Hörmander's Estimate, Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem

Zbigniew Błocki (Jagiellonian University, Kraków)

http://gamma.im.uj.edu.pl/~blocki

Warszawa, May 18, 2012

Plan of the talk

I. Suita Conjecture

II. Ohsawa-Takegoshi Extension Theorem

III. Hörmander's Estimate for $\bar{\partial}$ -equation

IV. Main Result V. ODE Problem

VI. Remaining Open Problem

I. Suita Conjecture

Green function for $D \subset \mathbb{C}$:

$$\begin{cases} \Delta G_D(\cdot, z) = 2\pi \delta_z \\ G_D(\cdot, z) = 0 \text{ on } \partial D \end{cases}$$

$$c_D(z) := \exp \lim_{\zeta \to z} (G_D(\zeta, z) - \log |\zeta - z|)$$
 (logarithmic capacity of $\mathbb{C} \setminus D$ w.r.t. z)

$$K_D(z):=\sup\{|f(z)|^2:f \text{ holomorphic in D},\ \int_D|f|^2d\lambda\leq 1\}$$
 (Bergman kernel on the diagonal)

Suita conjecture (1972): $c_D^2 \leq \pi K_D$

Geometric interpretation: since

$$K_D = \frac{1}{2} \frac{\partial^2}{\partial z^2} (\log c_D)$$

it is equivalent to

$$Curv_{c_D|dz|} \le -1$$

- \bullet "=" if D is simply connected
- ullet "<" if D is an annulus and thus any regular doubly connected domain (Suita)

 $Curv_{c_D \lfloor dz \rfloor}$ for $D = \{e^{-5} < |z| < 1\}$ as a function of $t = -2\log |z|$

 $Curv_{K_D \, |dz|^2}$ for $D = \{e^{-10} < |z| < 1\}$ as a function of $t = -2\log|z|$

 $Curv_{(\log K_D)_{z\bar{z}}|dz|^2}$ for $D=\{e^{-5}<|z|<1\}$ as a function of $t=-2\log|z|$

II. Ohsawa-Takegoshi Extension Theorem

$$\Omega \subset \mathbb{C}^n$$
, $\varphi : \Omega \to \mathbb{R} \cup \{-\infty\}$

$$\varphi$$
 is called plurisubharmonic (psh) if $(\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_k}) \geq 0$

 Ω is called pseudoconvex if there exists smooth psh exhaustion of Ω

Theorem (Ohsawa-Takegoshi, 1987)

 Ω - bounded pseudoconvex domain in \mathbb{C}^n , φ - psh in Ω

H - complex affine subspace of \mathbb{C}^n

f - holomorphic in $\Omega' := \Omega \cap H$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq C(n, \operatorname{diam} \Omega) \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

Theorem (Berndtsson, 1994)

 Ω - pseudoconvex in $\mathbb{C}^{n-1} \times \{|z_n < 1\}, \varphi$ - psh in Ω

f - holomorphic in $\Omega' := \Omega \cap \{z_n = 0\}$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \le 4\pi \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

Ohsawa (1995) observed that the Suita conjecture is equivalent to: for $z\in D$ there exists holomorphic f in D such that f(z)=1 and

$$\int_{D} |f|^2 d\lambda \le \frac{\pi}{(c_D(z))^2}.$$

Using the methods of the $\bar{\partial}$ -equation he showed the estimate

$$c_D^2 \le C\pi K_D$$

with C=750. This was later improved to C=2 (B., 2007) and to C=1.954 (Guan-Zhou-Zhu, 2011).

Theorem (Ż Dinew, 2007)

 Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$, φ - psh in Ω ,

f - holomorphic in $\Omega' := \Omega \cap \{z_n = 0\}$

Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{4\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

In 2011 B.-Y. Chen showed that the Ohsawa-Takegoshi extension theorem can be shown using directly Hörmander's estimate for $\bar{\partial}$ -equation!

III. Hörmander's Estimate

$$\alpha = \sum_j \alpha_j d\bar{z}_j \in L^2_{loc,(0,1)}(\Omega), \quad \Omega \subset \mathbb{C}^n$$

Assume that
$$\bar{\partial}\alpha = 0$$
 (that is $\frac{\partial \alpha_j}{\partial \bar{z}_k} = \frac{\partial \alpha_k}{\partial \bar{z}_j}$)

Looking for $u \in L^2_{loc}(\Omega)$ solving $\bar{\partial} u = \alpha$ with estimates.

Theorem (Hörmander, 1965)

 Ω - pseudoconvex in \mathbb{C}^n , φ - smooth, strongly psh in Ω

Then for every $\alpha\in L^2_{loc,(0,1)}(\Omega)$ with $\bar\partial\alpha=0$ one can find $u\in L^2_{loc}(\Omega)$ with $\bar\partial u=\alpha$ and

$$\int_{\Omega} |u|^2 e^{-\varphi} d\lambda \leq \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda.$$

Here $|\alpha|^2_{i\partial\bar\partial\varphi}=\sum_{j,k}\varphi_{j\bar k}\bar\alpha_j\alpha_k$, where $(\varphi^{j\bar k})=(\partial^2\varphi/\partial z_j\partial\bar z_k)^{-1}$, is the length of α w.r.t. the Kähler metric $i\partial\bar\partial\varphi$.

The estimate also makes sense for non-smooth φ : instead of $|\alpha|^2_{i\partial\bar\partial\varphi}$ one has to take any $H\in L^\infty_{loc}(\Omega)$ with

$$i\bar{\alpha} \wedge \alpha \leq H i\partial\bar{\partial}\varphi$$

(B., 2005).

Theorem. Ω - pseudoconvex in \mathbb{C}^n , φ - psh in Ω $\alpha \in L^2_{loc,(0,1)}(\Omega), \ \bar{\partial}\alpha = 0$ $\psi \in W^{1,2}_{loc}(\Omega)$ locally bounded from above, s.th.

$$|\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}\begin{cases} \leq 1 & \text{in } \Omega\\ \leq \delta < 1 & \text{on supp } \alpha. \end{cases}$$

Then there exists $u \in L^2_{loc}(\Omega)$ with $\bar{\partial} u = \alpha$ and

$$\int_{\Omega} |u|^2 (1 - |\bar{\partial}\psi|^2_{i\partial\bar{\partial}\varphi}) e^{2\psi - \varphi} d\lambda \le \frac{1 + \sqrt{\delta}}{1 - \sqrt{\delta}} \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{2\psi - \varphi} d\lambda.$$

Sketch of proof (ideas going back to Berndtsson and B.-Y. Chen). By approximation we may assume that φ is smooth up to the boundary and strongly psh, and ψ is bounded.

$$u$$
 - minimal solution to $\bar{\partial}u=lpha$ in $L^2(\Omega,e^{\psi-arphi})$

$$\Rightarrow u \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{\psi - \varphi})$$

$$\Rightarrow v := ue^{\psi} \perp \ker \bar{\partial} \text{ in } L^2(\Omega, e^{-\varphi})$$

$$\Rightarrow v$$
 - minimal solution to $\bar{\partial}v=\beta := e^{\psi}(\alpha+u\bar{\partial}\psi)$ in $L^2(\Omega,e^{-\varphi})$

By Hörmander's estimate

$$\int_{\Omega} |u|^2 e^{2\psi - \varphi} d\lambda = \int_{\Omega} |v|^2 e^{-\varphi} d\lambda \le \int_{\Omega} |\beta|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} d\lambda = \dots$$

IV. Main Result

Theorem. Ω - pseudoconvex in $\mathbb{C}^{n-1} \times D$, where $0 \in D \subset \mathbb{C}$, φ - psh in Ω , f - holomorphic in $\Omega' := \Omega \cap \{z_n = 0\}$ Then there exists a holomorphic extension F of f to Ω such that

$$\int_{\Omega} |F|^2 e^{-\varphi} d\lambda \leq \frac{\pi}{(c_D(0))^2} \int_{\Omega'} |f|^2 e^{-\varphi} d\lambda'.$$

Sketch of proof. By approximation may assume that Ω is bounded, smooth, strongly pseudoconvex, φ is smooth up to the boundary, and f is holomorphic in a neighborhood of $\overline{\Omega'}$.

$$\varepsilon > 0$$

$$\alpha := \bar{\partial} \big(f(z') \chi(-2 \log |z_n|) \big),\,$$

where $\chi(t) = 0$ for $t \le -2 \log \varepsilon$ and $\chi(\infty) = 1$.

$$G := G_D(\cdot, 0)$$

$$\widetilde{\varphi} := \varphi + 2G + \eta(-2G), \quad \psi := \gamma(-2G).$$

$$F := f(z')\chi(-2\log|z_n|) - u,$$

where u is a solution of $\bar{\partial}u=\alpha$ given by the previous thm.

V. ODE Problem

Find $q \in C^{0,1}(\mathbb{R}_+)$, $h \in C^{1,1}(\mathbb{R}_+)$ such that

$$\lim_{t \to \infty} (g(t) + \log t) = \lim_{t \to \infty} (h(t) + \log t) = 0$$

and

$$\left(1 - \frac{(g')^2}{h''}\right)e^{2g-h+t} \ge 1.$$

$$h(t) := -\log(t + e^{-t} - 1)$$

$$a(t) := -\log(t + e^{-t} - 1) + \log(1 - e^{-t}).$$

VI. Remaining Open Problem

M - hyperbolic Riemann surface, i.e. it admits a bounded nonconstant subharmonic function. Then $c_M \vert dz \vert$ is an invariant metric on M (Suita metric).

Theorem. $Curv_{c_M|dz|} \leq -1$

Conjecture. "<" $\Leftrightarrow M \simeq \Delta \setminus F$ (Δ - unit disk, F - polar)