fefferman estimate for ∂̄ one can
show that

KΩ(w) ≥ |f (w)|2

||f ||2
≥ cn,a
λ({GΩ,w < −a})

,

where

cn,a =
Ei(na)2

(Ei(na) +
√
C )2

, Ei(a) =

∫ ∞
a

e−s

s
ds.

Tensor power trick Ω̃ := Ωm ⊂ Cnm, w̃ := (w , . . . ,w), m� 0

KΩ̃(w̃) = (KΩ(w))m, λ2nm({GΩ̃,w̃ < −a}) = (λ2n({GΩ,w < −a})m.

(KΩ(w))m ≥ cnm,a
(λ2n({GΩ,w < −a}))m

but
lim

m→∞
c1/m
nm,a = e−2na.



Proof 2 (Lempert) By Maitani-Yamaguchi / Berndtsson’s result on
log-(pluri)subharmonicity of the Bergman kernel for sections of a
pseudoconvex domain it follows that logK{GΩ,w<t}(w) is convex for
t ∈ (−∞, 0]. Therefore

t 7−→ 2nt + logK{GΩ,w<t}(w)

is convex and bounded, hence non-decreasing. It follows that

KΩ(w) ≥ e2ntK{GΩ,w<t}(w) ≥ e2nt

λ({GΩ,w < t})
.

Three proofs of the Suita conjecture:

1. One-dimensional (ODE)
2. Infinitely-dimensional (tensor power trick)
3. Two-dimensional (Lempert)

Berndtsson-Lempert Proof 2 can be improved to obtain the Ohsawa-
Takegoshi extension theorem with optimal constant (one has to use
Berndtsson’s positivity of direct image bundles).



Theorem Assume Ω is pscvx in Cn. Then for t ≤ 0 and w ∈ Ω

KΩ(w) ≥ 1

e−2ntλ({GΩ,w < t})
.

What happens when t → −∞ for arbitrary n?
For convex domains one can use Lempert’s theory to obtain:

Theorem If Ω is a convex domain in Cn then for w ∈ Ω

KΩ(w) ≥ 1

λ(IΩ(w))
,

IΩ(w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w} (Kobayashi indicatrix).

Multidimensional version of the Suita conjecture (B.-Zwonek)
If Ω ⊂ Cn is pscvx and w ∈ Ω then

KΩ(w) ≥ 1

λ(IAΩ (w))
,

IAΩ (w) = {X ∈ Cn : limζ→0

(
GΩ,w (w + ζX )− log |ζ|

)
≤ 0}

(Azukawa indicatrix)



For convex domains we also have the upper bound:

Theorem (B.-Zwonek) Ω convex, w ∈ Ω ⇒ KΩ(w) ≤ 4n

λ(IΩ(w))
.

0.2 0.4 0.6 0.8 1.0

1.002

1.004

1.006

1.008

1.010

(
KΩ(w)λ(IΩ(w))

)1/2
for Ω = {|z1|2m + |z2|2 < 1}, w = (0, b), 0 < b < 1

m = 4, 8, 16, 32, 64, 128

supΩ → 1.010182 . . . as m→∞



Theorem Assume Ω is pscvx in Cn. Then for t ≤ 0 and w ∈ Ω

KΩ(w) ≥ 1

e−2ntλ({GΩ,w < t})
.

Conjecture For pseudoconvex Ω the function t 7→ e2ntλ({GΩ,w < t}) is
increasing.

Theorem (B.-Zwonek) Conjecture is true for n = 1.

Proof: isoperimetric inequality

For arbitrary n the conjecture is equivalent to the following pluripotential
isoperimetric inequality: ∫

∂Ω

dσ

|∇GΩ,w |
≥ 2λ(Ω)

for smooth, strongly pseudoconvex Ω.

Possible future interest: compact Kähler manifolds.



Mahler Conjecture

K - convex symmetric body in Rn

K ′ := {y ∈ Rn : x · y ≤ 1 for every x ∈ K}

Mahler volume := λ(K )λ(K ′)

Mahler volume is an invariant of the Banach space defined by K : it is
independent of linear transformations and of the choice of inner product.

Blaschke-Santaló Inequality (1949) Mahler volume is maximized by balls

Mahler Conjecture (1938) Mahler volume is minimized by cubes

True for n = 2:

�
��

���
@
@

�
�

Hansen-Lima bodies: starting from an interval they are produced by
taking products of lower dimensional HL bodies and their duals.

n = 2
'

n = 3
6'



Equivalent SCV formulation (Nazarov, 2012)

For u ∈ L2(K ′) we have

|û(0)|2 =

∣∣∣∣∫
K ′

u dλ

∣∣∣∣2 ≤ λ(K ′)||u||2L2(K ′) = (2π)−nλ(K ′)||û||2L2(Rn)

with equality for u = χK ′ . Therefore

λ(K ′) = (2π)n sup
f∈P

|f (0)|2

||f ||2L2(Rn)

,

where P = {û : u ∈ L2(K ′)} ⊂ O(Cn). By the Paley-Wiener thm

P = {f ∈ O(Cn) : |f (z)| ≤ CeC |z|, |f (iy)| ≤ CeqK (y)},

where qK is the Minkowski function for K . Therefore the Mahler
conjecture is equivalent to finding f ∈ P with f (0) = 1 and∫

Rn

|f (x)|2dλ(x) ≤ n!
(π

2

)n
λ(K ).



Bourgain-Milman Inequality

Bourgain-Milman (1987) There exists c > 0 such that

λ(K )λ(K ′) ≥ cn
4n

n!
.

Mahler Conjecture: c = 1

G. Kuperberg (2006) c = π/4

Nazarov (2012) SCV proof using Hörmander’s estimate (c = (π/4)3)

Consider the tube domain TK := intK + iRn ⊂ Cn. Then(π
4

)2n 1

(λn(K ))2
≤ KTK

(0) ≤ n!

πn

λn(K ′)

λn(K )
.

Therefore

λn(K )λn(K ′) ≥
(π

4

)3n 4n

n!
.



The upper bound KTK
(0) ≤ n!

πn

λn(K ′)

λn(K )
easily follows from Rothaus’

formula (1968):

KTK
(0) = (2π)−n

∫
Rn

dλ

JK
,

where

JK (y) =

∫
K

e−2x·ydλ(x).

To show the lower bound KTK
(0) ≥

(π
4

)2n 1

(λn(K ))2
we can use the

estimate:

KTK
(0) ≥ 1

λ2n(ITK
(0))

and

Proposition ITK
(0) ⊂ 4

π
(K + iK )

Conjecture KTK
(0) ≥

(π
4

)n 1

(λn(K ))2

This would be optimal, since we have equality for cubes.



However, one can check that for K = {|x1|+ |x2|+ |x3| ≤ 1} we have

KTK
(0) >

(π
4

)3 1

(λ3(K ))2
.

This shows that Nazarov’s proof of the Bourgain-Milman inequality
cannot give the Mahler conjecture directly.



Thank you!


