Hörmander's Estimate, Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem

Zbigniew Błocki
(Jagiellonian University, Kraków)

http://gamma.im.uj.edu.pl/~blocki

Warszawa, May 18, 2012

Plan of the talk

I. Suita Conjecture
II. Ohsawa-Takegoshi Extension Theorem
III. Hörmander's Estimate for $\bar{\partial}$-equation
IV. Main Result
V. ODE Problem
VI. Remaining Open Problem

I. Suita Conjecture

Green function for $D \subset \mathbb{C}$:

$$
\left\{\begin{array}{l}
\Delta G_{D}(\cdot, z)=2 \pi \delta_{z} \\
G_{D}(\cdot, z)=0 \text { on } \partial D
\end{array}\right.
$$

$c_{D}(z):=\exp \lim _{\zeta \rightarrow z}\left(G_{D}(\zeta, z)-\log |\zeta-z|\right)$
(logarithmic capacity of $\mathbb{C} \backslash D$ w.r.t. z)
$K_{D}(z):=\sup \left\{|f(z)|^{2}: f\right.$ holomorphic in $\left.\mathrm{D}, \int_{D}|f|^{2} d \lambda \leq 1\right\}$ (Bergman kernel on the diagonal)

Suita conjecture (1972): $c_{D}^{2} \leq \pi K_{D}$
Geometric interpretation: since

$$
K_{D}=\frac{1}{\pi} \frac{\partial^{2}}{\partial z \partial \bar{z}}\left(\log c_{D}\right)
$$

it is equivalent to

$$
\operatorname{Curv}_{c_{D}|d z|} \leq-1
$$

- "=" if D is simply connected
- " $<$ " if D is an annulus and thus any regular doubly connected domain (Suita)

$\operatorname{Curv}_{c_{D}|d z|}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{K_{D}|d z|^{2}}$ for $D=\left\{e^{-10}<|z|<1\right\}$ as a function of $t=-2 \log |z|$

$\operatorname{Curv}_{\left(\log K_{D}\right)_{z \bar{z}}|d z|^{2}}$ for $D=\left\{e^{-5}<|z|<1\right\}$ as a function of $t=-2 \log |z|$
II. Ohsawa-Takegoshi Extension Theorem
$\Omega \subset \mathbb{C}^{n}, \varphi: \Omega \rightarrow \mathbb{R} \cup\{-\infty\}$
φ is called plurisubharmonic (psh) if $\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right) \geq 0$
Ω is called pseudoconvex if there exists smooth psh exhaustion of Ω
Theorem (Ohsawa-Takegoshi, 1987)
Ω - bounded pseudoconvex domain in \mathbb{C}^{n}, φ - psh in Ω
H - complex affine subspace of \mathbb{C}^{n}
f - holomorphic in $\Omega^{\prime}:=\Omega \cap H$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq C(n, \operatorname{diam} \Omega) \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Theorem (Berndtsson, 1994)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times\left\{\mid z_{n}<1\right\}, \varphi-$ psh in Ω
f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq 4 \pi \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Ohsawa (1995) observed that the Suita conjecture is equivalent to: for $z \in D$ there exists holomorphic f in D such that $f(z)=1$ and

$$
\int_{D}|f|^{2} d \lambda \leq \frac{\pi}{\left(c_{D}(z)\right)^{2}} .
$$

Using the methods of the $\bar{\partial}$-equation he showed the estimate

$$
c_{D}^{2} \leq C \pi K_{D}
$$

with $C=750$. This was later improved to $C=2$ (B., 2007) and to $C=1.954$ (Guan-Zhou-Zhu, 2011).

Theorem (Ż Dinew, 2007)
Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}, \varphi-$ psh in Ω,
f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{4 \pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

In 2011 B.-Y. Chen showed that the Ohsawa-Takegoshi extension theorem can be shown using directly Hörmander's estimate for $\bar{\partial}$-equation!
III. Hörmander's Estimate
$\alpha=\sum_{j} \alpha_{j} d \bar{z}_{j} \in L_{l o c,(0,1)}^{2}(\Omega), \quad \Omega \subset \mathbb{C}^{n}$
Assume that $\bar{\partial} \alpha=0$ (that is $\frac{\partial \alpha_{j}}{\partial \bar{z}_{k}}=\frac{\partial \alpha_{k}}{\partial \bar{z}_{j}}$)
Looking for $u \in L_{l o c}^{2}(\Omega)$ solving $\bar{\partial} u=\alpha$ with estimates.
Theorem (Hörmander, 1965)
Ω - pseudoconvex in \mathbb{C}^{n}, φ - smooth, strongly psh in Ω
Then for every $\alpha \in L_{l o c,(0,1)}^{2}(\Omega)$ with $\bar{\partial} \alpha=0$ one can find $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda
$$

Here $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k} \varphi_{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}$, where $\left(\varphi^{j \bar{k}}\right)=\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)^{-1}$, is the length of α w.r.t. the Kähler metric $i \partial \bar{\partial} \varphi$.

The estimate also makes sense for non-smooth φ : instead of $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}$ one has to take any $H \in L_{l o c}^{\infty}(\Omega)$ with

$$
i \bar{\alpha} \wedge \alpha \leq H i \partial \bar{\partial} \varphi
$$

(B., 2005).

Theorem. Ω - pseudoconvex in \mathbb{C}^{n}, φ - psh in Ω $\alpha \in L_{l o c,(0,1)}^{2}(\Omega), \bar{\partial} \alpha=0$ $\psi \in W_{l o c}^{1,2}(\Omega)$ locally bounded from above, s.th.

$$
|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2} \begin{cases}\leq 1 & \text { in } \Omega \\ \leq \delta<1 & \text { on } \operatorname{supp} \alpha\end{cases}
$$

Then there exists $u \in L_{l o c}^{2}(\Omega)$ with $\bar{\partial} u=\alpha$ and

$$
\int_{\Omega}|u|^{2}\left(1-|\bar{\partial} \psi|_{i \partial \bar{\partial} \varphi}^{2}\right) e^{2 \psi-\varphi} d \lambda \leq \frac{1+\sqrt{\delta}}{1-\sqrt{\delta}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{2 \psi-\varphi} d \lambda
$$

Sketch of proof (ideas going back to Berndtsson and B.-Y. Chen). By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.
u - minimal solution to $\bar{\partial} u=\alpha$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow u \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{\psi-\varphi}\right)$
$\Rightarrow v:=u e^{\psi} \perp \operatorname{ker} \bar{\partial}$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
$\Rightarrow v$ - minimal solution to $\bar{\partial} v=\beta:=e^{\psi}(\alpha+u \bar{\partial} \psi)$ in $L^{2}\left(\Omega, e^{-\varphi}\right)$
By Hörmander's estimate

$$
\int_{\Omega}|u|^{2} e^{2 \psi-\varphi} d \lambda=\int_{\Omega}|v|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\beta|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda=\ldots
$$

IV. Main Result

Theorem. Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$, φ - psh in Ω, f - holomorphic in $\Omega^{\prime}:=\Omega \cap\left\{z_{n}=0\right\}$
Then there exists a holomorphic extension F of f to Ω such that

$$
\int_{\Omega}|F|^{2} e^{-\varphi} d \lambda \leq \frac{\pi}{\left(c_{D}(0)\right)^{2}} \int_{\Omega^{\prime}}|f|^{2} e^{-\varphi} d \lambda^{\prime}
$$

Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega^{\prime}}$.
$\varepsilon>0$

$$
\alpha:=\bar{\partial}\left(f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)\right)
$$

where $\chi(t)=0$ for $t \leq-2 \log \varepsilon$ and $\chi(\infty)=1$.
$G:=G_{D}(\cdot, 0)$

$$
\widetilde{\varphi}:=\varphi+2 G+\eta(-2 G), \quad \psi:=\gamma(-2 G)
$$

$$
F:=f\left(z^{\prime}\right) \chi\left(-2 \log \left|z_{n}\right|\right)-u
$$

where u is a solution of $\bar{\partial} u=\alpha$ given by the previous thm.

V. ODE Problem

Find $g \in C^{0,1}\left(\mathbb{R}_{+}\right), h \in C^{1,1}\left(\mathbb{R}_{+}\right)$such that

$$
\lim _{t \rightarrow \infty}(g(t)+\log t)=\lim _{t \rightarrow \infty}(h(t)+\log t)=0
$$

and

$$
\begin{gathered}
\left(1-\frac{\left(g^{\prime}\right)^{2}}{h^{\prime \prime}}\right) e^{2 g-h+t} \geq 1 \\
h(t):=-\log \left(t+e^{-t}-1\right) \\
g(t):=-\log \left(t+e^{-t}-1\right)+\log \left(1-e^{-t}\right)
\end{gathered}
$$

VI. Remaining Open Problem

M - hyperbolic Riemann surface, i.e. it admits a bounded nonconstant subharmonic function. Then $c_{M}|d z|$ is an invariant metric on M (Suita metric).

Theorem. $\operatorname{Curv}_{c_{M}|d z|} \leq-1$
Conjecture. " $<$ " $\Leftrightarrow M \simeq \Delta \backslash F(\Delta$ - unit disk, F - polar $)$

