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Introduction

Our main goal is to present a complete proof of the Calabi-Yau theorem [Y]
(Theorem 1.3 below). In Section 1 we collect basic notions of the Kähler geometry
(proofs can be found for example in [KN]). We then formulate the Calabi conjecture
and reduce it to solving a Monge-Ampère equation. Kähler-Einstein metrics are also
briefly discussed. In Section 2 we prove the uniqueness of solutions and reduce the
proof of existence to a priori estimates using the continuity method and Schauder
theory. Since historically the uniform estimate has caused the biggest problem, we
present two different proofs of this estimate in Section 3. The first is the classical
simplification of the Yau proof due to Kazdan, Aubin and Bourguignon and its main
tool is the Moser iteration technique. The second is essentially due to KoÃlodziej and
is more in the spirit of pluripotential theory. In Section 4 we show the estimate for
the mixed second order complex derivatives of solutions which can also be applied in
the degenerate case. The C2,α estimate can be proved locally using general Evans-
Krylov-Trudinger theory coming from (real) fully nonlinear elliptic equations. This
is done in Section 5. Finally, in Section 6 we study a corresponding Dirichlet
problem for weak (continuous) solutions.

We concentrate on the PDE aspects of the subject, whereas the geometric prob-
lems are presented only as motivation. In particular, without much more effort we
could also solve the Monge-Ampère equation (1.9) below for λ < 0 and thus prove
the existence of the Kähler-Einstein metric on compact complex manifolds with
negative first Chern class.
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2 ZBIGNIEW BÃLOCKI

We try to present as complete proofs as possible. We assume that the reader
is familiar with main results from the theory of linear elliptic equations of second
order (covered in [GT, Part I]) and basic theory of functions and forms of several
complex variables. Good general references are [A3], [D2], [GT], [KN], whereas the
lecture notes [Si] and [T] (as well as [A3]) cover the subject most closely. In Section
6 we assume the Bedford-Taylor theory of the complex Monge-Ampère operator in
Cn but in fact all the results of that part are proved by means of certain stability
estimates that are equally difficult to show for smooth solutions.

When proving an a priori estimate by C1, C2, . . . we will denote constants which
are as in the hypothesis of this estimate and call them under control.

1. Basic concepts of Kähler geometry

In this section we collect the basic notions of the Kähler geometry. Let M be
a complex manifold of dimension n. By TM denote the (real) tangent bundle
of M - it is locally spanned over R by ∂/∂xj , ∂/∂yj , j = 1, . . . , n. The complex
structure on M defines the endomorphism J of TM given by J(∂/∂xj) = ∂/∂yj ,
J(∂/∂yj) = −∂/∂xj . Every hermitian form on M

ω(X, Y ) =
n∑

i,j=1

gij̄XiY j , X, Y ∈ TM,

we can associate with a real (this means that ω = ω) (1,1)-form

(1.1) 2
√−1

n∑

i,j=1

gij̄ dzi ∧ dzj

(it is easy to check that they are transformed in the same way under a holomorphic
change of coordinates). If ω is positive then ω̃ := Re ω is the Riemannian form on
M . Let ∇ be the Levi-Civita connection defined by ω̃ - it is the unique torsion-free
connection satisfying ∇ω̃ = 0, that is

(∇X ω̃)(Y, Z) = ω̃(∇XY, Z) + ω̃(Y,∇XZ)−Xω̃(Y, Z) = 0, X, Y, Z ∈ TM.

One can show that for a hermitian manifold (M,ω)

(1.2) dω = 0 ⇔ ∇ω = 0 ⇔ ∇J = 0.

Hermitian forms ω satisfying equivalent conditions (1.2) are called Kähler. This
means that the complex structure of M is compatible with the Riemannian struc-
ture given by ω. Manifold M is called Kähler if there exists a Kähler form on
M .

We shall use the operators ∂, ∂, so that d = ∂ + ∂ and 2
√−1∂∂ = ddc, where

dc :=
√−1(∂ − ∂).

Proposition 1.1. Let ω be a closed, real (1,1) form on M . Then locally ω = ddcη
for some smooth η.

Proof. Locally we can find a real 1-form γ such that ω = dγ. We may write
γ = α + β, where α is a (1,0)-form and β a (0,1)-form. We have α = β, since γ is
real. Moreover,

ω = (∂ + ∂)(α + β) = ∂α + ∂α + ∂β + ∂β,
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and thus ∂α = 0, ∂β = 0, since ω is a (1,1)-form. Then locally we can find a
complex-valued, smooth function f with β = ∂f and

ω = ∂β + ∂β = ddc(Im f). ¤

The condition dω = 0 reads

∂gij̄

∂zk
=

∂gkj̄

∂zi
, i, j, k = 1, . . . , n,

and by Proposition 1.1 this means that locally we can write ω = ddcg for some
smooth, real-valued g. We will use the notation fi = ∂f/∂zi, fj̄ = ∂f/∂zj , it
is then compatible with (1.1). If ω is Kähler then g is strongly plurisubharmonic
(shortly psh). From now on we assume that ω is a Kähler form and g is its local
potential.

By TCM denote the complexified tangent bundle of M - it is locally spanned
over C by ∂j := ∂/∂zj , ∂j̄ := ∂/∂zj , j = 1, . . . , n. Then J, ω and ∇ can be uniquely
extended to TCM in a C-linear way. One can check that

J(∂j) =
√−1∂j , J(∂j̄) = −√−1∂j̄ ,

ω(∂i, ∂j) = ω(∂ī, ∂j̄) = 0, ω(∂i, ∂j̄) = gij̄ ,

(1.3) ∇∂i∂j̄ = ∇∂ī
∂j = 0, ∇∂i∂j = ∇∂ī

∂j̄ = gkl̄gil̄j∂k,

where (gkl̄) is the inverse transposed to (gij̄), that is

(1.4) gkl̄gjl̄ = δjk.

We have the following curvature tensors from the Riemannian geometry

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R(X, Y, W,Z) = ω(R(X, Y )Z, W ),

Ric(Y, Z) = trace {X 7−→ R(X, Y )Z}.

One can then show that

Rij̄kl̄ = R(∂i, ∂j̄ , ∂k, ∂l̄) = −gij̄kl̄ + gpq̄gpj̄kgil̄q̄

(1.5) Rickl̄ = Ric(∂k, ∂l̄) = gij̄Rij̄kl̄ = − ∂2

∂zk∂zl
log det(gij̄).

Since this is the moment where the Monge-Ampère operator appears in the complex
geometry, let us have a look at the last equality. Let D, Q be any linear first order
differential operators with constant coefficients. Then

(1.6) Q log det(gij̄) =
aij̄Qgij̄

det(gij̄)
= gij̄Qgij̄ ,



4 ZBIGNIEW BÃLOCKI

where (aij̄) is the (transposed) adjoint matrix of (gij̄). Differentiating (1.4) we get

Dgij̄ = −giq̄gpj̄Dgpq̄,

thus

(1.7) DQ log det(gij̄) = gij̄DQgij̄ − giq̄gpj̄Dgpq̄Qgij̄ ,

and (1.5) follows.
The (real) Laplace-Beltrami operator of a smooth function u is defined as the

trace of X 7−→ ∇X∇u, where ω̃(X,∇u) = Xu, X ∈ TM . In the complex case it is
convenient to define this operator as the double of the real one - then

∆u = gij̄uij̄

and
ddcu ∧ ωn−1 =

1
n

∆uωn.

The form ωn will be the volume form for us (in fact, it is 4nn! times the standard
volume form) and we will denote V := vol (M) =

∫
M

ωn. Note that the local
formulas for the quantities we have considered (the Christoffel symbols (1.3), the
curvature tensors, the Laplace-Beltrami operator) are simpler in the Kähler case
than in the real Riemannian case. It will also be convenient to use the notation
Rω = −ddc log det(gij) (= 2Ricω by (1.5)).

The formula (1.5) has also the following consequence: if ω̃ is another Kähler
form on M then Rω − Rω̃ = ddcη, where η is a globally defined function (this
easily follows from Proposition 1.1), and thus Rω, Rω̃ are cohomologous (we write
Rω ∼ Rω̃). The cohomology class of Rω is precisely c1(M), the first Chern class of
M , which does not depend on ω but only on the complex structure of M .

The so called ddc-lemma says that in the compact case every d-exact (1,1)-form
is ddc-exact:

Lemma 1.2. Let α be a real, d-exact (1,1)-form on a compact Kähler manifold
M . Then there exists η ∈ C∞(M) such that α = ddcη.

Sketch of proof. Write α = dβ and let ω be a Kähler form on M . Let η be the
solution of the following Poisson equation

ddcη ∧ ωn−1 = α ∧ ωn−1.

(This equation is solvable since
∫

M
α ∧ ωn−1 =

∫
M

d(β ∧ ωn−1) = 0.) Define
γ := β − dcη. We then have dγ ∧ ωn−1 = 0 and we have to show that dγ = 0. For
this we will use the Hodge theory. Note that

∫

M

〈dγ, dγ〉dV =
∫

M

〈γ, d∗dγ〉dV,

it is therefore enough to show that d∗dγ = 0. From now on the argument is local:
by Proposition 1.1 we may write dγ = ddch and ddch ∧ ωn−1 = 0 is equivalent to
d∗dh = 0. We then have

d∗dγ = d∗ddch = −d∗dcdh = dcd∗dh = 0,
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where we have used the equality

d∗dc + dcd∗ = 0

(see e.g. [D2]). ¤
From now on, we always assume that M is a compact manifold of dimension

n ≥ 2 and ω a Kähler form with local potential g.
Calabi conjecture. [C1] Let R̃ be a (1,1) form on M cohomologous to Rω.

Then we ask whether there exists another Kähler form ω̃ ∼ ω on M such that
R̃ = Rω̃. In other words, the problem is if every form representing c1(M) is the
Ricci form of a certain Kähler metric on M coming from one cohomology class.

By the ddc-lemma we have Rω = R̃ + ddcη for some η ∈ C∞(M). We are thus
looking for ϕ ∈ C∞(M) such that in local coordinates (ϕij̄ + gij̄) > 0 and

ddc(log det(gij̄ + ϕij̄)− log det(gij̄)− η) = 0.

However, log det(gij̄ + ϕij̄) − log det(gij̄) − η is globally defined, and since it is
pluriharmonic on a compact manifold, it must be constant. This means that

det(gij̄ + ϕij̄) = ec+η det(gij̄),

which is equivalent to
(ω + ddcϕ)n = ec+ηωn.

Since (ω + ddcϕ)n − ωn is exact, from the Stokes theorem we infer
∫

M

(ω + ddcϕ)n = V,

and thus the constant c is uniquely determined. Therefore, solving the Calabi
conjecture is equivalent to solving the following Dirichlet problem for the complex
Monge-Ampère operator on M .

Theorem 1.3. [Y] Let f ∈ C∞(M), f > 0, be such that
∫

M
fωn = V . Then there

exists, unique up to a constant, ϕ ∈ C∞(M) such that ω + ddcϕ > 0 and

(1.8) (ω + ddcϕ)n = fωn.

Kähler-Einstein metrics. A Kähler form ω̃ is called Kähler-Einstein if Rω̃ =
λω̃ for some λ ∈ R. Since λω̃ ∈ c1(M), it follows that a necessary condition for a
complex manifold M to posses a Kähler-Einstein metric is that either c1(M) < 0,
c1(M) = 0 or c1(M) > 0, that is there exists an element in c1(M) which is either
negative, zero or positive. In such a case we can always find a Kähler form ω on
M with λω ∈ c1(M), that is Rω = λω + ddcη for some η ∈ C∞(M), since M is
compact. We then look for ϕ ∈ C∞(M) such that ω̃ := ω + ddcϕ > 0 (from the
solution of the Calabi conjecture we know that c1(M) = {Rω̃ : ω̃ ∼ ω}, so we only
have to look for Kähler forms that are cohomologous to the given ω) and Rω̃ = λω̃,
which, similarly as before, is equivalent to

(1.9) (ω + ddcϕ)n = e−λϕ+η+cωn.
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To find a Kähler-Einstein metric on M we thus have to find an admissible (that is
ω + ddcϕ ≥ 0) solution to (1.9) (for some constant c).

If c1(M) = 0 then λ = 0 and the solvability of (1.9) is guaranteed by Theorem
1.3. If c1(M) < 0 one can solve the equation (1.9) in a similar way as (1.8). In fact,
the uniform estimate for (1.9) with λ < 0 is very simple (see [A2], [Y, p.379], and
Exercise 3.4 below) and in this case the equation (1.9) was independently solved by
Aubin [A2]. The case c1(M) > 0 is the most difficult and it turns out that only the
uniform estimate is the problem. There was a big progress in this area in the last
20 years (especially thanks to G. Tian) and, indeed, there are examples of compact
manifolds with positive first Chern class not admitting a Kähler-Einstein metric.
We refer to [T] for details and further references.

2.Reduction to a priori estimates

The uniqueness in Theorem 1.3 is fairly easy.

Proposition 2.1. [C2] If ϕ,ψ ∈ C2(M) are such that ω +ddcϕ > 0, ω +ddcψ ≥ 0
and (ω + ddcϕ)n = (ω + ddcψ)n then ϕ− ψ = const.

Proof. We have

0 = (ω + ddcϕ)n − (ω + ddcψ)n = ddc(ϕ− ψ) ∧ T,

where

T =
n−1∑

j=0

(ω + ddcϕ)j ∧ (ω + ddcψ)n−1−j

is a positive, closed (n− 1, n− 1)-form. Integrating by parts we get

0 =
∫

M

(ψ − ϕ)((ω + ddcϕ)n − (ω + ddcψ)n) =
∫

M

d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ T

and we conclude that D(ϕ− ψ) = 0. ¤
In subsequent sections we will show the following a priori estimate: there exists

α ∈ (0, 1) and C > 0, depending only on M and on upper bounds for ||f ||1,1 and
1/ infM f , such that for any admissible solution ϕ ∈ C4(M) of (1.8) satisfying the
normalization condition

∫
M

ϕωn = 0 we have

(2.1) ||ϕ||2,α ≤ C,

where we use the following notation: in any chart U ⊂ M

||ϕ||Ck,α(U) :=
∑

0≤j≤k

sup
U
|Djϕ|+ sup

x,y∈U,x 6=y

|Dkϕ(x)−Dkϕ(y)|α
|x− y|

and ||ϕ||k,α :=
∑

i ||ϕ||Ck,α(Ui) for a fixed finite atlas {Ui} (for any two such atlases
the obtained norms will be equivalent). In this convention

||f ||k,1 =
∑

0≤j≤k+1

sup
M
|Djf |.
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The aim of this section is to reduce the proof of Theorem 1.3 to showing the
estimate (2.1). It will be achieved using the continuity method (which goes back
to Bernstein) and the Schauder theory for linear elliptic equations of second order.

Continuity method. Fix arbitrary integer k ≥ 2, α ∈ (0, 1) and let f be as in
Theorem 1.3. By S we denote the set of t ∈ [0, 1] such that we can find admissible
ϕt ∈ Ck+2,α(M) solving

(ω + ddcϕt)n = (tf + 1− t)ωn

and such that
∫

M
ϕtω

n = 0. It is clear that 0 ∈ S and if we show that 1 ∈ S then
we will have a Ck+2,α solution of (1.8). It will be achieved if we prove that S is
open and closed in [0, 1].

The complex Monge-Ampère operator N (determined by

(ω + ddcϕ)n = N (ϕ) ωn,

in local coordinates given by

N (ϕ) =
det(gij̄ + ϕij̄)

det(gij̄)
)

smoothly maps the set

A = {ϕ ∈ Ck+2,α(M) : ω + ddcϕ > 0,

∫

M

ϕωn = 0}

to
B = {f̃ ∈ Ck,α(M) :

∫

M

f̃ωn =
∫

M

ωn}.

Then A is an open subset of the Banach space

E = {η ∈ Ck+2,α(M) :
∫

M

ηωn = 0}

and B is a hyperplane of the Banach space Ck+2,α(M) with the tangent space

F = {f̃ ∈ Ck,α(M) :
∫

M

f̃ωn = 0}.

We want to show that for every ϕ ∈ A the differential DN (ϕ) : E → F is an
isomorphism. For η ∈ E , denoting ω̃ = ω + ddcϕ, we have

DN (ϕ).η =
d

dt
N (ϕ + tη)|t=0 =

det(g̃ij̄)
det(gij̄)

g̃ij̄ηij̄ = N (ϕ)∆̃η.

It immediately follows that DN (ϕ) is injective. From the real theory on compact
Riemannian manifolds it is known that the Laplace-Beltrami operator bijectively
maps

{η ∈ Ck+2,α(M) :
∫

M

η = 0} −→ {f̃ ∈ Ck,α(M) :
∫

M

f̃ = 0}
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(see e.g. [A3, Theorem 4.7]). This, applied to (M, ω̃), implies that DN (ϕ) is
indeed surjective, and thus an isomorphism. Therefore N is locally invertible and
in particular N (A) is open in B, and S is open in [0, 1].

If we knew that the set {ϕt : t ∈ S} is bounded in Ck+2,α(M) then from its every
sequence, by the Arzela-Ascoli theorem, we could choose a subsequence whose all
partial derivatives of order ≤ k + 1 converged uniformly. Thus, to show that S is
closed, we need an a priori estimate

(2.2) ||ϕ||k+2,α ≤ C

for the solutions of (1.8). We now sketch how to use (locally) the Schauder theory
to show that (2.1) implies (2.2).

Schauder theory. We first analyze the complex Monge-Ampère operator

F (D2u) = det(uij̄)

for smooth psh functions u - we see that the above formula defines the real operator
of second order. It is elliptic if the 2n× 2n real symmetric matrix A := (∂F/∂upq)
(here by upq we denote the elements of the real Hessian D2u) is positive. Matrix
A is determined by

d

dt
F (D2u + tB)|t=0 = trace (ABT ).

Exercise 2.2. Show that

λmin(∂F/∂upq) =
det(uij̄)

4λmax(uij̄)
, λmax(∂F/∂upq) =

det(uij̄)
4λmin(uij̄)

,

where λminA, resp. λmaxA, denotes the minimal, resp. maximal, eigenvalue of A.

Thus the operator F is elliptic (in the real sense) for smooth strongly psh func-
tions and in our case when (2.1) is satisfied (then ∆u is under control and hence
so are the complex mixed derivatives uij̄) is even uniformly elliptic, that is

|ζ|2/C ≤
2n∑

p,q=1

∂F/∂upqζpζq ≤ C|ζ|2, ζ ∈ Cn = R2n

for some uniform constant C. We can now apply the standard elliptic theory (see
[GT, Lemma 17.16] for details) to the equation

F (D2u) = f.

For a fixed unit vector ζ and small h > 0 we consider the difference quotient

uh(x) =
u(x + hζ)− u(x)

h

and

apq
h =

∫ 1

0

∂F

∂upq

(
tD2u(x + hζ) + (1− t)D2u(x)

)
dt.
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Then

apq
h (x)uh

pq(x) =
1
h

∫ 1

0

d

dt
F

(
tD2u(x + hζ) + (1− t)D2u(x)

)
dt = fh(x).

From the Schauder theory for linear elliptic equations with variable coefficients we
then infer (all corresponding estimates are uniform in h)

u ∈ C2,α =⇒ apq
h ∈ C0,α Schauder=⇒ uh ∈ C2,α =⇒ u ∈ C3,α =⇒ . . .

Coming back to our equation (1.8) for k ≥ 1 we thus get

ϕ ∈ C2,α, f ∈ Ck,α =⇒ ϕ ∈ Ck+2,α

and
||ϕ||k+2,α ≤ C,

where C > 0 depends only on M and on upper bounds for ||ϕ||2,α, ||f ||k,α. Hence,
we get (2.2), ϕ ∈ C∞(M), and to prove Theorem 1.3, it is enough to establish the
a priori estimate (2.1).

3.Uniform estimate

The main goal of this section will be to prove the uniform estimate. We will use
the notation ||ϕ||p = ||ϕ||Lp(M), 1 ≤ p ≤ ∞.

Theorem 3.1. Assume that ϕ ∈ C2(M) is admissible and (ω + ddcϕ)n = fωn.
Then

osc
M

ϕ := sup
M

ϕ− inf
M

ϕ ≤ C,

where C > 0 depends only on M and on an upper bound for ||f ||∞.

The Lp estimate for p < ∞ follows easily for any admissible ϕ (without any
knowledge on f).

Proposition 3.2. For any admissible ϕ ∈ C2(M) with maxM ϕ = 0 one has

||ϕ||p ≤ C(M, p), 1 ≤ p < ∞.

Proof. The case p = 1 follows easily from the following estimate (applied in finite
number of local charts to u = ϕ + g): if u is a negative subharmonic function in
B(y, 3R) in Rm then for x ∈ B(y, R) we have

u(x) ≤ 1
vol (B(x, 2R))

∫

B(x,2R)

u ≤ 1
vol (B(y, 2R))

∫

B(y,R)

u

and thus
||u||L1(B(y,R)) ≤ vol (B(y, 2R)) inf

B(y,R)
(−u).

For p > 1 we now use the following estimate: if u is a negative psh in B(y, 2R) in
Cn then

||u||Lp(B(y,R)) ≤ C(n, p,R)||u||L1(B(y,2R). ¤
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We will now present two different proofs of the uniform estimate. The first one
(see [Si, p. 92] or [T, p. 49]) is similar to the original proof of Yau, subsequently
simplified by Kazdan [K] for n = 2 and by Aubin and Bourguignon for arbitrary n
(for the detailed historical account we refer to [Y, p. 411] and [Si, p. 115]).

First proof of Theorem 3.1. Without loss of generality we may assume that
∫

M
ωn =

1 and maxM ϕ = −1, so that ||ϕ||p ≤ ||ϕ||q if p ≤ q < ∞. We have

(f − 1)ωn = (ω + ddcϕ)n − ωn = ddcϕ ∧ T,

where

T =
n−1∑

j=0

(ω + ddcϕ)j ∧ ωn−1−j ≥ ωn−1.

Integrating by parts we get for p ≥ 1

(3.1)

∫

M

(−ϕ)p(f − 1)ωn =
∫

M

(−ϕ)pddcϕ ∧ T

= −
∫

M

d(−ϕ)p ∧ dcϕ ∧ T

= p

∫

M

(−ϕ)p−1dϕ ∧ dcϕ ∧ T

≥ p

∫

M

(−ϕ)p−1dϕ ∧ dcϕ ∧ ωn−1

=
4p

(p + 1)2

∫

M

d(−ϕ)(p+1)/2 ∧ dc(−ϕ)(p+1)/2 ∧ ωn−1

=
cnp

(p + 1)2
||D(−ϕ)(p+1)/2||22.

The Sobolev inequality on compact a Riemannian manifold M with real dimension
m states that

(3.2) ||v||mq/(m−q) ≤ C(M, q) (||v||q + ||Dv||q) , v ∈ W 1,q(M), q < m.

(it easily follows from the Sobolev inequality for u ∈ W 1,q
0 (Rm) applied in charts

forming a finite covering of M). Using (3.2) with q = 2 and (3.1)

||(−ϕ)(p+1)/2||2n/(n−1) ≤

CM

(
||(−ϕ)(p+1)/2||2 +

p + 1√
p

(∫

M

(−ϕ)p(f − 1)ωn

)1/2
)

.

From this (replacing p + 1 with p) and since |ϕ| ≤ 1 we easily get

(3.3) ||ϕ||np/(n−1) ≤ (Cp)1/p||ϕ||p, p ≥ 2.

We will now apply Moser’s iteration scheme (see [M] or the proof of [GT, Theorem
8.15]). Set

p0 := 2, pk :=
npk−1

n− 1
, k = 1, 2, . . . ,
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so that pk = 2(n/(n− 1))k. Then by (3.3)

||ϕ||∞ = lim
k→∞

||ϕ||pk
≤ ||ϕ||2

∞∏

j=0

(Cpj)1/pj .

Taking the logarithm one can show that

∞∏

j=0

(Cpj)1/pj = (n/(n− 1))n(n−1)/2(2C)n/2

and it is enough to use Proposition 3.2 (for p = 2). ¤
Exercise 3.3. Slightly modifying the above proof show that the uniform estimate
follows if we assume that ||f ||q is under control for some q > n.

Exercise 3.4. Consider the equation

(ω + ddcϕ)n = F (·, ϕ)ωn,

where F ∈ C∞(M×R) is positive. Show that if an admissible solution ϕ ∈ C∞(M)
attains maximum at y ∈ M then F (y, ϕ(y)) ≤ 1. Deduce a uniform estimate for
admissible solutions of (1.9) when λ < 0.

The second proof of the uniform estimate is essentially due to KoÃlodziej [Ko2]
who studied pluripotential theory on compact Kähler manifolds (see also [TZ]).
The KoÃlodziej argument gave the uniform estimate under weaker conditions than
in Theorem 3.1 - it is enough to assume that ||f ||q is under control for some q > 1.
For q = ∞ (and even q > 2) this argument was simplified in [BÃl6] and we will follow
that proof.

The main tool in the second proof of Theorem 3.1 will the following L2 stability
for the complex Monge-Ampère equation. It was originally established by Cheng
and Yau (see [B, p.75]). The Cheng-Yau argument was made precise by Cegrell
and Persson [CP].

Theorem 3.5. Let Ω be a bounded domain in Cn. Assume that u ∈ C(Ω) is psh
and C2 in Ω, u = 0 on ∂Ω. Then

||u||L∞(Ω) ≤ C(n, diamΩ) ||f ||1/n
L2(Ω),

where f = det(uij̄).

Proof. We use the theory of convex functions and the real Monge-Ampère operator.
From the Alexandrov-Bakelman-Pucci principle [GT, Lemma 9.2] we get

||u||L∞(Ω) ≤
diamΩ

λ
1/2n
2n

(∫

Γ

detD2u

)1/2n

,

where λ2n = πn/n! is the volume of the unit ball in Cn and

Γ := {x ∈ Ω : u(x) + 〈Du(x), y − x〉 ≤ u(y) ∀ y ∈ Ω} ⊂ {D2u ≥ 0}.
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It will now be sufficient to prove the pointwise estimate

D2u ≥ 0 =⇒ detD2u ≤ cn(det(uij̄))
2.

We may assume that (uij̄) is diagonal. Then

det(uij̄) = 4−n(ux1x1 + uy1y1) . . . (uxnxn
+ uynyn

)

≥ 2−n
√

ux1x1uy1y1 . . . uxnxn
uynyn

≥
√

detD2u/cn,

where the last inequality follows because for real nonnegative symmetric matrices
(apq) one easily gets det(apq) ≤ m!a11 . . . amm (because |apq| ≤

√
appaqq ); from

Lemma 5.2 below one can deduce that in fact det(apq) ≤ a11 . . . amm. ¤
From the comparison principle for the complex Monge-Ampère operator one can

immediately obtain the estimate

||u||L∞(Ω) ≤ (diamΩ)2 ||f ||1/n
L∞(Ω)

in Theorem 3.5. It is however not sufficient for our purposes, because it does not
show that if vol (Ω) is small then so is ||u||L∞(Ω).

Exercise 3.6. Using the Moser iteration technique from the first proof of Theorem
3.1 show the Lq stability for q > n, that is Theorem 3.5 with ||f ||L2(Ω) replaced
with ||f ||Lq(Ω).

The uniform estimate will easily follow from the next result.

Proposition 3.7. Let Ω be a bounded domain in Cn and u is a negative C2 psh
function in Ω. Assume that a > 0 is such that the set {u < infΩ u+a} is nonempty
and relatively compact in Ω. Then

||u||L∞(Ω) ≤ a + (C/a)2n||u||L1(Ω)||f ||2L∞(Ω),

where f = det(uij̄) and C = C(n, diamΩ) is the constant from Theorem 3.5.

Proof. Set t := infΩ u + a, v := u− t and Ω′ := {v < 0}. By Theorem 3.5

a = ||v||L∞(Ω′) ≤ C (vol (Ω′))1/2n ||f ||1/n
L∞(Ω′).

On the other hand,

vol (Ω′) ≤ ||u||L1(Ω)

|t| =
||u||L1(Ω)

||u||L∞(Ω) − a

and the estimate follows. ¤
Second proof of Theorem 3.1. Let y ∈ M be such that ϕ(y) = minM ϕ. The Taylor
expansion of g about y gives

g(y + h) = Re P (h) +
n∑

i,j=1

gij̄(y)hihj +
1
3!

D3g(ỹ).h3

≥ ReP (h) + c1|h|2 − c2|h|3,
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where
P (h) = g(y) + 2

∑

i

gi(y)hi +
∑

i,j

gij(y)hihj

is a complex polynomial, ỹ ∈ [y, y+h] and c1, c2 > 0 depend only on M . Modifying
g by a pluriharmonic function (and thus not changing ω), we may thus assume that
there exists a, r > 0 depending only on M such that g < 0 in B(y, 2r), g attains
minimum in B(y, 2r) at y and g ≥ g(y) + a on B(y, 2r) \ B(y, r). Proposition 3.7
(for Ω = B(y, 2r) and u = g + ϕ) combined with Proposition 3.2 (for p = 1) gives
the required estimate. ¤

Slightly improving the proof of Proposition 3.7 (using the Hölder inequality)
we see that the second proof of Theorem 3.1 implies that we can replace ||f ||∞
with ||f ||q for any q > 2. Moreover, since KoÃlodziej [Ko1] showed (with more
complicated proof using pluripotential theory) that the (local) Lq stability for the
complex Monge-Ampère equation holds for every q > 1 (and even for a weaker
Orlicz norm), we can do this on M also for every q > 1. This was proved in
[Ko2], where the local techniques from [Ko1] had to be repeated on M . The above
argument allows to easily deduce the global uniform estimate from the local results.
Exercises 3.3 and 3.6 show that both proofs of Theorem 3.1, although quite different,
are related.

4. Second derivative estimate

In this sections we will show the a priori estimate for the mixed complex deriva-
tives ϕij̄ which is equivalent to the estimate of ∆ϕ. The main idea is the same as
the one in the original Yau proof [Y] who used the method of Pogorelov [P] from
the real Monge-Ampère equation. We will present an improvement of the Yau esti-
mate that can be applied to the degenerate case (when f ≥ 0) because it does not
quantitatively depend on infM f . It uses the idea of Guan [Gu] (see also [GTW])
who obtained regularity results for the degenerate real Monge-Ampère equation. It
also simplifies some computations from [Y].

Theorem 4.1. [BÃl4] Let ϕ ∈ C4(M) be such that ω +ddcϕ > 0 and (ω +ddcϕ)n =
fωn. Then

sup
M
|∆ϕ| ≤ C,

where C depends only on M and on an upper bound for ||f1/(n−1)||1,1.

Proof. By Theorem 3.1 we may assume that

(4.1) −C1 ≤ ϕ ≤ 0.

Note that for any admissible ϕ we have (gij̄ + ϕij̄) ≥ 0 and thus

∆ϕ = gij̄ϕij̄ ≥ −n.

It is therefore enough to estimate ∆ϕ from above. In local coordinates the function
u = g + ϕ is strongly psh. It is easy to see that the expression

η := max
|ζ|=1

uζζ̄

gζζ̄

= max
ζ 6=0

uζζ̄

gζζ̄

,
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(where uζ =
∑

i ζiui, uζ̄ =
∑

i ζiuī, and uζζ̄ =
∑

i,j ζiζjuij̄ , ζ ∈ Cn) is independent
of holomorphic change of coordinates, and thus η is a continuous, positive, globally
defined function on M . Set

α := log η −Aϕ,

where A > 0 under control will be specified later. Since M is compact and α is
continuous, we can find y ∈ M , where α attains maximum. After rotation we may
assume that the matrix (uij̄) is diagonal and u11̄ ≥ · · · ≥ unn̄ at y. Fix ζ ∈ Cn,
|ζ| = 1, such that η = uζζ̄/gζζ̄ at y. Then the function

α̃ := log
uζζ̄

gζζ̄

−Aϕ,

defined in a neighborhood of y, also has maximum at y. Moreover, α̃ ≤ α and
α̃(y) = α(y). Since

(4.2) uζζ̄(y) ≤ u11̄(y) ≤ C2uζζ̄(y),

by (4.1) it is clear that to finish the proof it is sufficient to show the estimate

(4.3) u11̄(y) ≤ C3.

We will use the following local estimate.

Lemma 4.2. Let u be a C4 psh function with F := det(uij̄) > 0. Then for any
direction ζ

uij̄(log uζζ̄)ij ≥
(log F )ζζ̄

uζζ̄

.

Proof. Differentiating (logarithm of) the equation det(uij̄) = F twice, similarly as
in (1.6), (1.7) we get

uij̄uij̄ζ = (log F )ζ ,

uij̄uij̄ζζ̄ = (log F )ζζ̄ + uil̄ukj̄uij̄ζukl̄ζ̄ .

Using this we obtain

uζζ̄ uij̄(log uζζ̄)ij = uij̄uij̄ζζ̄ −
1

uζζ̄

uij̄uζζ̄iuζζ̄j̄

= (log F )ζζ̄ + uil̄ukj̄uij̄ζukl̄ζ̄ −
1

uζζ̄

uij̄uζζ̄iuζζ̄j̄ .

At a given point we may assume that the matrix (uij̄) is diagonal. Then

uij̄uζζ̄iuζζ̄j̄ =
∑

i

|uζζ̄i|2
uīi

and

|uζζ̄i|2 =
∣∣ ∑

j

ζ̄juij̄ζ

∣∣2 ≤
∑

j

|ζj |2ujj̄

∑

j

|uij̄ζ |2
ujj̄
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by Schwarz inequality. Therefore

uij̄uζζ̄iuζζ̄j̄ ≤ uζζ̄

∑

i,j

|uij̄ζ |2
uīiujj̄

= uζζ̄ uil̄ukj̄uij̄ζukl̄ζ̄

and the lemma follows. ¤
As noticed by Bo Berndtsson, Lemma 4.2 has a geometric context. If ζ is a

holomorphic vector field on a Kähler manifold (with potential u) then one can
show that √−1∂∂̄ log |ζ|2 ≥ −R(ζ, ζ, ·, ·)

|ζ|2 .

Taking the trace and since Ricij̄ = −(log F )ij̄ we will get the statement of the
lemma.

Proof of Theorem 4.1 continued. Using the fact that α̃ has maximum at y, by
Lemma 4.2 with F = f det(gij̄) we get

0 ≥ uij̄α̃ij̄ ≥
(log f)ζζ̄

uζζ̄

+
(log det(gpq̄))ζζ̄

uζζ̄

+ Auij̄gij̄ − nA.

By (4.2) and the elementary inequality (following from differential calculus of func-
tions of one real variable)

||
√

h||0,1 ≤ CM (1 + ||h||1,1), h ∈ C2(M), h ≥ 0,

we get, denoting f̃ := f1/(n−1),

(log f)ζζ̄

uζζ̄

=
n− 1
uζζ̄

(
f̃ζζ̄

f̃
− |f̃ζ |2

f̃2

)
≥ − C4

u11̄f̃
.

Therefore, using (4.2) again (recall that (uij̄) is diagonal at y),

0 ≥ − C4

u11̄f̃
− C5

u11̄

+ (−C6 + A/C7)
∑

i

1
uīi

− nA,

where 1/C7 ≤ λmin(gij̄(y)). We choose A such that −C6 + A/C7 = max{1, C5}.
The inequality between arithmetic and geometric means gives

∑

i≥2

1
uīi

≥ n− 1
(u22̄ . . . unn̄)1/(n−1)

= (n− 1)
u

1/(n−1)

11̄

f̃
.

We arrive at
u

n/(n−1)

11̄
− C8u11̄ − C9 ≤ 0

(at y) from which (4.3) immediately follows. ¤
In the proof of Theorem 4.1, unlike in [Y], we used standard derivatives in local

coordinates and not the covariant ones - it makes some calculations simpler.
It is rather unusual in the theory of nonlinear elliptic equations of second order

that the second derivative estimate can be obtained directly from the uniform esti-
mate, bypassing the gradient estimate. The gradient estimate follows locally (and
hence globally on M) from the estimate for the Laplacian for arbitrary solutions
of the Poisson equation (see e.g. [GT, Theorem 3.9] or use the Green function and
differentiate under the sign of integration).
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5. C2,α estimate

Aubin [A1] and Yau [Y] proved a priori estimates for third-order derivatives of
ϕ. The estimate from [Y], due to Nirenberg (see [Y, Appendix A]), was based on an
estimate for the real Monge-Ampère equation of Calabi [C3]. In the meantime, a
general theory of nonlinear elliptic equations of second order has been developed. It
allows to obtain an interior C2,α-estimate, once an estimate for the second deriva-
tives is known. It was done by Evans [E1], [E2] (and also independently by Krylov
[Kr]) and his method was subsequently simplified by Trudinger [Tr]. Although the
complex Monge-Ampère operator is uniformly elliptic in the real sense (see Exercise
2.2), we cannot apply the estimate from the real theory directly. The reason is that
Section 4 gives the control for the mixed complex derivatives ϕij̄ but not for D2ϕ,
which is required in the real estimate. We can however almost line by line repeat
the real method in our case. It has been done in [Si], and also in [BÃl2, Theorem
3.1], where an idea from [S] and [W] was used to write the equation in divergence
form. We will get the following a priori estimate for the complex Monge-Ampère
equation.

Theorem 5.1. Let u be a C4 psh function in an open Ω ⊂ Cn such that f :=
det(uij̄) > 0. Then for any Ω′ b Ω there exist α ∈ (0, 1) depending only on n
and on upper bounds for ||u||C0,1(Ω), supΩ∆u, ||f ||C0,1(Ω), 1/ infΩ f , and C > 0
depending in addition on a lower bound for dist (Ω′, ∂Ω) such that

||u||C2,α(Ω′) ≤ C.

A similar estimate can be proved for more general equations of the complex
Hessian of the form

F ((uij̄), Du, u, z) = 0.

Here F is a smooth function of G×R2n×R×Ω, where G is an open subset of the set
of all n× n hermitian matrices H. In case of the complex Monge-Ampère operator
we take G = H+ := {A ∈ H : A > 0}. The crucial assumption that has to be made
on F in order for the Evans-Trudinger method to work is that it is concave with
respect to (uij̄). In case of the complex Monge-Ampère equation one has to use the
fact that the mapping

(5.1) H+ 3 A 7−→ (det A)1/n ∈ R+

is concave. This can be immediately deduced from the following very useful lemma.

Lemma 5.2. [G] (det A)1/n =
1
n

inf{trace (AB) : B ∈ H+, detB = 1}, A ∈ H+.

Proof. For every B ∈ H+ there is unique C ∈ H+ such that C2 = B. We denote
C = B1/2. Then B1/2AB1/2 ∈ H+ and after diagonalizing it, from the inequality
between arithmetic and geometric means we get

(det A)1/n(det B)1/n = (det(B1/2AB1/2))1/n

≤ 1
n

trace (B1/2AB1/2) =
1
n

trace (AB)

and ≤ follows. To show ≥ we may assume that A is diagonal and then we easily
find B for which the infimum is attained. ¤
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Lemma 5.2 also shows that the Monge-Ampère operator is an example of a
Bellman operator.

Proof of Theorem 5.1. Fix ζ ∈ Cn, |ζ| = 1. Differentiating the logarithm of both
sides of the equation

det(uij̄) = f,

similarly as in (1.7) or in the proof of Lemma 4.2, we obtain

(5.2) uij̄uζζ̄ij̄ = (log f)ζζ̄ + uil̄ukj̄uζij̄uζ̄kl̄ ≥ (log f)ζζ̄ .

The inequality uil̄ukj̄uζij̄uζ̄kl̄ ≥ 0 is equivalent to the concavity of the mapping

H+ 3 A 7−→ log det A ∈ R

which also follows from concavity of (5.1). It will be convenient to write (5.2) in
divergence form. Set aij̄ := fuij̄ . Then for any fixed i

(aij̄)j̄ = f(uij̄ukl̄ − uil̄ukj̄)ukl̄j̄ = 0

and by (5.2)

(aij̄uζζ̄i)j̄ ≥ fζζ̄ −
|fζ |2

f
≥ −C1 +

∑

j

(
∂f j

∂xj
+

∂f j+n

∂yj

)
,

where ||f l||L∞(Ω) ≤ C2, l = 1, . . . , 2n. By the assumptions on u (and Exercise 2.2)
the operator ∂j̄(aij̄∂i) is uniformly elliptic (in the real sense) and from the weak
Harnack inequality [GT, Theorem 8.18] we now get

(5.3) r−2n

∫

Br

(
sup
B4r

uζζ̄ − uζζ̄

) ≤ C3

(
sup
B4r

uζζ̄ − sup
Br

uζζ̄ + r
)
,

where B4r = B(z0, 4r) ⊂ Ω and z0 ∈ Ω′.
On the other hand, for x, y ∈ Ω by Lemma 5.2 we have

(5.4) aij̄(y)
(
uij̄(y)− uij̄(x)

) ≤ nf(y)1−1/n
(
f(y)1/n − f(x)1/n

) ≤ C4|x− y|.

We are going to combine (5.3) with (5.4). For that we will need to choose an
appropriate finite set of directions ζ. The following lemma from linear algebra will
be crucial.

Lemma 5.3. Let 0 < λ < Λ < ∞ and by S(λ,Λ) denote the set of hermitian
matrices whose eigenvalues are in the interval [λ, Λ]. Then one can find unit vectors
ζ1, . . . , ζN ∈ Cn and 0 < λ∗ < Λ∗ < ∞, depending only on n, λ, and Λ, such that
every A ∈ S(λ, Λ) can be written as

A =
N∑

k=1

βkζk ⊗ ζk, i.e. aij̄ =
∑

k

βkζkiζkj ,
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where βk ∈ [λ∗, Λ∗], k = 1, . . . , N . The vectors ζ1, . . . , ζN can be chosen so that
they contain a given orthonormal basis of Cn.

Proof. [Si, p. 103] The space H of all hermitian matrices is of real dimension n2.
Every A ∈ H can be written as

A =
n∑

k=1

λkwk ⊗ wk,

where λ1, . . . , λn ∈ R are the eigenvalues of A and w1, . . . , wn ∈ Cn the correspond-
ing unit eigenvectors. It follows that there exist unit vectors ζ1, . . . , ζn3 ∈ Cn such
that the matrices ζk ⊗ ζk, k = 1, . . . , n3, span H over R. For such sets of vectors
we consider the sets of matrices

U(ζ1, . . . , ζn3) =

{∑

k

βkζk ⊗ ζk : 0 < βk < 2Λ

}
.

They form an open covering of S(λ/2, Λ), a compact subset of H. Choosing a finite
subcovering we get unit vectors ζ1, . . . , ζN ∈ Cn such that

S(λ/2,Λ) ⊂
{

N∑

k=1

βkζk ⊗ ζk : 0 < βk < 2Λ

}
.

For A ∈ S(λ, Λ) we have

A− λ

2N

N∑

k=1

ζk ⊗ ζk ∈ S(λ/2, Λ)

and the lemma follows. We see that may take arbitrary λ∗ < λ/N and Λ∗ > Λ. ¤
Proof of Theorem 5.1, continued. The eigenvalues of (uij̄) are in [λ, Λ], where
λ, Λ > 0 are under control. By Lemma 5.3 we can find unit vectors ζ1, . . . , ζN ∈ Cn

such that for x, y ∈ Ω

aij̄(y)
(
uij̄(y)− uij̄(x)

)
=

N∑

k=1

βk(y)
(
uζk ζ̄k

(y)− uζk ζ̄k
(x)

)
,

where βk(y) ∈ [λ∗, Λ∗] and λ∗, Λ∗ > 0 are under control. Set

Mk,r := sup
Br

uζk ζ̄k
, mk,r := inf

Br

uζk ζ̄k
,

and

η(r) :=
N∑

k=1

(Mk,r −mk,r).

We need to show that η(r) ≤ Crα. Since γ1, . . . , γN can be chosen so that they
contain the coordinate vectors, it will then follow that ||∆u||Cα(Ω′) is under control
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and by the Schauder estimates for the Poisson equation [GT, Theorem 4.6] also
that ||D2u||Cα(Ω′) is under control. The condition η(r) ≤ Crα is equivalent to

(5.5) η(r) ≤ δη(4r) + r, 0 < r < r0,

where δ ∈ (0, 1) and r0 > 0 are under control (see [GT, Lemma 8.23]).
From (5.4) we get

(5.6)
N∑

k=1

βk(y)
(
uζk ζ̄k

(y)− uζk ζ̄k
(x)

) ≤ C4|x− y|.

Summing (5.3) over l 6= k, where k is fixed, we obtain

(5.7) r−2n

∫

Br

∑

l 6=k

(
Ml,4r − uζlζ̄l

) ≤ C3(η(4r)− η(r) + r).

By (5.6) for x ∈ B4r, y ∈ Br we have

βk(y)
(
uζk ζ̄k

(y)− uζk ζ̄k
(x)

) ≤ C4|x− y|+
∑

l 6=k

βl(y)
(
uζlζ̄l

(x)− uζlζ̄l
(y)

)

≤ C5r + Λ∗
∑

l 6=k

(Ml,4r − uζlζ̄l
(y)).

Thus

uζk ζ̄k
(y)−mk,4r ≤ 1

λ∗


C5r + Λ∗

∑

l 6=k

(
Ml,4r − uζlζ̄l

(y)
)



and (5.7) gives

r−2n

∫

Br

(
uζk ζ̄k

−mk,4r

) ≤ C6(η(4r)− η(r) + r).

This coupled with (5.3) easily implies that

η(r) ≤ C7(η(4r)− η(r) + r),

and (5.5) follows. ¤

6.Weak solutions

The theory of the complex Monge-Ampère operator (ddc)n for nonsmooth psh
functions has been developed by Bedford and Taylor (see [BT1], [BT2] and also
general references [D1], [D2], [Kl], [BÃl1], [BÃl3], [Ce], [Ko4]). In particular, one can
define (ddcu)n as a nonnegative regular Borel measure if u is a locally bounded
psh function, and this operator is continuous for monotone sequences (in the weak∗

topology of measures). We define the class of weakly admissible functions on M in
a natural way: ϕ : M → R∪{−∞} is called admissible (or ω-psh) if locally g +ϕ is
psh. Therefore, if ϕ is locally bounded and admissible then M(ϕ) := (ω + ddcϕ)n,
locally equal to (ddc(g + ϕ))n, is a measure such that

∫
M
M(ϕ) = V .
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We will show the following version of Theorem 1.3 for weak solutions.

Theorem 6.1. [Ko2], [Ko3] Let f ∈ C(M), f ≥ 0, be such that
∫

M
fωn = V . Then

there exists, unique up to a constant, admissible ϕ ∈ C(M) such that M(ϕ) = fωn.

The existence part of Theorem 6.1 was shown in [Ko2], also for f ∈ Lq(M),
q > 1. As we will see, this part for f ∈ C(M) can be proved in a simpler way.
It will immediately follow from Theorem 1.3 and appropriate stability of smooth
solutions (Theorem 6.4 below).

Concerning the uniqueness in Theorem 6.1 it was later shown in [Ko3] (also for
more general densities f). One can however consider the uniqueness problem with-
out any assumption on density of the Monge-Ampère measure: doesM(ϕ) = M(ψ)
imply that ϕ − ψ = const? It was proved in [BT3] for M = Pn but it is true for
arbitrary M and can be shown much simpler than in [BT3]. We have the following
most general uniqueness result with the simplest proof.

Theorem 6.2. [BÃl5] If ϕ,ψ ∈ L∞(M) are admissible and M(ϕ) = M(ψ) then
ϕ− ψ = const.

Proof. Set ρ := ϕ−ψ and ωϕ := ω + ddcϕ. We start as in the proof of Proposition
2.1. We will get

(6.1) dρ ∧ dcρ ∧ ωj
ϕ ∧ ωn−1−j

ψ = 0, j = 0, 1, . . . , n− 1,

and we have to show that dρ∧ dcρ∧ ωn−1 = 0. To describe the further method we
assume that n = 2. Using (6.1) and integrating by parts

∫

M

dρ ∧ dcρ ∧ ω = −
∫

M

dρ ∧ dcρ ∧ ddcϕ =
∫

M

dϕ ∧ dcρ ∧ (ωψ − ωϕ).

By the Schwarz inequality
∣∣∣∣
∫

M

dϕ ∧ dcρ ∧ ωψ

∣∣∣∣ ≤
(∫

M

dϕ ∧ dcϕ ∧ ωψ

)1/2 (∫

M

dρ ∧ dcρ ∧ ωψ

)1/2

= 0

by (6.1) and, similarly,
∫

M
dϕ ∧ dcρ ∧ ωϕ = 0. Therefore dρ ∧ dcρ ∧ ω = 0.

For n > 2 the proof is similar but one has to use an appropriate inductive
procedure: in the same way as before one shows for l = 0, 1, . . . , n− 1 that

dρ ∧ dcρ ∧ ωj
ϕ ∧ ωk

ψ ∧ ωl = 0

if j + k + l = n− 1 (see [BÃl5] for details). ¤
The Monge-Ampère measure (ddcu)n can be defined also for some not locally

bounded psh u: for example if u is bounded outside a compact set (see [D1], [D2]).
However, there is no uniqueness in this more general class.

Exercise 6.3. Show that

ϕ(z) := log |z| − g(z), ψ(z) := log ||z|| − g(z), z ∈ Cn,

where

|z| =
√
|z2

1 |+ . . . |zn|2, ||z|| = max{|z1|, . . . , |zn|}, g(z) =
1
2

log(1 + |z|2),
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define admissible ϕ,ψ on Pn (with the Fubini-Study metric ω = ddc log |Z|) such
that M(ϕ) = M(ψ) but ϕ− ψ 6= const.

Closely analyzing the proof of Theorem 6.2 one can get the quantitative estimate

(6.2)
∫

M

d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ ωn−1 ≤ C

(∫

M

(ψ − ϕ)(M(ϕ)−M(ψ))
)21−n

,

where C is a constant depending only on n and upper bounds of ||ϕ||∞, ||ψ||∞ and
V . The following Poincaré-Sobolev inequality on compact Riemannian manifolds
M of real dimension m

||v||22m/(m−2) ≤ CM

((∫

M

v
)2 + ||Dv||22

)
, v ∈ W 1,2(M),

is more difficult to prove than (3.2) (see [Si, p.140]; the proof uses an isoperimetric
inequality). This combined with (6.2) immediately gives the following stability of
weak solutions whose Monge-Ampère measures have densities in L1

||ϕ− ψ||2n/(n−1) ≤ C||f − g||2−n

1 ,

provided that
∫

M
ϕωn =

∫
M

ψωn, where M(ϕ) = fωn, M(ψ) = gωn, and C
depends only on M and on upper bounds for ||ϕ||∞ and ||ψ||∞.

For the proof of the existence part of Theorem 6.1 we will need a uniform stability.

Theorem 6.4. [Ko3] Assume that ϕ,ψ ∈ C(M) are admissible and that M(ϕ) =
fωn, M(ψ) = gωn for some f, g ∈ C(M) with ||f − g||∞ ≤ 1/2. Let ϕ, ψ be
normalized by maxM (ϕ− ψ) = maxM (ψ − ϕ). Then

(6.3) osc
M

(ϕ− ψ) ≤ C||f − g||1/n
∞ ,

where C depends only on M and on upper bounds for ||f ||∞, ||g||∞.

Proof. First assume that we have proved the theorem for smooth, strongly admis-
sible ϕ, ψ. From this and Theorem 1.3 we can easily deduce Theorem 6.1: any
nonnegative f ∈ C(M) with

∫
M

fωn = V can be uniformly approximated by posi-
tive fj ∈ C∞(M) with

∫
M

fjω
n = V and the existence part of Theorem 6.1 follows

from the continuity of the Monge-Ampère operator for uniform sequences. Then
obviously (6.3) will also hold for nonsmooth ϕ,ψ. It is thus enough to consider
ϕ,ψ ∈ C∞(M) with f, g > 0.

By Theorem 3.1 we may assume that −C1 ≤ ϕ, ψ ≤ 0. Without loss of generality
we may replace the normalizing condition maxM (ϕ− ψ) = maxM (ψ − ϕ) with the
normalizing inequalities

(6.4) 0 < max
M

(ϕ− ψ) ≤ 2max
M

(ψ − ϕ) ≤ 4max
M

(ψ − ϕ)

and then by the Sard theorem we may assume that 0 is the regular value ϕ−ψ (we
will only need that the boundaries of the sets {ϕ < ψ} and {ψ < ϕ} have volume
zero). We will need the following comparison principle.

Proposition 6.5. If ϕ,ψ ∈ C(M) are admissible then
∫

{ψ<ϕ}
M(ϕ) ≤

∫

{ψ<ϕ}
M(ψ).
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Proof. It is a repetition of the proof for psh functions in domains in Cn (see [Ce,
p. 43]). For ε > 0 let ϕε := max{ϕ, ψ + ε}. Then ϕε = ψ + ε in a neighborhood of
the boundary of {ψ < ϕ} and by the Stokes theorem

∫

{ψ<ϕ}
M(ϕε) =

∫

{ψ<ϕ}
M(ψ).

But ϕε decreases to ϕ in {ψ < ϕ} as ε decreases to 0 and we get the result from
the weak convergence M(ϕε) →M(ϕ). ¤
Proof of Theorem 6.4, continued. Set δ := ||f − g||∞. We may assume that∫
{ψ<ϕ}(f + g)ωn ≤ V (otherwise replace ϕ with ψ). Then

∫

{ψ<ϕ}
fωn ≤ 1 + δ

2
V ≤ 3

4
V.

We can find h ∈ C∞(M) such that 0 < h ≤ C2,
∫

M
hωn = V and h ≥ f + 1/C3 in

{ψ < ϕ} (here we use the fact that the boundary of {ψ < ϕ} has volume zero, and
thus

∫
int{ψ≥ϕ} fωn ≥ V/4). Since ||f ||∞ is under control, we will get

h1/n ≥ f1/n + 1/C4 in {ψ < ϕ}.
By Theorem 1.3 there is an admissible ρ ∈ C∞(M) such that (ω + ddcρ)n = hωn

and −C5 ≤ ρ ≤ −C1.
Let a be such that 0 < a < maxM (ϕ− ψ). Then

∅ 6= {ψ < ϕ− a} ⊂ E := {ψ < (1− t)ϕ + tρ} ⊂ {ψ < ϕ},
where t = a/C5 ≤ 1. Using Proposition 6.5 and the concavity of (5.1) we get

∫

E

gωn ≥
∫

E

(
ω + (1− t)ddcϕ + tddcρ

)n ≥
∫

E

(
(1− t)f1/n + th1/n

)n

ωn

≥
∫

E

(
f1/n + t/C4

)n

ωn

≥
∫

E

fωn +
tn

Cn
4

vol (E).

On the other hand, we have g ≤ f + δ and therefore
∫

E

gωn ≤
∫

E

fωn + δvol (E).

Hence a ≤ C4C5δ
1/n and the estimate follows, since by (6.4)

osc
M

(ϕ− ψ) ≤ 3max
M

(ϕ− ψ). ¤

Note that in the proof of Theorem 6.4, contrary to Theorem 6.2, we have heavily
relied on Theorem 1.3 (in the construction of ρ).

From Theorems 1.3 and 4.1 we get the following regularity in the nondegenerate
(f > 0) and degenerate (f ≥ 0) case.

Theorem 6.6. Let ϕ ∈ C(M) be admissible and assume that M(ϕ) = fωn. Then
i) f ∈ C∞, f > 0 =⇒ ϕ ∈ C∞;
ii) f1/(n−1) ∈ C1,1 =⇒ ∆ϕ ∈ L∞ =⇒ ϕ ∈ C1,α, α < 1. ¤
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