Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

DMV-PTM Joint Meeting
Poznań, September 17-20, 2014

Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem

Zbigniew Błocki
Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

DMV-PTM Joint Meeting
Poznań, September 17-20, 2014

Topics

- Suita conjecture (1972) from one-dimensional complex analysis
- Optimal constant in the Ohsawa-Takegoshi extension theorem (1987) from several complex variables
- Mahler conjecture (1938) and Bourgain-Milman inequality (1987) from convex analysis

Link: Hörmander's L^{2}-estimate for $\bar{\partial}$-equation

Lars Hörmander (24 I 1931-25 XI 2012)

- L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152
- An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966 (1st ed.)

Suita Conjecture

Green function for bounded domain D in \mathbb{C} :

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D(\text { if } D \text { is regular) }
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$ (logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$c_{D}|d z|$ is an invariant metric (Suita metric)

$$
\operatorname{Curv}_{c_{D}|d z|}=-\frac{\left(\log c_{D}\right)_{z \bar{z}}}{c_{D}^{2}}
$$

Suita Conjecture (1972) \quad Curv $_{c_{D}|d z|} \leq-1$

- "=" if D is simply connected
- " $<$ " if D is an annulus (Suita)
- Enough to prove for D with smooth boundary
- "=" on ∂D if D has smooth boundary

We essentially ask whether $\operatorname{Curv}_{c_{D}|d z|}$ satisfies the maximum principle. In applied math. and physics it is in general a hard problem to compute the Green function for multiply connected domains, even numerically.

$\operatorname{Curv}_{c_{D}|d z|}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $\log |z|$

In general, curvatures of invariant metrics do not satisfy the maximum principle: for example the curvature of the Bergman metric for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $\log |z|$ looks as follows

Reformulation of the Suita conjecture:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)=\pi K_{D}, \tag{Suita}
\end{equation*}
$$

where K_{D} is the Bergman kernel on the diagonal:

$$
K_{D}(z):=\sup \left\{|f(z)|^{2}: f \in \mathcal{O}(D), \int_{D}|f|^{2} d \lambda \leq 1\right\}
$$

(Bergman kernel really is the reproducing kernel for the L^{2} holomorphic functions:

$$
\left.f(w)=\int_{D} f \overline{K_{D}(\cdot, w)} d \lambda, \quad f \in \mathcal{O} \cap L^{2}(D), w \in D .\right)
$$

Therefore the Suita conjecture is equivalent to

$$
c_{D}^{2} \leq \pi K_{D}
$$

Ohsawa (1995) observed that it is really an extension problem: for $z \in D$ find holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}}
$$

Using the methods of the original proof of the Ohsawa-Takegoshi extension theorem he showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$.
$C=2$
(B., 2007)
$C=1.95388 \ldots$
(Guan-Zhou-Zhu, 2011)

Ohsawa-Takegoshi Extension Theorem

A function $\varphi: \Omega \rightarrow \mathbb{R} \cup\{-\infty\}, \Omega \subset \mathbb{C}^{n}$, is called plurisubharmonic (psh) if it is u.s.c and subharmonic on every complex line.
Equivalently, $\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right) \geq 0$.
A domain $\Omega \subset \mathbb{C}^{n}$ is called pseudoconvex (pscvx) if there exists a plurisubharmonic exhaustion function in Ω, i.e. $\varphi \in \operatorname{PSH}(\Omega)$ such that $\{\varphi \leq t\} \subset \subset \Omega$ for every $t \in \mathbb{R}$.
(Analogy to convex functions and domains.)
Ohsawa-Takegoshi Extension Theorem (1987)
Ω bounded pscvx domain in \mathbb{C}^{n}, φ psh in Ω
H complex affine subspace of \mathbb{C}^{n}
f holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \pi \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.

Ohsawa-Takegoshi Extension Theorem (1987)
Ω bounded pscvx domain in \mathbb{C}^{n}, φ psh in Ω
H complex affine subspace of \mathbb{C}^{n}
f holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C \pi \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

where C depends only on n and the diameter of Ω.
Siu / Berndtsson (1996)
If $\Omega \subset \mathbb{C}^{n-1} \times\left\{\left|z_{n}\right|<1\right\}$ and $H=\left\{z_{n}=0\right\}$ then $C=4$.
Problem Can we improve it to $C=1$?
This can be treated as a multidimensional version of the Suita conjecture.
B.-Y. Chen (2011) Ohsawa-Takegoshi extension theorem can be proved using directly Hörmander's estimate for $\bar{\partial}$-equation!

$\bar{\partial}$ - Equation

For a complex-valued function u of n complex variables we define

$$
\bar{\partial} u=\frac{\partial u}{\partial \bar{z}_{1}} d \bar{z}_{1}+\cdots+\frac{\partial u}{\partial \bar{z}_{n}} d \bar{z}_{n} .
$$

u is holomorphic if and only if $\bar{\partial} u=0$. For a (0,1)-form

$$
\alpha=\alpha_{1} d \bar{z}_{1}+\cdots+\alpha_{n} d \bar{z}_{n}
$$

we set

$$
\bar{\partial} \alpha=\bar{\partial} \alpha_{1} \wedge d \bar{z}_{1}+\cdots+\bar{\partial} \alpha_{n} \wedge d \bar{z}_{n} .
$$

We will consider the equation

$$
\bar{\partial} u=\alpha .
$$

Since $\bar{\partial}^{2}=0$, the necessary condition is $\bar{\partial} \alpha=0$, that is

$$
\frac{\partial \alpha_{j}}{\partial \bar{z}_{k}}=\frac{\partial \alpha_{k}}{\partial \bar{z}_{j}} .
$$

Hörmander's Estimate

Theorem (Hörmander, 1965)
Ω pscvx in \mathbb{C}^{n}, φ smooth, strongly psh in Ω
$\alpha=\sum_{j} \alpha_{j} d \bar{z}_{j} \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
Then one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Here $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k} \varphi^{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}$, where $\left(\varphi^{j \bar{k}}\right)=\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)^{-1}$ is the length of α w.r.t. the Kähler metric $i \partial \bar{\partial} \varphi$.

Hörmander's estimate for $(0,1)$-forms is a great tool for constructing holomorphic functions (even in one variable!).
For $\alpha=\bar{\partial} \chi$ and any solution u to

$$
\bar{\partial} u=\alpha
$$

the function $f=\chi-u$ is holomorphic.

Building up on Donnelly-Fefferman, Berndtsson and B.-Y. Chen one can show:
Theorem (B., 2013) Ω pscvx in \mathbb{C}^{n}, φ smooth, strongly psh in Ω $\alpha \in L_{\text {loc },(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{\text {loc }}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Remarks 1. Setting $\psi \equiv 0$ we recover the Hörmander estimate.
2. This theorem implies previous estimates for $\bar{\partial}$ due to Donnelly-Fefferman and Berndtsson with optimal constants.
3. Most importantly: it gives the Ohsawa-Takegoshi extension theorem with optimal constant.

Theorem (B., 2013) Ω pscvx in \mathbb{C}^{n}, φ smooth, strongly psh in Ω, $\alpha \in L_{\text {loc },(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$
$\psi \in W_{\text {loc }}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\left\{\begin{array}{ll}
\leq 1 & \text { in } \Omega \\
\leq \delta<1 & \text { on } \operatorname{supp} \alpha
\end{array} .\right.
$$

Then there exists $u \in L_{\text {loc }}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda .
$$

Proof By approximation we may assume that φ, ψ are bounded in Ω u minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$ (twisting)
$\Rightarrow v$ minimal solution to $\bar{\partial} v=\beta:=e^{\psi}(\alpha+u \bar{\partial} \psi)$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$

$$
\text { Hörmander } \Rightarrow \int_{\Omega}|v|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\beta|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Therefore

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda & \leq \int_{\Omega}|\alpha+u \bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left(|\alpha|_{i \partial \bar{\partial} \varphi}^{2}+2|u| \sqrt{H}|\alpha|_{i \partial \bar{\partial} \varphi}+|u|^{2} H\right) e^{2 \psi-\varphi} d \lambda
\end{aligned}
$$

where $H=|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}$. For $t>0$ we will get

$$
\begin{aligned}
& \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda \\
& \leq \int_{\Omega}\left[|\alpha|_{i \partial \bar{\partial} \varphi}^{2}\left(1+t^{-1} \frac{H}{1-H}\right)+t|u|^{2}(1-H)\right] e^{2 \psi-\varphi} d \lambda \\
& \leq\left(1+t^{-1} \frac{\delta}{1-\delta}\right) \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda \\
& \quad+t \int_{\Omega}|u|^{2}(1-H) e^{2 \psi-\varphi} d \lambda .
\end{aligned}
$$

We will obtain the required estimate if we take $t:=1 /\left(\delta^{-1 / 2}+1\right)$.

Theorem (Ohsawa-Takegoshi with optimal constant, B. 2013)
$\Omega \mathrm{pscvx}$ in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$,
φ psh in Ω, f holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

(For $n=1$ and $\varphi \equiv 0$ we obtain the Suita conjecture.)
Crucial ODE Problem Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$s.th. $h^{\prime}<0$, $h^{\prime \prime}>0$,

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1
$$

Solution

$$
\begin{aligned}
& h(t):=-\log \left(t+e^{-t}-1\right) \\
& g(t):=-\log \left(t+e^{-t}-1\right)+\log \left(1-e^{-t}\right) .
\end{aligned}
$$

Guan-Zhou recently gave another proof of the Ohsawa-Takegoshi with optimal constant (and obtained some generalizations) but used essentially the same ODE.

They also answered the following, more detailed problem posed by Suita:
Theorem (Guan-Zhou) Let M be a Riemann surface admitting a non-constant bounded subharmonic function. Then one has equality in the Suita conjecture (at any point) if and only if $M \equiv \Delta \backslash F$, where F is a closed polar subset of Δ.

A General Lower Bound for the Bergman Kernel

Theorem Assume that Ω is pscvx in \mathbb{C}^{n}. Then for $t \leq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{\Omega, w}<t\right\}\right)},
$$

where

$$
G_{\Omega}(\cdot, w)=G_{\Omega, w}=\sup \left\{u \in P S H^{-}(\Omega), \varlimsup_{z \rightarrow w}(u(z)-\log |z-w|)<\infty\right\}
$$

is the pluricomplex Green function with pole at w.

For $n=1$ letting $t \rightarrow-\infty$ this gives the Suita conjecture:

$$
K_{\Omega}(w) \geq \frac{c_{\Omega}(w)^{2}}{\pi} .
$$

Proof 1 (sketch) Using the Donnelly-Fefferman estimate for $\bar{\partial}$ one can show that

$$
K_{\Omega}(w) \geq \frac{|f(w)|^{2}}{\|f\|^{2}} \geq \frac{c_{n, a}}{\lambda\left(\left\{G_{\Omega, w}<-a\right\}\right)}
$$

where

$$
c_{n, a}=\frac{\operatorname{Ei}(n a)^{2}}{(\operatorname{Ei}(n a)+\sqrt{C})^{2}}, \quad \operatorname{Ei}(a)=\int_{a}^{\infty} \frac{e^{-s}}{s} d s
$$

Tensor power trick $\widetilde{\Omega}:=\Omega^{m} \subset \mathbb{C}^{n m}, \widetilde{w}:=(w, \ldots, w), m \gg 0$

$$
\begin{gathered}
K_{\widetilde{\Omega}}(\widetilde{w})=\left(K_{\Omega}(w)\right)^{m}, \quad \lambda_{2 n m}\left(\left\{G_{\widetilde{\Omega}, \widetilde{w}}<-a\right\}\right)=\left(\lambda_{2 n}\left(\left\{G_{\Omega, w}<-a\right\}\right)^{m} .\right. \\
\left(K_{\Omega}(w)\right)^{m} \geq \frac{c_{n m, a}}{\left(\lambda_{2 n}\left(\left\{G_{\Omega, w}<-a\right\}\right)\right)^{m}}
\end{gathered}
$$

but

$$
\lim _{m \rightarrow \infty} c_{n m, a}^{1 / m}=e^{-2 n a} . \square
$$

Proof 2 (Lempert) By Maitani-Yamaguchi / Berndtsson's result on log-(pluri)subharmonicity of the Bergman kernel for sections of a pseudoconvex domain it follows that $\log K_{\left\{G_{\Omega, w}<t\right\}}(w)$ is convex for $t \in(-\infty, 0]$. Therefore

$$
t \longmapsto 2 n t+\log K_{\left\{G_{\Omega, w}<t\right\}}(w)
$$

is convex and bounded, hence non-decreasing. It follows that

$$
K_{\Omega}(w) \geq e^{2 n t} K_{\left\{G_{\Omega, w}<t\right\}}(w) \geq \frac{e^{2 n t}}{\lambda\left(\left\{G_{\Omega, w}<t\right\}\right)}
$$

Three proofs of the Suita conjecture:

1. One-dimensional (ODE)
2. Infinitely-dimensional (tensor power trick)
3. Two-dimensional (Lempert)

Berndtsson-Lempert Proof 2 can be improved to obtain the OhsawaTakegoshi extension theorem with optimal constant (one has to use Berndtsson's positivity of direct image bundles).

Theorem Assume Ω is pscvx in \mathbb{C}^{n}. Then for $t \leq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{\Omega, w}<t\right\}\right)}
$$

What happens when $t \rightarrow-\infty$ for arbitrary n ?
For convex domains one can use Lempert's theory to obtain:
Theorem If Ω is a convex domain in \mathbb{C}^{n} then for $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}(w)\right)}
$$

$I_{\Omega}(w)=\left\{\varphi^{\prime}(0): \varphi \in \mathcal{O}(\Delta, \Omega), \varphi(0)=w\right\}$ (Kobayashi indicatrix).
Multidimensional version of the Suita conjecture (B.-Zwonek) If $\Omega \subset \mathbb{C}^{n}$ is pscvx and $w \in \Omega$ then

$$
\begin{gathered}
K_{\Omega}(w) \geq \frac{1}{\lambda\left(I_{\Omega}^{A}(w)\right)}, \\
I_{\Omega}^{A}(w)=\left\{X \in \mathbb{C}^{n}: \overline{\lim }_{\zeta \rightarrow 0}\left(G_{\Omega, w}(w+\zeta X)-\log |\zeta|\right) \leq 0\right\}
\end{gathered}
$$

(Azukawa indicatrix)

For convex domains we also have the upper bound:
Theorem (B.-Zwonek) Ω convex, $w \in \Omega \Rightarrow K_{\Omega}(w) \leq \frac{4^{n}}{\lambda\left(I_{\Omega}(w)\right)}$.

$\left(K_{\Omega}(w) \lambda\left(I_{\Omega}(w)\right)\right)^{1 / 2}$ for $\Omega=\left\{\left|z_{1}\right|^{2 m}+\left|z_{2}\right|^{2}<1\right\}, w=(0, b), 0<b<1$ $m=4,8,16,32,64,128$
$\sup _{\Omega} \rightarrow 1.010182 \ldots$ as $m \rightarrow \infty$

Theorem Assume Ω is pscvx in \mathbb{C}^{n}. Then for $t \leq 0$ and $w \in \Omega$

$$
K_{\Omega}(w) \geq \frac{1}{e^{-2 n t} \lambda\left(\left\{G_{\Omega, w}<t\right\}\right)}
$$

Conjecture For pseudoconvex Ω the function $t \mapsto e^{2 n t} \lambda\left(\left\{G_{\Omega, w}<t\right\}\right)$ is increasing.

Theorem (B.-Zwonek) Conjecture is true for $n=1$.
Proof: isoperimetric inequality
For arbitrary n the conjecture is equivalent to the following pluripotential isoperimetric inequality:

$$
\int_{\partial \Omega} \frac{d \sigma}{\left|\nabla G_{\Omega, w}\right|} \geq 2 \lambda(\Omega)
$$

for smooth, strongly pseudoconvex Ω.
Possible future interest: compact Kähler manifolds.

Mahler Conjecture

K - convex symmetric body in \mathbb{R}^{n}

$$
K^{\prime}:=\left\{y \in \mathbb{R}^{n}: x \cdot y \leq 1 \text { for every } x \in K\right\}
$$

Mahler volume $:=\lambda(K) \lambda\left(K^{\prime}\right)$
Mahler volume is an invariant of the Banach space defined by K : it is independent of linear transformations and of the choice of inner product. Blaschke-Santaló Inequality (1949) Mahler volume is maximized by balls Mahler Conjecture (1938) Mahler volume is minimized by cubes True for $n=2$:

Hansen-Lima bodies: starting from an interval they are produced by taking products of lower dimensional HL bodies and their duals.

$$
n=2
$$

$$
n=3
$$

Equivalent SCV formulation (Nazarov, 2012)

For $u \in L^{2}\left(K^{\prime}\right)$ we have

$$
|\widehat{u}(0)|^{2}=\left|\int_{K^{\prime}} u d \lambda\right|^{2} \leq \lambda\left(K^{\prime}\right)\|u\|_{L^{2}\left(K^{\prime}\right)}^{2}=(2 \pi)^{-n} \lambda\left(K^{\prime}\right)\|\widehat{u}\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
$$

with equality for $u=\chi_{K^{\prime}}$. Therefore

$$
\lambda\left(K^{\prime}\right)=(2 \pi)^{n} \sup _{f \in \mathcal{P}} \frac{|f(0)|^{2}}{\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}},
$$

where $\mathcal{P}=\left\{\widehat{u}: u \in L^{2}\left(K^{\prime}\right)\right\} \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$. By the Paley-Wiener thm

$$
\mathcal{P}=\left\{f \in \mathcal{O}\left(\mathbb{C}^{n}\right):|f(z)| \leq C e^{C|z|}, \quad|f(i y)| \leq C e^{q_{\kappa}(y)}\right\}
$$

where q_{K} is the Minkowski function for K. Therefore the Mahler conjecture is equivalent to finding $f \in \mathcal{P}$ with $f(0)=1$ and

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d \lambda(x) \leq n!\left(\frac{\pi}{2}\right)^{n} \lambda(K)
$$

Bourgain-Milman Inequality

Bourgain-Milman (1987) There exists $c>0$ such that

$$
\lambda(K) \lambda\left(K^{\prime}\right) \geq c^{n} \frac{4^{n}}{n!} .
$$

Mahler Conjecture: $c=1$
G. Kuperberg (2006) $c=\pi / 4$

Nazarov (2012) SCV proof using Hörmander's estimate $\left(c=(\pi / 4)^{3}\right)$
Consider the tube domain $T_{K}:=\operatorname{int} K+i \mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then

$$
\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}} \leq K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)} .
$$

Therefore

$$
\lambda_{n}(K) \lambda_{n}\left(K^{\prime}\right) \geq\left(\frac{\pi}{4}\right)^{3 n} \frac{4^{n}}{n!} .
$$

The upper bound $K_{T_{K}}(0) \leq \frac{n!}{\pi^{n}} \frac{\lambda_{n}\left(K^{\prime}\right)}{\lambda_{n}(K)}$ easily follows from Rothaus' formula (1968):

$$
K_{T_{K}}(0)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \frac{d \lambda}{J_{K}},
$$

where

$$
J_{K}(y)=\int_{K} e^{-2 x \cdot y} d \lambda(x) .
$$

To show the lower bound $K_{T_{K}}(0) \geq\left(\frac{\pi}{4}\right)^{2 n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}}$ we can use the estimate:

$$
K_{T_{K}}(0) \geq \frac{1}{\lambda_{2 n}\left(I_{T_{K}}(0)\right)}
$$

and
Proposition $I_{T_{K}}(0) \subset \frac{4}{\pi}(K+i K)$
Conjecture $K_{T_{K}}(0) \geq\left(\frac{\pi}{4}\right)^{n} \frac{1}{\left(\lambda_{n}(K)\right)^{2}}$
This would be optimal, since we have equality for cubes.

However, one can check that for $K=\left\{\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \leq 1\right\}$ we have

$$
K_{T_{K}}(0)>\left(\frac{\pi}{4}\right)^{3} \frac{1}{\left(\lambda_{3}(K)\right)^{2}}
$$

This shows that Nazarov's proof of the Bourgain-Milman inequality cannot give the Mahler conjecture directly.

Thank you!

