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ABSTRACT

Some fully non-linear elliptic equations in differential geometry

Two types of fully non-linear elliptic equations are studied in this thesis.

For the first type, we study the existence of geodesics in the space of volume forms associated

with a real closed Riemannian manifold, which is a counterpart of the geodesic problem in the

space of Kähler potentials. We show the existence of C1,1 geodesics, provided that the sectional

curvature of the manifold is non-negative.

As for the second type, we study the Dirichlet problem for complex Hessian equations on

Hermitian manifolds with boundary. By establishing a priori estimates up to second order, we are

able to solve the equation in a Euclidean ball in Cn of radius small enough. Based on this, we

apply Perron envelope technique together with pluripotential theory to study the weak solutions

following Bedford-Taylor. We show the existence of a continuous solution to the Dirichlet problem

with the right hand side continuous, provided that there exists a subsolution and the Hermitian

metric is locally conformal Kähler.
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Chapter 1

Introduction

This thesis contains two parts. In each part we discuss some fully non-linear elliptic equations

related to problems from differential geometry. In the first part, we deal with geometric problems

in real Riemannian case, and the main result in Section 2.6 is a joint work with Z. B locki [13]. In

the second part, we deal with Hessian type equations in complex case, and the technical proof of

Theorem 1.0.2 in Section 3.4 is a joint work with N. C. Nguyen [44]. We introduce them separately

as follows.

1. Geodesics in the space of volume forms

It is well known that on any compact Kähler manifold, there is a natural infinite-dimensional

Riemannian manifold structure with a Weil-Peterson metric in the space of Kähler potentials

introduced by Mabuchi [69], Semmes [78] and Donaldson [32] separately. Moreover, this is a locally

symmetric metric space of non-positive curvature. In [78], Semmes pointed out that the geodesic

equation is equivalent to a homogeneous complex Monge-Ampère equation. In [32], Donaldson

further conjectured that this space is geodesically convex and is a metric space. In [23], Chen

proved that there always exist weak geodesics with bounded mixed complex derivatives, and

from which he concluded that this space is indeed a metric space.
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In [33], Donaldson introduced a corresponding situation in the case of real Riemannian man-

ifolds. Precisely, for a closed Riemannian manifold (Mm, g), he considered the space of volume

forms with fixed total volume. It seems natural since when M is 2-dimensional, it can be seen as a

complex manifold of complex dimension 1, and then these two programs coincide exactly. He has

also shown that this space admits an infinite-dimensional Riemannian manifold structure with

non-positive sectional curvature. He also asked whether there is a smooth geodesic connecting

any two points in this space. In fact, the existence of such geodesic segment is related to some

other problems in partial differential equations such as Nahm’s equations, regularity for some free

boundary problems.

The geodesic equation related to the space of volume forms was investigated by Chen and

He [24], where the authors applied similar strategy as in [23] by considering a perturbed equation.

They then proved that there exists a smooth and unique solution to this perturbed equation.

Based on this, they showed that this space is also a metric space. Actually, to solve the geodesic

equation, they established the a priori weak C2 estimates, that is, for the solution u, ∆u, utt, and

∇ut are bounded while boundedness of ∇2u remained open.

In Kähler setting, in general, for homogeneous complex Monge-Ampère equation, the solution,

if exists, is at most C1,1. So we may expect that Chen’s regularity result is close to optimal.

This is actually confirmed by Lempert, Vivas and Darvas in [27, 61], that is, they need not be

C2. In [11], B locki showed that these geodesics are of class C1,1, provided that the bisectional

curvature of the manifold is non-negative. Inspired by this, in the real setting, we show the main

result in the first part, obtained jointly with Z. B locki in [13].

Theorem 1.0.1. Let (Mm, g) be a closed Riemannian manifold with non-negative sectional cur-

vature. Then for any two points in the space of volume forms, there exists a unique C1,1 geodesic

segment connecting these two points.
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2. Complex Hessian equations on compact Hermitian manifolds with boundary

Let (M̄, α) be a compact Hermitian manifold with smooth boundary ∂M , of complex dimension

n. Denote M := M̄ \ ∂M . Let 1 ≤ m ≤ n be an integer. Fix a real (1, 1)-form χ on M̄ . For

a positive right-hand side f ∈ C∞(M̄) and a smooth boundary data ϕ ∈ C∞(∂M), the classical

Dirichlet problem for the complex Hessian equation is to find a real-valued function u ∈ C∞(M̄),

such that

(χ+ ddcu)m ∧ αn−m = fαn,

u = ϕ on ∂M,

(1.0.1)

where u is subjected to point-wise inequalities

(χ+ ddcu)k ∧ αn−k > 0, k = 1, ..,m. (1.0.2)

We first solve the equation in a small ball.

Theorem 1.0.2. Let M = B(z, δ) ⊂⊂ B(0, 1) be a Euclidean ball of radius δ in the unit ball

B(0, 1) ⊂ Cn. Assume that χ, α are smooth on B(0, 1). Then, the classical Dirichlet prob-

lem (1.0.1) is uniquely solvable for δ small enough, which depends only on χ, α.

A C2 real-valued function satisfying inequalities (1.0.2) is called (χ,m) − α-subharmonic.

These inequalities can be generalised to non-smooth functions to obtain the class of (χ,m) − α-

subharmonic functions on M . Locally, the convolution of a function in this class with a smooth

kernel, in general, will not belong to this class again. However, using the theorem above and an

adapted potential theory, we prove the approximation property.

Corollary 1.0.1. Any (χ,m) − α-subharmonic function on M is locally approximated by a de-

creasing sequence of smooth (χ,m)− α-subharmonic functions.

Following Bedford-Taylor [4, 5, 6] and Ko lodziej [55, 56, 57], the two results above allow us to

use Perron’s envelope together with pluripotential theory techniques to study weak solutions to

this equation with continuous right hand sides. A Hermitian metric α is called a locally conformal
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Kähler metric on M if at any given point on M , there exist a local chart Ω and a smooth real-

valued function G such that eGα is Kähler on Ω. This class of metrics is strictly larger than the

Kähler one, and not every Hermitian metric is locally conformal Käher (see e.g. [15]). Our main

result is

Theorem 1.0.3. Assume that α is locally conformal Kähler. Let 0 ≤ f ∈ C0(M̄) and ϕ ∈

C0(∂M). Assume that there is a C2-subsolution ρ, i.e., ρ satisfies inequalities (1.0.2) and

(χ+ ddcρ)m ∧ αn−m ≥ fαn in M̄, ρ = ϕ on ∂M.

Then, there exists a continuous solution to the Dirichlet problem (1.0.1) in pluripotential theory

sense.

When m = n we need not assume α is locally conformal Kähler. The Dirichlet problem for

the Monge-Ampère equation on compact Hermitian manifolds with boundary has been studied

extensively, in smooth category, by Cherrier-Hanani [25, 26], Guan-Li [41] and Guan-Sun [42].

Our theorem generalises the result in [41] to continuous datum.

When 1 < m < n and α = ddc|z|2 is the Euclidean metric the Dirichlet problem for the complex

Hessian equation in a domain in Cn has been studied by many authors [9, 22, 29, 62, 65, 67, 72].

To our best knowledge the classical Dirichlet problem (1.0.1) on a compact Hermitian (or Kähler)

manifold with boundary still remains open. The difficulty lies in the C1−estimate for a general

Hermitian metric α. Here we only obtain such an estimate in a small ball (Theorem 1.0.2).

Moreover, in our approach, the locally conformal Kähler assumption of α is needed to define the

complex Hessian operator of bounded functions (Section 3.2).

Motivations to study the Dirichlet problem for such equations come from recent developments

of fully non-linear elliptic equations on compact complex manifolds. First, it is natural to consider

this problem which has been raised in [80] after the complex Hessian equation was solved by

Dinew-Ko lodziej [30] on compact Kähler manifolds, and by Székelyhidi [80] and Zhang [88] on

compact Hermitian manifolds. Second, on compact Hermitian manifolds, it is strongly related
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to the elementary symmetric positive cone with which several types of equations associated were

studied by Székelyhidi-Tosatti-Weinkove [81], Tosatti-Weinkove [83, 84]. Our results may provide

some tools to study these cones. In the case when α is Kähler (χ may be not), the Hessian

type equations related to a Strominger system, which generalised Fu-Yau equations [37], have

been studied recently by Phong-Picard-Zhang [74, 75, 76]. Lastly, the viscosity solutions of fully

nonlinear elliptic equations on Riemannian and Hermitian manifolds have been also investigated by

Harvey and Lawson [48, 49] in a more general frame work, and the existence of continuous solutions

was proved under additional assumptions on the relation of the group structure of manifolds and

given equations.

5



Chapter 2

Geodesics in the space of volume

forms

Organisation. In Section 2.1, we provide some basic knowledge in differential geometry which

will be needed in the following sections. In Section 2.2, we review the geodesic problem in the

space of Kähler metrics and rewrite the proof of “interior C2 estimate” in B locki [11], so that we

can compare with the proof of the main result in Section 2.6. In Section 2.3, we introduce V,

i.e., the space of volume forms together with some properties mainly based on Donaldson [33].

In Section 2.4, we discuss the solvability of the Dirichlet problem associated to the existence of

geodesics in V following Chen and He [24]. In Section 2.5, we show that V is a metric space using

results in Section 2.4 following [24]. In Section 2.6, we improve the regularity of weak geodesics

in V under additional assumption that the sectional curvature of the manifold is non-negative.
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2.1 Preliminaries

2.1.1 Basics of Riemannian geometry

Let M be a connected closed Riemannian manifold of dimension m and g a Riemannian metric

on M , which is also denoted by an inner product 〈·, ·〉. Throughout this article ∇ denotes the

Levi-Civita connection (or covariant derivative) of (Mm, g), unless stated otherwise.

Let T be a (p, q)-tensor, that is, T ∈ ⊗p,qM = (⊗pTM) ⊗ (⊗qTM∗), and X,Z1, ..., Zq differ-

ential vector fields on M , then the covariant derivative of T is defined by

∇XT (Z1, ..., Zq) := ∇X(T (Z1, ..., Zq))−
q∑
i=1

T (Z1, ...,∇XZi, ..., Zq),

where each term is an element of ⊗pTM .

The covariant derivative can be considered as an operator

∇ : C∞(⊗p,qM)→ C∞(⊗p,q+1M),

where

∇T (X,Z1, ..., Zq) := ∇XT (Z1, ..., Zq).

In this way we may define inductively ∇2T,∇3T , etc. For example, the operator ∇2 is given

by

∇2T (X,Y, Z1, ..., Zq) = ∇X(∇T )(Y, Z1, ..., Zq)

= ∇X(∇Y T (Z1, ..., Zq))−∇∇XY T (Z1, ..., Zq)

−
q∑
i=1

∇Y T (Z1, ...,∇XZi, ..., Zq)

= ∇X∇Y T (Z1, ..., Zq)−∇∇XY T (Z1, ..., Zq).

The Riemann curvature tensor is defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

7



It satisfies the first Bianchi identity

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

The Ricci tensor Rc is the trace of the Riemann curvature tensor

Rc(Y, Z) := trace(X 7→ R(X,Y )Z).

Let e1, e2, ..., em be a local frame of vector fields on M . We denote gij = 〈ei, ej〉, (gij) = (gij)
−1,

that is, gijgjk = δik. The Christoffel symbols Γkij are defined by ∇eiej = Γkijek.

The components of the curvature tensor are defined by

R(ei, ej)ek := Rlijkel,

where Rlijk := glmRijkm, and Rijkm := 〈R(ei, ej)ek, em〉. The Riemann curvature tensor satisfies

some symmetric properties

Rijkl = −Rjikl = −Rijlk = Rklij .

And the components of the Ricci tensor are given by

Rjk := Rc(ej , ek) = gimRijkm.

The sectional curvature of a 2-plane P spanned by {ei, ej} is defined by

K(P ) := − 〈R(ei, ej)ei, ej〉
〈ei, ei〉〈ej , ej〉 − 〈ei, ej〉2

.

Notations

For a differential function f defined on M , ∇f denotes the gradient of f , which means that

〈∇f,X〉 = Xf , X ∈ TM , thus we can consider ∇f as a (0, 1)-tensor, and ∇2f denotes the

Hessian of f , which is given by ∇2f(ei, ej) = eiejf − Γkijekf . For simplicity, we denote the

covariant derivative of a differential function f as follows

fi = ∇if, fij = ∇2f(ej , ei), fijk = ∇3f(ek, ej , ei), etc.

8



In general, the commutation of covariant derivatives acting on tensors are expressed in terms

of the curvature. For the (p, q)-tensor T , we recall the standard commutation formulas:

∇2T (ei, ej , ek1
, ..., ekq ;ω

l1 , ..., ωlp)−∇2T (ej , ei, ek1
, ..., ekq ;ω

l1 , ..., ωlp)

=−
q∑

h=1

m∑
r=1

RrijkhT (ek1
, ..., ekh−1

, er, ekh+1
, ..., ekq ;ω

l1 , ..., ωlp)

+

p∑
h=1

m∑
r=1

RlhijrT (ek1
, ..., ekq ;ω

l1 , ..., ωlh−1 , ωr, ωlh+1 , ..., ωlp),

where {ωi}mi=1 is the dual of {ei}mi=1.

In particular, we have

fij = fji,

flkj − fljk = Rmkjlfm. (2.1.1)

Taking covariant derivative of (2.1.1) with respect to ei, we have

flkji − fljki = ∇ei(Rmkjlfm) = (∇eiR)mkjlfm +Rmkjlfmi. (2.1.2)

Also we have

fljki − fljik = Rmkijflm +Rmkilfmj . (2.1.3)

From (2.1.2) and (2.1.3) we have

flkji − fjilk = (∇eiR)mkjlfm +Rmkjlfmi +Rmkijflm +Rmkilfmj + (∇ekR)mlijfm +Rmlijfmk. (2.1.4)

2.1.2 Basics of Kähler geometry

Let M be a complex manifold of complex dimension n and by J : TM → TM denote its complex

structure. We fix a Hermitian metric g on M , i.e., g is compatible with J , such that

g(X,Y ) = g(JX, JY ), X, Y ∈ TM.

9



We can then define a real 2-form ω on M by

ω(X,Y ) := g(JX, Y ). (2.1.5)

Usually we call such an ω the Kähler form of g.

By TCM denote the complexification of TM and extend J , ω, and ∇(the unique Levi-Civita

connection determined by g) to TCM in a C-linear way. On a local coordinate chart if (z1, . . . , zn)

are complex analytic coordinates and zk = xk + iyk, here i =
√
−1, then (x1, y1, . . . , xn, yn) define

real coordinates on this chart, and the complex structure is given by J( ∂
∂xk

) = ∂
∂yk

, J( ∂
∂yk

) =

− ∂
∂xk

.

For simplicity, set

∂j :=
∂

∂zj
=

1

2
(
∂

∂xj
− i ∂

∂yj
), ∂j̄ :=

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
), 1 ≤ j ≤ n.

It is easy to see that the complexified tangent space TCM splits into conjugate complex subspaces

T 1,0M ⊕ T 0,1M associated to the eigenvalues i and −i with respect to J ,

J(∂j) = i∂j , J(∂j̄) = −i∂j̄ .

Set

gjk̄ := g(∂j , ∂k̄)
(

= g(∂k̄, ∂j)
)
.

Then gjk̄ = gkj̄ and g(∂j , ∂k) = g(∂j̄ , ∂k̄) = 0.

By (2.1.5), we have

ω = i
∑
j,k

gjk̄dzj ∧ dz̄k,

which is a real form of type (1,1).

The following lemma is well known.

Lemma 2.1.1. For a Hermitian metric g on M , the following are equivalent

(1) ∇J = 0;

10



(2) dω = 0;

(3) ω = i∂∂̄g locally for some smooth real-valued function g.

Proof. (1)⇔(2): By definition,

dω(X,Y, Z) =∇Xω(Y,Z)−∇Y ω(X,Z) +∇Zω(X,Y )

=Xω(Y, Z) + Y ω(Z,X) + Zω(X,Y )− ω([X,Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ).

Since ω(·, ·) = g(J ·, ·), we deduce from above that

dω(X,Y, Z) = g((∇XJ)Y,Z) + g((∇Y J)Z,X) + g((∇ZJ)X,Y ).

Using the facts that

J2 = −I, and g(J ·, ·) + g(·, J ·) = 0,

we have

dω(JX, Y, Z) + dω(X,JY, Z)

=2g((∇ZJ)X, JY ) + g((∇XJ)JY − (∇Y J)JX + (∇JXJ)Y − (∇JY J)X,Z)

=2g((∇ZJ)X, JY )− g(N(X,Y ), Z),

where N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] is the Nijenhuis tensor. Here M is

complex, thus J is integrable, i.e. N(X,Y ) vanishes. It follows that if dω = 0, then ∇J = 0, and

viceversa.

(2)⇔(3): Since (3)⇒(2) is obvious, we only need to show (2)⇒(3). By dω = 0, locally there

is a real 1-form γ such that ω = dγ. We may write γ = α + ᾱ, where α is a (1, 0)-form. Then

ω = ∂α+∂ᾱ+∂̄α+∂̄ᾱ. It follows that ∂α = ∂̄ᾱ = 0 since ω is a (1, 1)-form. Therefore locally there

is a smooth complex-valued function f such that α = ∂f , which implies that ω = i∂∂̄(−2Im f).

We can thus take g = −2Im f .

We call g a Kähler metric and (M, g) a Kähler manifold if g satisfies equivalent conditions in

Lemma 2.1.1. From now on we assume that (M, g) is a Kähler manifold unless otherwise stated.

11



Christoffel symbols

As in the real case, we define the Christoffel symbols Γkij by

∇∂j∂k = Γljk∂l + Γl̄jk∂l̄,

and

∇∂j∂k̄ = Γljk̄∂l + Γl̄jk̄∂l̄.

Since ∇J = 0, we have i∇∂j∂k = ∇∂j (J∂k) = J∇∂j∂k, it follows that Γl̄jk = 0. Similarly,

Γl
jk̄

= Γl̄
jk̄

= 0, so the only possible non-zero terms are Γkij and Γk̄
īj̄

= Γkij . Moreover,

∂gjk̄
∂zi

=
∂

∂zi
g(∂j , ∂k̄) = g(∇∂i∂j , ∂k̄) = Γlijglk̄,

and hence

Γlij = glk̄
∂gjk̄
∂zi

= glk̄
∂gik̄
∂zj

,

where glk̄ is determined by gjp̄gkp̄ = δjk.

(Symplectic) gradient

Let φ, ψ be any two differential real-valued function φ on M . Recall the gradient ∇φ is defined

by the relation 〈∇φ,X〉 = Xφ, X ∈ TM . Therefore, in local coordinates,

∇φ = gjk̄(φk̄∂j + φj∂k̄), and |∇φ|2 = 2gjk̄φjφk̄,

where φj = ∂φ
∂zj

, φk̄ = ∂φ
∂z̄k

. The symplectic gradient of φ, say gradωφ, with respect to the form

ω is defined by the relation ω(gradωφ,X) = −Xφ, X ∈ TM . It is easy to see that gradωφ = J∇φ.

In particular, the vector field gradωφ is Hamiltonian, i.e. the 1-form igradωφω := ω(gradωφ, ·)

is exact, since igradωφω = −dφ.

The Poisson bracket is defined by

{φ, ψ}ωn := ndφ ∧ dψ ∧ ωn−1.

Equivalently, {φ, ψ} = ω(gradωφ, gradωψ). Actually, the correspondence φ 7→ gradωφ is a Lie

algebra homomorphism since gradω({φ, ψ}) = [gradωφ, gradωψ].
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Curvature of Kähler metrics

The Riemannian curvature tensor can also be extended in a C-linear way to TCM . Since ∇J = 0,

we have

R(X,Y )JZ = JR(X,Y )Z,

thus by definition,

R(X,Y, JZ, JW ) = R(X,Y, Z,W ),

from which we can deduce that R(X,Y, Z,W ) = 0 unless Z and W are of different type. In local

coordinates (z1, . . . , zn), this means that the only possible non-zero terms are

Rij̄kl̄ := R(∂i, ∂j̄ , ∂k, ∂l̄).

By definition, we compute

Rij̄kl̄ = g(−∇∂j̄∇∂i∂k, ∂l̄) = −
∂2gij̄
∂zk∂z̄l

+ gst̄
∂gsj̄
∂zk

∂git̄
∂z̄l

.

The curvature tensor is an obstruction for the commuting of covariant differentiations, but when

we apply covariant differentiation successively with respect to two indices without bar, we can

interchange these two indices. The same principle applies when the two indices have a bar at the

same time. We shall use this fact in the next section.

Let e1, . . . , e2n be a local orthonormal basis of TM such that Jei = en+i for 1 ≤ i ≤ n and

set uk = 1√
2
(ek − iJek), then {uk} is a unitary basis of TCM . Recall the Ricci curvature tensor is

defined by

Rc(X,Y ) =

2n∑
i=1

R(ei, X, Y, ei).

It is easy to see that

Rc(JX, JY ) =

2n∑
i=1

R(ei, JX, JY, ei) =

2n∑
i=1

R(Jei, X, Y, Jei) = Rc(X,Y ),

13



therefore, Rc(X,Y ) = 0 unless X and Y are of different type. Moreover,

Rc(uk, ūl) =

2n∑
i=1

R(ei, uk, ūl, ei)

=

n∑
i=1

R(
ui + ūi√

2
, uk, ūl,

ui + ūi√
2

) +

n∑
i=1

R(
ūi − ui√

2i
, uk, ūl,

ūi − ui√
2i

)

=

n∑
i=1

R(ūi, uk, ūl, ui) =

n∑
i=1

R(ui, ūi, uk, ūl),

where we use the first Bianchi identity in the last equality. So in local complex coordinates we

have a nice expression for the Ricci tensor,

Rkl̄ := Rc(∂k, ∂l̄) = gij̄Rij̄kl̄ = −
∂2 log det(gij̄)

∂zk∂z̄l
.

Recall that if |X| = |Y | = 1 and X is perpendicular to Y , then R(X,Y, Y,X) is the sectional

curvature of the plane spanned by {X,Y }. Set now

U =
1√
2

(X − iJX), V =
1√
2

(Y − iJY ),

so that |U | = |V | = 1 and U, V ∈ T 1,0M , then

Definition 2.1.1. The bisectional curvature is defined to be

B(U, V ) := R(U, Ū , V, V̄ ) = R(X,Y, Y,X) +R(X, JY, JY,X).

2.2 C1,1 geodesics in Kähler case when bisectional curvature

is non-negative

2.2.1 The space of Kähler metrics and the related geodesic problem

The Riemannian structure

Before introducing the space of volume forms, we would like to make a brief review on the space

of Kähler metrics, somehow we can compare with each other. The space of Kähler metrics plays
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an important role in the study of Kähler geometry. There are some other interesting properties

of this space not listed here, see B locki [12] for a survey.

Let (M, g) be a compact Kähler manifold of complex dimension n with the associated Kähler

form ω. We consider the space of Kähler potentials with respect to ω, that is

H := {φ ∈ C∞(M,R) | ωφ := ω + i∂∂̄φ > 0}.

We can treat H as an open subset of C∞(M,R) with topology of uniform convergence of all partial

derivatives and differential structure defined by the relation C∞(U,C∞(M,R)) = C∞(M × U,R)

for any region U ⊂ Rm.

By “∂∂̄-lemma”, two Käher potentials define the same metric if (and only if) they differ by an

additive constant, which means that

H0 := {ωφ = ω + i∂∂̄φ | φ ∈ H} = H/R,

where R acts on H by addition. The set H0 is therefore the space of Kähler metrics in the

cohomology class {ω} ∈ H1,1(M,R).

For φ ∈ H we can associate the tangent space TφH with C∞(M,R). Mabuchi [69] introduced

a Riemannian structure on H as follows

〈〈ψ, η〉〉φ :=
1

V

∫
M

ψηωnφ , ψ, η ∈ TφH,

where V :=
∫
M
ωn. For a smooth curve φ(t) : [0, 1]→ H

(
which is an element of C∞(M×[0, 1],R)

)
,

the length is given by

l(φ) :=

∫ 1

0

〈〈φ̇, φ̇〉〉
1
2

φt
dt,

where φ̇ = ∂φ
∂t . One can check that the Riemannian structure on H gives the following Levi-Civita

connection: for a smooth vector field ψ along φ
(
which is also an element of C∞(M × [0, 1],R)

)
,

we have

Dφ̇ψ = ψ̇ − 1

2
〈∇ψ,∇φ̇〉ωφ ,
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where the gradient ∇, the metric 〈·, ·〉 are taken with respect to ωφ.

Now consider a 2-parameters family φ(s, t) ∈ H and a vector field ψ(s, t) ∈ C∞(M,R) along

φ. It is easy to see that the connection on H is torsion free, so the curvature tensor is given by

R(φs, φt)ψ = (DφsDφt −DφtDφs)ψ.

Proposition 2.2.1 (Mabuchi [69], Donaldson [32]). The curvature tensor on H can be expressed

as

R(φs, φt)ψ =
1

4
{{φs, φt}, ψ}.

In particular,

〈〈R(φs, φt)φs, φt〉〉φ =
1

4
||{φs, φt}||2φ,

which implies that Kφs,φt ≤ 0. Moreover, the covariant derivative DR = 0, which implies that H

is a locally symmetric space.

Proof. We compute directly

DφsDφtψ = ψst +
∂

∂s
(−1

2
〈∇φt,∇ψ〉)−

1

2
〈∇φs,∇ψt〉+

1

4
〈∇φs,∇〈∇φt,∇ψ〉〉.

Since

∂

∂s
〈∇φt,∇ψ〉 = 〈∇φts,∇ψ〉+ 〈∇φt,∇ψs〉 − i∂∂̄φs(∇φt, J∇ψ),

and

2i∂∂̄φs(∇φt, J∇ψ) =∇2φs(∇φt,∇ψ) +∇2φs(J∇φt, J∇ψ)

=−∇2ψ(∇φs,∇φt) + 〈∇φt,∇〈∇φs,∇ψ〉〉 − ω(∇JφtJ∇φs, J∇ψ).

Therefore

DφsDφtψ =ψst −
1

2
〈∇φts,∇ψ〉 −

1

2
〈∇φt,∇ψs〉 −

1

2
〈∇φs,∇ψt〉 −

1

4
∇2ψ(∇φs,∇φt)

+
1

4
〈∇φt,∇〈∇φs,∇ψ〉〉+

1

4
〈∇φs,∇〈∇φt,∇ψ〉〉 −

1

4
ω(∇JφtJ∇φs, J∇ψ).
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Then

R(φs, φt)ψ =(DφsDφt −DφtDφs)ψ

=
1

4
ω(∇JφsJ∇φt, J∇ψ)− 1

4
ω(∇JφtJ∇φs, J∇ψ)

=
1

4
ω([gradωφs, gradωφt], gradωψ) =

1

4
{{φs, φt}, ψ}.

At last, DR = 0 follows from the expression of the curvature tensor and the fact that the

covariant derivative is compatible with the Poisson bracket, that is,

Dη{η1, η2} = {Dηη1, η2}+ {η1, Dηη2}, η, η1, η2 ∈ TH.

The decomposition of H

Each tangent space TφH admits the following orthogonal decomposition

TφH = {ψ ∈ C∞(M,R) |
∫
M

ψωnφ = 0} ⊕ R.

This gives a 1-form α on H given by

αφ(ψ) =
1

V

∫
M

ψωnφ ,

which is closed, indeed,

dαφ(ψ1, ψ2) = d(αφ(ψ1))φ(ψ2)−d(αφ(ψ2))φ(ψ1) =
n

V

∫
M

(ψ1i∂∂̄ψ2∧ωn−1
φ −ψ2i∂∂̄ψ1∧ωn−1

φ ) = 0.

Since H is convex, dα = 0 implies that there exists a functional I, often called Aubin-Yau func-

tional, such that dI = α and I(0) = 0.

Proposition 2.2.2 (Aubin [2]). The functional I can be expressed explicitly as

I(φ) =
1

n+ 1

n∑
p=0

1

V

∫
M

φωpφ ∧ ω
n−p, φ ∈ H.
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Obviously, we have

I(φ+ c) = I(φ) + c, c ∈ R,

d2

dt2
I (φ) =

d

dt
〈〈φ̇, 1〉〉φ = 〈〈∇φ̇φ̇, 1〉〉φ,

which implies that I−1(0) is a totally geodesic space of H. Since any Kähler metric in H0 has

a unique Kähler potential in I−1(0), the restriction of the Mabuchi metric to I−1(0) induces a

Riemannian structure on H0. Thus there is a Riemannian decomposition H = H0 × R.

The Dirichlet problem for the geodesic equation

Donaldson [32] outlined a strategy to relate the geometry of H to the existence problems of special

Kähler metrics and proposed several conjectures, the most fundamental one among which is the

so called geodesic conjecture: any two points in H can be joined by a smooth geodesic.

A curve φ in H is a geodesic if Dφ̇φ̇ = 0, that is

φ̈− 1

2
|∇φ̇|2ωφ = 0. (2.2.1)

Writing locally u = g + φ, since g is independent of t, we can rewrite the equation (2.2.1) as

ü− ujk̄u̇j u̇k̄ = 0.

Multiplying both sides by det(uij̄), which is non-vanishing, we arrive at a new equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u11̄ . . . u1n̄ u1t

...
. . .

...
...

un1̄ . . . unn̄ unt

ut1̄ . . . utn̄ utt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This suggests to complexify the variable t by adding an imaginary variable, i.e., we extend φ on

M×[0, 1] to M×S by φ(·, ζ) := φ(·, Re ζ), where S := {ζ ∈ C : 0 ≤ Re ζ ≤ 1}, then φ is a geodesic

if and only if φ defined on M × S satisfies the following homogeneous complex Monge-Ampère

equation

(ω + i∂∂̄M×Sφ)n+1 = 0.
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We thus have obtained the following characterization of geodesics in H:

Proposition 2.2.3 (Semmes [78], Donaldson [32]). For φ0, φ1 ∈ H, the existence of a geodesic

connecting these two points is equivalent to solving the following Dirichlet problem:

φ ∈ C∞(M × S,R),

ω + i∂∂̄φ(·, ζ) > 0, 0 ≤ Re ζ ≤ 1,

(ω + i∂∂̄M×Sφ)n+1 = 0,

φ(·, ζ) = φj , Re ζ = j, j = 0, 1.

(2.2.2)

The uniqueness of (2.2.2) is a direct consequence of a general comparison principle for the

generalized solutions given by the Bedford-Taylor theory [4, 5], see also B locki [8]. In one dimen-

sion, Monge-Ampère equation is just Laplacian equation, so the regularity of solutions is clear.

However, in higher dimensions, one cannot expect C∞-regularity of solutions of homogeneous

Monge-Ampère equation. This can be seen from the following simple example.

Example 2.2.1 (Gamelin and Sibony [38]). Let B ⊂ C2 be the open unit ball centered at the

origin. For (z, w) ∈ B, define

u(z, w) :=
(

max{0, |z|2 − 1

2
, |w|2 − 1

2
}
)2
.

Then u is a plurisubharmonic function on B. Observe that if (z, w) ∈ B then either |z|2 < 1/2 or

|w|2 < 1/2, in each case u depends only on one variable hence it is maximal, which means that

(i∂∂̄u)2 = 0 in pluripotential sense. Note that u is smooth on ∂B, since for (z, w) ∈ ∂B,

u(z, w) = (|z|2 − 1

2
)2 = (|w|2 − 1

2
)2.

But u /∈ C2(B). Since when |z|2 ≥ 1/2, u(z, w) = (|z|2 − 1/2)2, and uz = 2(|z|2 − 1/2)z̄, it is

obvious that uz is only Lipschitz near the line |z|2 = 1/2.

In [34], Donaldson studied the case when S is replaced by a unit disk in C using the so called

Monge-Ampère foliation [3]. He gave an example showing that there exist smooth boundary data
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for which there does not exist a smooth solution. Also using the foliation method, Lempert-

Vivas [61] constructed smooth boundary data for which the solution of (2.2.2) fails to be smooth,

so that disproved Donaldson’s geodesic conjecture, see also later work by Darvas-Lempert [27].

However, Chen [23] showed that any φ0, φ1 ∈ H can be joined by a weak geodesic whose

mixed complex derivatives are bounded. This is recently improved somehow by He [51] where he

assumed the boundary condition not necessarily smooth. Here “weak” means that ωφ ≥ 0 instead

of ωφ > 0. His idea is considering approximations of geodesics, sometimes called ε-geodesics, i.e.

(φ̈− 1

2
|∇φ̇|2ωφ)ωnφ = εωn,

where ε > 0 is a small constant. This perturbed equation is then non-degenerate. As shown by

Chen [23], smooth ε-geodesics always exist, which is a key step to show that H is a metric space.

He actually established the a priori weak C2 estimates(that is, ∆φ, ∇φ̇ and φ̈ are bounded while

it might not be fully C1,1) of the solutions independent of inf ε.

As explained before, the existence problem of ε-geodesic is equivalent to solving the following

modification of the Dirichlet problem (2.2.2),

φ ∈ C∞(M × S,R),

ω + i∂∂̄φ(·, ζ) > 0, 0 ≤ Re ζ ≤ 1,

(ω + i∂∂̄M×Sφ)n+1 = ε(ω + i∂∂̄|ζ|2)n+1,

φ(·, ζ) = φj , Re ζ = j, j = 0, 1.

(2.2.3)

Although ω is degenerate on M × S, we can write

ω + i∂∂̄φ = (ω + i∂∂̄|ζ|2) + i∂∂̄(φ− |ζ|2),

so that ω̃ := ω+i∂∂̄|ζ|2 is a Kähler form on M×S and consider the related equation with solution

φ̃ := φ− |ζ|2. For convenience, we still denote ω̃ as ω, and φ̃ as φ when there is no confusion.

Now we can consider a more general Dirichlet problem. We assume that M is a compact

complex manifold with smooth boundary with a Kähler form ω. Take f ∈ C∞(M,R), f > 0, and
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ψ ∈ C∞(∂M,R), we look for φ satisfying



φ ∈ C∞(M,R),

ω + i∂∂̄φ > 0,

(ω + i∂∂̄φ)n = fωn,

φ = ψ, on ∂M.

(2.2.4)

Theorem 2.2.1. If (M,ω) is a compact Kähler manifold with smooth nonempty boundary. Let

0 < f ∈ C∞(M,R) and ψ ∈ C∞(∂M,R). Assume that there is a smooth subsolution ρ, i.e., ρ

satisfies ω + i∂∂̄ρ > 0 and

(ω + i∂∂̄ρ)n ≥ fωn in M, ρ = ψ on ∂M.

Then there exists a unique solution to the Dirichlet problem (2.2.4).

The proof of this theorem is reduced to establish the a priori estimates of the solutions up to

the second order. It is a combination of the results proved in several papers [1, 87, 17, 39, 23, 11].

For bounded strictly pseudoconvex domains in Cn, this was proved in [17], and in [39] without the

assumption of strict pseudoconvexity. To our situation, most estimates from these papers carry on

without much change except two exceptions: interior gradient estimate and interior C2-estimate.

As for the gradient estimate, one can either use the blowing-up analysis from [23](then one has to

consider the C2-estimate first), or we can apply a direct approach following B locki [10], see also

Hanani [46]. We will discuss the interior C2-estimate in the next subsection.

2.2.2 Interior C2-estimate

The interior C2-estimate for the mixed complex derivatives was shown independently by Aubin [1]

and Yau [87]. The following theorem will let us apply the real Evans-Krylov theory directly without

reproving its complex version.
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Theorem 2.2.2 ([11]). If φ satisfies the equation (2.2.4), then

|∇2φ| ≤ C, (2.2.5)

where C is a constant depending only on n, upper bounds for |R|, |∇R|, |φ|, |∇φ|, ∆φ, sup∂M |∇2φ|,

||f1/n||C1,1(M), |∇f1/2n| and on a lower positive bound for f . If M has a non-negative bisectional

curvature, then the estimate is independent of inf f .

Proof. It suffices to estimate the eigenvalues of the mapping

TM 3 X 7−→ ∇X∇φ.

Since their sum is bounded from below (by −n), it is enough to get an upper bound of the maximal

eigenvalue of this mapping. We define a function on M as follows

α := max
X∈TM, |X|=1

〈∇X∇φ,X〉+
|∇φ|2

2
−Aφ,

where A is a constant to be determined later. Clearly, to prove the estimate (2.2.5), it suffices to

bound α from above.

We assume that α attains maximum at an interior point x0 ∈M \∂M , otherwise we are done.

Our calculations will always be carried out at the point x0, unless otherwise indicated. Let

e1, . . . , e2n ∈ TM be an orthonormal local frame of vector fields near x0 which is normal at x0,

such that Jei = en+i for 1 ≤ i ≤ n. Set ζk := 1√
2
(ek − iJek), then {ζk} is a unitary basis of TCM .

The subscripts of a function h will always denote the covariant derivatives of h with respect to ω.

For simplicity, set

hi := hζi = ∇ζih, hij̄ := hζiζ̄j = ∇2h(ζ̄j , ζi), hij̄l := hζiζ̄jζl = ∇3h(ζl, ζ̄j , ζi), etc.

Let us bear in mind that covariant differentiating the metric tensor always equals zero.

Without loss of generality, we may assume that at x0,

max
X∈TM, |X|=1

〈∇X∇φ,X〉 = φe1e1 ,
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and φe1e1 > 0, otherwise we are done. Note that φe1e1 is a well-defined function in a small

neighborhood of x0, and if we define

ᾱ := φe1e1 +
|∇φ|2

2
−Aφ,

near x0, then

ᾱ ≤ α ≤ α(x0) = ᾱ(x0),

which means that ᾱ also has a maximum at x0 in a small neighborhood, in particular, ᾱ is smooth.

And it remains to estimate ᾱ(x0) from above.

Following Section 3 in Guan [40], we can show that φe1ej (x0) = 0, for j ≥ 2. So we can also

adjust the local frame so that the matrix (φjk̄) is diagonal at x0.

Set u := g + φ, then the equation (2.2.4) is rephrased as

det(upq̄) = f det(gpq̄).

We rewrite this equation as

F (∇2u) := log det(upq̄) = log
(
f det(gpq̄)

)
. (2.2.6)

Denote the linearized operator at u of F by

L(h) = upq̄hpq̄,

which is elliptic since u is strictly plurisubharmonic.

Taking covariant derivatives of (2.2.6) twice, we have

upp̄φpp̄X = (log f)X , X ∈ TCM, (2.2.7)

upp̄φpp̄e1e1 = upp̄uqq̄|φpq̄e1 |2 + (log f)e1e1 ≥ (log f)e1e1 .

Here we use the facts that (upp̄)X = upp̄X , and (upp̄)XX = upp̄XX at x0, see the proof of Theo-

rem 1.0.1 or Guan [40] for the details.

23



Using the commutation formular (2.1.4),

φe1e1pp̄ − φpp̄e1e1 =
1

2
(φe1e1epep + φe1e1en+pen+p

− φepepe1e1 − φen+pen+pe1e1)

=Re1epepe1(φe1e1 − φepep) +Re1en+pen+pe1(φe1e1 − φen+pen+p
) + C(|∇R|, |∇φ|)

≥B(ζ1, ζp)φe1e1 − C(|R|)φpp̄ − C(|∇R|, |∇φ|).

So we have

L(φe1e1) =upq̄(φe1e1)pq̄ = upp̄φe1e1pp̄

≥(log f)e1e1 +
∑
p

B(ζ1, ζp)φe1e1
upp̄

− C(|R|)
∑
p

φpp̄
upp̄
− C(|∇R|, |∇φ|)

∑
p

1

upp̄
. (2.2.8)

Since

1

n
(log f)e1e1 = (log f

1
n )e1e1 =

1

f
1
n

(
(f

1
n )e1e1 − 4|(f 1

2n )e1 |2
)
≥ −C(||f1/n||C1,1(M), |∇f1/2n|) 1

f
1
n

,

and ∑
p

1

upp̄
≥ n

(
∏
p upp̄)

1
n

=
n

f
1
n

,

inserting these inequalities into (2.2.8), finally we have

L(φe1e1) ≥
∑
p

B(ζ1, ζp)φe1e1
upp̄

− C1

∑
p

φpp̄
upp̄
− C2

∑
p

1

upp̄
,

where C1 = C(|R|), C2 = C(|∇R|, |∇φ|, ||f1/n||C1,1(M), |∇f1/2n|) are under control.

Next we estimate L( |∇φ|
2

2 ). First we compute directly

|∇φ|2

2
= gjk̄φjφk̄,

(
|∇φ|2

2
)p = gjk̄φjpφk̄ + gjk̄φjφpk̄,

(
|∇φ|2

2
)pp̄ =gjk̄φjpp̄φk̄ + gjk̄φjpφk̄p̄ + gjk̄φjp̄φpk̄ + gjk̄φjφpk̄p̄,

=
∑
j

|φjp|2 + |φpp̄|2 +
∑
j

φpp̄j̄φj +
∑
j

φpp̄jφj̄ +
∑
j,q

Rjp̄pq̄φqφj̄ .
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Then

L(
|∇φ|2

2
) =

∑
j,p

|φjp|2

upp̄
+
∑
p

|φpp̄|2

upp̄
+ 2Re

∑
j,p

φpp̄j̄φj

upp̄
+
∑
j,q,p

Rjp̄pq̄φqφj̄
upp̄

≥
∑
j,p

|φjp|2

upp̄
+
∑
p

|φpp̄|2

upp̄
− C3

∑
p

1

upp̄
,

where we use the equation (2.2.7) and C3 = C(|R|, |∇φ|, ||f1/n||C1,1(M)) is under control.

Therefore, we obtain at x0,

0 ≥ L(ᾱ) ≥
∑
j,p

|φjp|2

upp̄
+ φe1e1

∑
p

B(ζ1, ζp)

upp̄
+
∑
p

|φpp̄|2

upp̄
− C1

∑
p

φpp̄
upp̄
− C4

∑
p

1

upp̄
+A

∑
p

1

upp̄
−An

≥
∑
j,p

|φjp|2

upp̄
+ φe1e1

∑
p

B(ζ1, ζp)

upp̄
− C5

∑
p

1

upp̄
+A

∑
p

1

upp̄
−An,

where C5 = C(|R|, |∇R|, |∇φ|, sup ∆φ, ||f1/n||C1,1(M), |∇f1/2n|). Since

∑
j,p

|φjp|2

upp̄
≥
φ2
e1e1

C6
− C7

∑
p

1

upp̄
,

where we use that upp̄ is bounded from above. It follows that at x0,

0 ≥
φ2
e1e1

C6
+ φe1e1

∑
p

B(ζ1, ζp)

upp̄
− C8

∑
p

1

upp̄
+A

∑
p

1

upp̄
−An.

Now we are ready to get the estimate (2.2.5). When there is a positive lower bound for f , then∑
p

1
upp̄

is bounded from above (note that we only have a lower bound for
∑
p

1
upp̄

depending on

sup f), we just take A = 0, then we get an upper bound for φe1e1 .

In the special case when the bisectional curvature of M is non-negative, we drop the terms in-

volved with bisectional curvature. We take A = C8, then we get the estimate which is independent

of the lower bound for f .

At last, we turn to the geodesic problem in the space of Kähler metrics. As explained be-

fore, the geodesic equation is covered by the more general equation (2.2.4). Moreover, in the

geodesic equation case, ∂M is flat, that is, near every boundary point, after a holomorphic change

of coordinates, the boundary is of the form {Re zn = 0}. This condition will ensure that the
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C2 boundary estimate is independent of the lower bound for f , see Theorem 3.2’ in [11]. Com-

bined with Theorem 2.2.5, this leads to the C1,1 regularity of geodesics in Kähler case when the

bisectional curvature is non-negative.

2.3 The space of volume forms

Let (M, g) be a connected compact Riemannian manifold of dimension m with the Riemannian

metric g. By a volume form on M we mean a differential form of degree m, positive everywhere.

In local coordinates (x1, x2, . . . , xm), such a volume form σ takes the form:

σ = f(x)dx, where dx = dx1 ∧ dx2 ∧ · · · ∧ dxm, f is positive and smooth.

Also we can write the Riemannian metric g as follows:

g =
∑
i,j

gijdxi ⊗ dxj .

There is a canonical volume form dg coming from this metric g:

dg :=
√
det(gij)dx1 ∧ dx2 ∧ · · · ∧ dxm,

where det(gij) refers to the determinant of the m×m matrix (gij).

Now let us define V0 as the space of volume forms, which consists of the volume forms on

(M, g) with fixed total volume V ol :=
∫
M
dg. Since M is closed, this space can be expressed as:

V0 := {(1 + ∆φ)dg | φ ∈ C∞(M,R), 1 + ∆φ > 0},

where ∆ is the Laplacian operator with respect to g. By this expression, every element in V0 is

determined by some “potential” function up to a constant. So we can define another space V of

such “potential” functions for the volume forms:

V := {φ ∈ C∞(M,R) | 1 + ∆φ > 0}.
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As we just explained, we can get

V0 = V/R,

where R acts on V by addition.

We review in this section some well known facts about the Riemannian structure of this space

V, as introduced by Donaldson in [33].

2.3.1 The Riemannian structure

We can observe from the definition of V that V is an open subset of C∞(M,R) and thus V has a

structure of an infinite dimensional differential manifold. Moreover, fix a point φ0 in V, we can

identify C∞(M,R) with the tangent space Tφ0V of V at φ0 via the following isomorphism:

C∞(M,R) ∼= Tφ0V

ψ ↔ d

ds
|s=0(φ0 + sψ),

where s ∈ [−ε, ε] 7→ φ0 + sψ ∈ V is a smooth path in V with a sufficiently small ε > 0.

Definition 2.3.1. In [33], Donaldson defined a Weil-Peterson type metric on Tφ0
V as follows:

〈〈ψ, η〉〉φ0
:=

1

V ol

∫
M

ψη(1 + ∆φ0)dg, ψ, η ∈ Tφ0
V.

In terms of this, the norm of a tangent vector ψ ∈ Tφ0
V is given by:

‖ψ‖2φ0
:= 〈〈ψ,ψ〉〉φ0

=
1

V ol

∫
M

ψ2(1 + ∆φ0)dg.

Given a smooth path φ(t) : [0, 1] → V, which is simply a smooth function on M × [0, 1], the

“energy” of this path is:

E(φ(t)) :=
1

2

∫ 1

0

‖φ̇‖2φ(t)dt =
1

2V ol

∫ 1

0

∫
M

|φ̇|2(1 + ∆φ)dgdt, (2.3.1)

where we denote φ̇ = dφ
dt , φ̈ = d2φ

dt2 and so on.
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Geodesics between two points φ0, φ1 in V are defined as the extremals of the energy functional:

φ 7→ E(φ),

where φ = φ(t) is a path joining φ0 and φ1. The geodesic equation is thus obtained by computing

the Euler-Lagrange equation associated to the energy functional (2.3.1) with fixed end points.

Lemma 2.3.1. The geodesic equation is:

φ̈(1 + ∆φ)− |∇φ̇|2 = 0, (2.3.2)

where ∆, ∇ are with respect to the metric g.

Proof. Let ψ(t) be a small variation with end points vanished, then

d

ds
|s=0E(φ(t) + sψ(t))

=
1

2V ol

∫ 1

0

∫
M

(2φ̇ψ̇(1 + ∆φ) + |φ̇|2∆ψ)dgdt

=
1

2V ol

∫ 1

0

∫
M

(ψ(−2
d

dt
(φ̇(1 + ∆φ)) + ∆(|φ̇|2)ψ)dgdt

=
1

2V ol

∫ 1

0

∫
M

ψ(−2φ̈(1 + ∆φ)− 2φ̇∆φ̇+ (2φ̇∆φ̇+ 2|∇φ̇|2))dgdt

=
1

2V ol

∫ 1

0

∫
M

ψ(−2φ̈(1 + ∆φ) + 2|∇φ̇|2)dgdt

where we use integration by parts in the second equality and |∇φ̇| means the norm of gradient of

function φ̇ with respect to the metric g. Since the variation can be taken arbitrary, the geodesic

equation is:

φ̈(1 + ∆φ)− |∇φ̇|2 = 0.

Remark 2.3.2. When M is 2-dimensional and orientable, M is a Riemann surface and thus

Kähler. Then the geodesic equation (2.3.2) coincides with a Homogeneous Complex Monge-

Ampère equation. Indeed, we can extend φ on M × [0, 1] to M × {z ∈ C : 0 ≤ Re z ≤ 1} by

φ(·, z) := φ(·, Re z) and the Kähler form ω with respect to g can also be generalized since it
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only depends in the Manifold direction. Simple computation shows that the equation (2.3.2) is

equivalent to:

(ω + i∂∂̄φ)2 = 0.

For a vector field ψ(t) along the path φ(t), which is just an element of C∞(M × [0, 1],R), now

we want to define the “Levi-Civita” covariant derivative Dφ̇ψ of ψ along φ such that:

d

dt
〈〈ψ, η〉〉φ = 〈〈Dφ̇ψ, η〉〉φ + 〈〈ψ,Dφ̇η〉〉φ, (2.3.3)

where η is another vector field along φ.

We compute

d

dt
〈〈ψ, η〉〉φ =

d

dt
(

1

V ol

∫
M

ψη(1 + ∆φ)dg)

=
1

V ol

∫
M

((ψ̇η + ψη̇)(1 + ∆φ) + ψη∆φ̇)dg

=
1

V ol

∫
M

((ψ̇η + ψη̇)(1 + ∆φ)− 〈∇ψ,∇φ̇〉η − 〈∇η,∇φ̇〉ψ)dg

=
1

V ol

∫
M

((ψ̇ − 1

1 + ∆φ
〈∇ψ,∇φ̇〉)η + (η̇ − 1

1 + ∆φ
〈∇η,∇φ̇〉)ψ)(1 + ∆φ)dg.

The above computation shows that the right way to define a connection is given by:

Dφ̇ψ := ψ̇ − 1

1 + ∆φ
〈∇ψ,∇φ̇〉, (2.3.4)

where 〈·, ·〉 means the inner product on TM with respect to g.

In the local “coordinate chart”, which represent V as an open subset of C∞(M,R), the

“Christoffel symbol” at φ ∈ V is just:

Γ : C∞(M,R)× C∞(M,R)→ C∞(M,R)

Γ(ψ, η) =
−1

1 + ∆φ
〈∇ψ,∇η〉

This shows that the symbol is symmetric in ψ, η which means that this connection is torsion free,

i.e., for a smooth two-parameters family ψ(s, t) in V, we have:

D ∂ψ
∂s

∂ψ

∂t
= D ∂ψ

∂t

∂ψ

∂s
.
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2.3.2 Counterpart of the Aubin-Yau functional

Since V0 = V/R, we expect to induce a Riemannian structure on V0 from the structure on V,

so that V can be written as a Riemannian decomposition. It turns out that we can do it by

constructing a functional which is the counterpart of the Aubin-Yau functional, first introduced

by Aubin [2] in Kähler case. Using this functional, we then make a proper normalization on V.

Specifically, we look for a functional I which is characterized by the following properties:

I (0) = 0, dIφ(ψ) =
1

V ol

∫
M

ψ(1 + ∆φ)dg, φ ∈ V, ψ ∈ C∞(M,R). (2.3.5)

We can regard dI as a 1-form defined on the tangent space TV. The point is that since the

space V is convex, such a functional always exists if this 1-form is closed. Indeed:

(d(dIφ))φ(ψ1, ψ2) = d(dIφ(ψ1))φ(ψ2)− d((dIφ(ψ2))φ(ψ1)

=
1

V ol

∫
X

(ψ1∆ψ2 − ψ2∆ψ1)dg = 0

It follows that there is a functional I satisfying (2.3.5). For any smooth path φ(t) in V joining 0

with φ ,we can write I formally:

I (φ) =

∫ 1

0

1

V ol

∫
M

φ̇(1 + ∆φ)dgdt.

The fact dI is closed implies that I (φ) is independent of the choice of the path φ(t). Taking

φ(t) = tφ, we obtain the formula explicitly:

I (φ) =
1

V ol

∫
M

(φ+
1

2
φ∆φ)dg, (2.3.6)

Remark 2.3.3. This functional coincides with the one in the Kähler case when the manifold is

of complex dimension 1.

By direct computation we have:

I (φ+ c) = I (φ) + c

for any real constant c.
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For any smooth path φ(t) in V joining 0 with φ, by (2.3.3) since the covariant derivative is

compatible with the metric on TV, we have

d2

dt2
I (φ) =

d

dt
〈〈φ̇, 1〉〉φ(t) = 〈〈∇φ̇φ̇, 1〉〉φ(t)

which yields that I is affine along geodesics. And φ is a geodesic implies that φ − I (φ) is also a

geodesic. We call a “volume potential” φ normalized if I (φ) = 0. Then any volume form in V0

has a unique normalized “volume potential” in V, and the restriction of the metric on V to I−1(0)

endows V0 with a Riemannian structure, which is independent of the choice of dg as long as the

total volume of M is fixed. And clearly the tangent space of V0 at a point (1 + ∆φ)dg written as

dgφ can be realized as:

TdgφV0 = {ψ ∈ C∞(M,R) |
∫
M

ψdgφ = 0}.

To summarize, we now state as follows:

Proposition 2.3.1. [43] There is a functional I given by

I (φ) =
1

V ol

∫
M

(φ+
1

2
φ∆φ)dg, φ ∈ V

such that I−1(0) is a totally geodesic subspace of V. Moreover, the bijective mapping

I−1(0) 3 φ 7→ (1 + ∆φ)dg ∈ V0

induces a Riemannian structure on V0 with tangent space of V0 at a point dν realized as

TdνV0 = {ψ ∈ C∞(M,R) |
∫
M

ψdν = 0}.

Thus there is a Riemannian decomposition V = V0 × R.

2.3.3 V as a space of nonpositive sectional curvature

Consider a two-parameters family φ(s, t) ∈ V and a vector field ψ(s, t) ∈ C∞(M,R) along φ. For

simplicity, we will write φs for ∂φ
∂s , φst for ∂2φ

∂s∂t , and so on.
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Since the covariant derivative with respect to the metric on V is torsion free, the curvature

tensor is just defined by:

R(φs, φt)ψ := (DφsDφt −DφtDφs)ψ.

The sectional curvature corresponding to a pair of tangent vectors φs, φt is given by:

Kφs,φt := − 〈〈R(φs, φt)φs, φt〉〉φ
〈〈φs, φs〉〉φ · 〈〈φt, φt〉〉φ − 〈〈φs, φt〉〉2φ

.

We will compute the curvature tensor directly, which is a little different from the way in [33].

It is convenient to compute first DφsDφtψ. By definition,

Dφtψ = ψt −
1

1 + ∆φ
〈∇φt,∇ψ〉,

so we have

DφsDφtψ =
∂

∂s
(ψt −

1

1 + ∆φ
〈∇φt,∇ψ〉)−

1

1 + ∆φ
〈∇φs,∇(ψt −

1

1 + ∆φ
〈∇φt,∇ψ〉)〉

= ψst +
∆φs

(1 + ∆φ)2
〈∇φt,∇ψ〉

− 1

1 + ∆φ
〈∇φts,∇ψ〉 −

1

1 + ∆φ
〈∇φt,∇ψs〉

− 1

1 + ∆φ
〈∇φs,∇ψt〉+

1

1 + ∆φ
〈∇φs,∇(

1

1 + ∆φ
〈∇φt,∇ψ〉)〉.

Similarly, we can compute DφtDφsψ, which leads to the following explicit expression:

R(φs, φt)ψ = DφsDφtψ −DφtDφsψ

=
∆φs

(1 + ∆φ)2
〈∇φt,∇ψ〉 −

∆φt
(1 + ∆φ)2

〈∇φs,∇ψ〉

+
1

1 + ∆φ
〈∇φs,∇(

1

1 + ∆φ
〈∇φt,∇ψ〉)〉

− 1

1 + ∆φ
〈∇φt,∇(

1

1 + ∆φ
〈∇φs,∇ψ〉)〉.

Remark 2.3.4. According to Donaldson [Nam], the curvature tensor has the following form:

R(φs, φt)ψ = 〈 1

1 + ∆φ
curl(

1

1 + ∆φ
∇φs ×∇φt),∇ψ〉,
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where curl(v × w) := [v, w] + (div v)w − (div w)v for any pair of vectors v, w on M . Indeed,

computing a bit more and arranging terms, we have

R(φs, φt)ψ =
1

1 + ∆φ
[

1

1 + ∆φ
∆φs〈∇φt,∇ψ〉 −

1

1 + ∆φ
∆φt〈∇φs,∇ψ〉

+ 〈∇φs,∇(
1

1 + ∆φ
)〉〈∇φt,∇ψ〉+

1

1 + ∆φ
〈∇φs,∇〈∇φt,∇ψ〉〉

− 〈∇φt,∇(
1

1 + ∆φ
)〉〈∇φs,∇ψ〉 −

1

1 + ∆φ
〈∇φt,∇〈∇φs,∇ψ〉〉].

=
1

1 + ∆φ
[

1

1 + ∆φ
(∆φs〈∇φt,∇ψ〉 −∆φt〈∇φs,∇ψ〉

+ 〈∇φs,∇〈∇φt,∇ψ〉〉 − 〈∇φt,∇〈∇φs,∇ψ〉〉)

+ 〈∇φs,∇(
1

1 + ∆φ
)〉〈∇φt,∇ψ〉 − 〈∇φt,∇(

1

1 + ∆φ
)〉〈∇φs,∇ψ〉]

=
1

1 + ∆φ
[

1

1 + ∆φ
〈curl(∇φs ×∇φt),∇ψ〉

+ 〈∇φs,∇(
1

1 + ∆φ
)〉〈∇φt,∇ψ〉 − 〈∇φt,∇(

1

1 + ∆φ
)〉〈∇φs,∇ψ〉]

= 〈 1

1 + ∆φ
curl(

1

1 + ∆φ
∇φs ×∇φt),∇ψ〉,

note that in the last equality we use the formula curl(fv×w) = fcurl(v×w)+〈v,∇f〉w−〈w,∇f〉v

for any smooth function f on M .

Then by definition of the curvature tensor, we compute

〈〈R(φs, φt)φs, φt〉〉φ

=
1

V ol

∫
M

∆φs · φt
1 + ∆φ

〈∇φt,∇φs〉dg

− 1

V ol

∫
M

∆φt · φt
1 + ∆φ

〈∇φs,∇φs〉dg

+
1

V ol

∫
M

〈∇φs,∇(
1

1 + ∆φ
〈∇φt,∇φs〉)〉φtdg

− 1

V ol

∫
M

1

1 + ∆φ
〈∇φt,∇(

1

1 + ∆φ
〈∇φs,∇φs〉)〉φtdg.

(2.3.7)

By integration by parts, we have∫
M

∆φs · φt
1 + ∆φ

〈∇φt,∇φs〉dg

= −
∫
M

〈∇φs,∇φt〉2

1 + ∆φ
dg −

∫
M

〈∇φs,∇(
1

1 + ∆φ
〈∇φt,∇φs〉)〉φtdg,
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similarly, ∫
M

∆φt · φt
1 + ∆φ

〈∇φs,∇φs〉dg

= −
∫
M

|∇φs|2 · |∇φt|2

1 + ∆φ
dg −

∫
M

1

1 + ∆φ
〈∇φt,∇(

1

1 + ∆φ
〈∇φs,∇φs〉)〉φtdg.

Inserting the above two formulas into (2.3.7), we have:

〈〈R(φs, φt)φs, φt〉〉φ =
1

V ol

∫
M

|∇φs|2 · |∇φt|2 − 〈∇φs,∇φt〉2

1 + ∆φ
dg ≥ 0,

from which the following consequence immediately follows:

Theorem 2.3.5 (Donaldson [33]). The infinite dimensional Riemannian manifold V has nonpos-

itive sectional curvature.

Remark 2.3.6. In fact, there is another way to parameterize the space V as follows:

C := {u ∈ C∞(M,R) |
∫
M

eudg =

∫
M

dg}.

Following an idea by Calabi [19], we can define the so called Calabi metric at any u ∈ C by:

< v,w >u:=

∫
M

vweudg, v, w ∈ TuC,

where TuC = {v ∈ C∞(M,R) |
∫
M
veudg = 0}.

And it is proven by Calamai [21] that the space C endowed with the Calabi metric admits the

Levi-Civita covariant derivative and has sectional curvature exactly equal to 1
4V ol . Moreover, V

is a metric space and the Dirichlet problem for the geodesic equation has explicit unique smooth

solution.

2.3.4 The distance on V

With the metric defined on TV already, the length of a smooth curve [0, 1] 3 t→ φ(t) ∈ V is given

by:

l(φ) :=

∫ 1

0

‖φ̇‖φ(t)dt =

∫ 1

0

√
1

V ol

∫
M

φ̇2(1 + ∆φ)dgdt.
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The distance d(φ0, φ1) between two points φ0, φ1 ∈ V is then defined to be the infimum of the

length of smooth curves joining φ0 and φ1, that is:

d(φ0, φ1) := inf{ l(φ) | φ is a smooth curve joining φ0 and φ1}.

It is easy to verify that d defines a semi-distance, i.e. nonnegative, symmetric and satisfying the

triangle inequality. But to show that (V, d) is a metric space, we have to prove that d(φ0, φ1) = 0

if and only if φ0 = φ1, which is non trivial. We will discuss this subject later after we study the

next section.

2.4 The Dirichlet problem for the geodesic equation

Similar to the problem in the Kähler setting, Donaldson asked whether there is a smooth geodesic

joining any two distinct points in V. Precisely, we are interested in the boundary value problem

for the geodesic equation: given u0, u1 in V, we want to seek a solution u to the following equation

u ∈ C∞(M × [0, 1],R),

1 + ∆u > 0,

utt(1 + ∆u)− |∇ut|2 = 0,

u(·, 0) = u0, u(·, 1) = u1

(∗)

where we denote ut = ∂u
∂t , utt = ∂2u

∂t2 and so on. From the PDE point of view, this equation is

relevant to the nonlinear operator

u→ utt(1 + ∆u)− |∇ut|2.

According to Remark 2.3.2, when M is of complex dimension 1, the equation (∗) can be

reformulated as a homogeneous complex Monge-Ampère equation. In general, for homogeneous

complex Monge-Ampère equation, the solution, if exists, is at most C1,1 that we can expect. This

can be seen from an example provided by Gamelin and Sibony [38]. In [23], Chen studied the
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Dirichlet problem for the geodesic equation in the space of Kähler metrics, he showed the existence

and uniqueness of almost C1,1 solution, i.e., the mixed complex derivatives are bounded. We

mention that these results affirmatively answered the question of uniqueness of constant scalar

curvature metrics if the first Chern class is either strictly negative or 0. His idea is to consider a

perturbed equation of the original one with right hand side replaced by a small positive ε. This

perturbed equation is then non degenerate and elliptic. By the continuity method, he shows

that there is a unique smooth solution for any ε > 0 and these smooth solutions approximate

generalized geodesics with lower regularity called weak geodesics as ε tends to 0.

It is expected that the techniques used by Chen can be extended to the equation (∗). To carry

this out, we should derive some concavity property of the operator first.

One should be clear that we mainly follow Chen and He [24] in this section.

2.4.1 Concavity of the nonlinear operator

In the following lemma, we show some basic property of a function inspired by the structure of

the geodesic equation.

Lemma 2.4.1. Let n ≥ 3, x = (x1, x2, . . . , xn) ∈ Rn, the function

f(x) = log(x1x2 −
n∑
i=3

xi
2),

is concave on the domain D := {x ∈ Rn | x1 > 0, x2 > 0, x1x2 −
∑n
i=3 xi

2 > 0}.

Proof. Observe that f is induced from a quadratic form of Minkowski space. For simplicity, we

define the Minkowski norm for any x ∈ D as

‖x‖M :=

√√√√x1x2 −
n∑
i=3

xi2.

Then to prove the lemma, we just need to prove

∥∥∥∥x+ y

2

∥∥∥∥2

M
≥ ‖x‖M · ‖y‖M, x, y ∈ D.
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It suffices to show the Reversed triangle inequality :

‖x+ y‖M ≥ ‖x‖M + ‖y‖M. (2.4.1)

Though it is well known, for readers’ convenience, we prove (2.4.1) through elementary calculus.

By definition,

‖x+ y‖2M = (x1 + y1)(x2 + y2)−
n∑
i=3

(xi + yi)
2

= x1x2 + y1x2 + x1y2 + y1y2 −
n∑
i=3

(x2
i + 2xiyi + y2

i )

= (‖x‖M + ‖y‖M)
2

+ x1y2 + y1x2 −
n∑
i=3

2xiyi − 2‖x‖M · ‖y‖M (2.4.2)

Since

x1y2 + y1x2 =
y2

x2
x1x2 +

x2

y2
y1y2

=
y2

x2
(x1x2 −

n∑
i=3

xi
2) +

x2

y2
(y1y2 −

n∑
i=3

yi
2)

+
y2

x2

n∑
i=3

xi
2 +

x2

y2

n∑
i=3

yi
2

≥ 2‖x‖M · ‖y‖M +

n∑
i=3

2xiyi,

inserted into (2.4.2), it is done.

As a direct consequence, we get that the operator

u→ log(utt(1 + ∆u)− |∇ut|2) (2.4.3)

is concave on {u ∈ C2(M × [0, 1],R) | utt > 0, utt(1 + ∆u)− |∇ut|2 > 0}.

Following Donaldson [33], we define a “norm” still denoted as ‖ · ‖M on symmetric matrices

as follows

‖A‖M = A00

n∑
i=1

Aii −
n∑
i=1

A2
i0,

where A = (Aij)0≤i,j≤n is symmetric.
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The following lemma will be useful when we derive a priori estimates.

Lemma 2.4.2. 1. Let A be a symmetric matrix, if A > 0, then ‖A‖M > 0; if A ≥ 0, then

‖A‖M ≥ 0.

2. If A,B are two symmetric matrices with ‖A‖M = ‖B‖M > 0 and the entries A00, B00

positive, then for any s ∈ [0, 1],

‖sA+ (1− s)B‖M ≥ ‖A‖M, ‖A−B‖M ≤ 0.

Moreover, the equality holds if and only if Aii = Bii, Ai0 = Bi0, ∀i.

Proof. The first item is obvious. For the second item, just apply Lemma 2.4.1 and the Reversed

triangle inequality.

2.4.2 A priori estimates

As pointed out by Donaldson, to approach the equation (∗), he introduced a perturbed equation

as follows 

u ∈ C∞(M × [0, 1],R),

utt(1 + ∆u)− |∇ut|2 = ε,

u(·, 0) = u0 ∈ V, u(·, 1) = u1 ∈ V

(∗∗)

for any ε > 0. He also explained that the equation (∗∗) is actually related to some free boundary

problems.

We rewrite the equation as

log(utt(1 + ∆u)− |∇ut|2) = log ε. (2.4.4)

The linearization of the left-hand side of (2.6.2) is given by

L(h) : =
d

dγ

∣∣∣∣
γ=0

log
(
(utt + γhtt)(1 + ∆u+ γ∆h)− |∇ut + γ∇ht|2

)
=

1

ε
(utt∆h+ (1 + ∆u)htt − 2〈∇ut,∇ht〉) .
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Proposition 2.4.1. If u satisfies (∗∗), then:

utt + 1 + ∆u > 0,

It follows that utt > 0, 1 + ∆u > 0. In particular, L is elliptic.

Proof. At the boundary, it is obvious true by the assumption. If at some point (x0, t0) ∈M×(0, 1),

utt + 1 + ∆u = 0.

Then at the point (x0, t0),

utt(1 + ∆u)− |∇ut|2 = −(1 + ∆u)2 − |∇ut|2 < ε,

contradiction.

C0−estimate

Lemma 2.4.3 ([24]). If u satisfies (∗∗), denote ua(x, t) := at(1− t) + (1− t)u0 + tu1, where a is

a fixed constant, then for some a big enough depending on (M, g) and u0, u1, we have

u−a ≤ u ≤ (1− t)u0 + tu1.

Proof. First note that by Proposition (2.4.1), utt > 0, which means that u is convex with respect

to t. It follows that

u ≤ (1− t)u0 + tu1.

For the other side, we assume the contrary, then u < u−a at some point, since u and u−a

coincide on the boundary, then u − u−a obtains its minimum in the interior, say at p. Then

D2u ≥ D2u−a at p. Since

‖D2u‖M = ε,

‖D2u−a‖M = 2a(1 + (1− t)∆u0 + t∆u1)− |∇u1 −∇u0|2,
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we can always choose a big enough depending only on (M, g), u0, u1 such that

‖D2u‖M < ‖D2u−a‖M. (2.4.5)

Next we construct two (n+2)×(n+2) symmetric matrices A,B, such that the (n+1)×(n+1)

block of A is D2u−a at p, Ai(n+2) = 0 for 1 ≤ i ≤ n+ 1, A(n+2)(n+2) = 1, and the (n+ 1)× (n+ 1)

block of B is D2u at p, Bi(n+2) = 0 for 1 ≤ i ≤ n + 1, B(n+2)(n+2) = λ, where λ is a constant

satisfying

‖B‖M = utt(λ+ ∆u)− |∇ut|2 = ‖D2u−a‖M = ‖A‖M.

From (2.4.5) we know λ > 1. It follows from Lemma 2.4.2(2) that ‖B − A‖M < 0, but B − A is

semi-positive since D2u ≥ D2u−a at p, so ‖B −A‖M ≥ 0 by Lemma 2.4.2(1). Contradiction.

C1−estimate

By Proposition 2.4.1, the linearized operator L is elliptic, so we can apply maximum principle

that the estimates largely rely on.

Note that for a fixed point p on M × [0, 1] with local coordinates (x1, . . . , xn, t), we can always

choose normal coordinates in the manifold direction such that the metric tensor g satisfies gij = δij ,

∂kgij = 0 at p.

Lemma 2.4.4 ([24]). If u satisfies (∗∗), then there is a uniform constant C, depending on (M, g),

and u0, u1, such that:

|ut|+ |∇u| ≤ C. (2.4.6)

Proof. By Proposition (2.4.1), utt > 0, which implies that ut is increasing. Then

|ut(x, t)| ≤ max{ |ut(x, 0)|, |ut(x, 1)| }.

By Lemma (2.4.3), we have

|ut(x, 0)| =
∣∣∣∣limt→0

u(x, t)− u(x, 0)

t

∣∣∣∣ ≤ lim
t→0

∣∣∣∣u(x, t)− u(x, 0)

t

∣∣∣∣ ≤ a+ |u0 − u1|.
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Similarly, we can bound |ut(x, 1)|. Therefore, ut(x, t) is uniformly bounded.

To bound ∇u, we take

h :=
1

2
(|∇u|2 + bu2),

where b is a constant to be determined later.

Since h is uniformly bounded on the boundary, we assume that u attains maximum at (p, t0) ∈

M × (0, 1).

Take covariant derivatives under normal coordinates, we have:

ht =
∑
k

utkuk + butu, hk =
∑
i

uikui + buku,

htt =
∑
k

uttkuk +
∑
k

u2
tk + b(u2

t + uttu),

htk =
∑
i

utikui +
∑
i

uikuti + b(utku+ utuk),

∆h =
∑
i,k

uikkui +
∑
i,k

u2
ik + b(u∆u+

∑
k

u2
k),

=
∑
i

(∆u)iui +Ric(∇u,∇u) +
∑
i,k

u2
ik + b(u∆u+

∑
k

u2
k).

It follows that

εL(h) = utt∆h+ (1 + ∆u)htt − 2
∑
k

utkhtk

= utt[
∑
i

(∆u)iui +Ric(∇u,∇u) +
∑
i,k

u2
ik + b(u∆u+

∑
k

u2
k)]

+ (1 + ∆u)[
∑
k

uttkuk +
∑
k

u2
tk + b(u2

t + uttu)]

− 2
∑
k

utk[
∑
i

utikui +
∑
i

uikuti + b(utku+ utuk)].

Take derivative of ‖u‖M = ε, we have

utt(∆u)i + utti(1 + ∆u)− 2
∑
k

utkiutk = 0.
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We can arrange that

εL(h) = uttRic(∇u,∇u) + utt
∑
i,k

u2
ik + (1 + ∆u)

∑
k

u2
tk − 2

∑
i,k

utkutiuik

+ bu[utt∆u+ utt(1 + ∆u)− 2
∑
k

u2
tk]

+ b[utt|∇u|2 + u2
t (1 + ∆u)− 2

∑
k

utukutk]

Since at (p, t0), ht = 0, we have ∑
k

utkuk = −butu.

Furthermore,

utt
∑
i,k

u2
ik + (1 + ∆u)

∑
k

u2
tk ≥ 2

√
utt
∑
i,k

u2
ik(1 + ∆u)

∑
k

u2
tk

≥ 2

√∑
i,k

u2
ik

∑
k

u2
tk(ε+

∑
i

u2
ti)

≥ 2
∑
i,k

utkutiuik.

At (p, t0) it follows that

εL(h) ≥ −R0utt|∇u|2 + bu(2ε− utt) + b[utt|∇u|2 + u2
t (1 + ∆u) + 2buut

2]

= utt(
b

2
|∇u|2 − bu−R0|∇u|2) +

b

2
utt|∇u|2 + but

2(1 + ∆u) + 2εbu+ 2b2ut
2u

≥ utt(
b

2
|∇u|2 − bu−R0|∇u|2) + b|ut| · |∇u|

√
2ε+ 2εbu+ 2b2ut

2u,

where R0 = 1 +max|Rij |.

Notice that if u satisfies (∗∗), then ũ = u+C1t+C0 also solves the equation but with boundary

condition

ũ(·, 0) = u0 + C0, ũ(·, 1) = u1 + C1 + C0,

where C0, C1 are any real constants. Since |u|, |ut| is uniformly bounded, we can choose C0, C1

big enough, such that ũ ≥ 0, ũt ≥ 1 everywhere. Thus we can assume that u ≥ 0, ut ≥ 1. Then

we have

εL(h) ≥ utt(
b

2
|∇u|2 − bu−R0|∇u|2) +

√
2εb|∇u|.

42



Since at the point (p, t0), εL(h) ≤ 0, and now we choose b = 4R0, then we have

0 ≥ utt(R0|∇u|2 − bu),

which follows that

|∇u|2(p, t0) ≤ 4u.

C2 interior estimate

Lemma 2.4.5 ([24]). If u satisfies (∗∗), then there is a uniform constant C, depending on (M, g),

and u0, u1, such that:

0 < utt + 1 + ∆u ≤ C(1 + max
∂(M×[0,1])

|utt|). (2.4.7)

Proof. By Proposition (2.4.1), it is clear that

utt + 1 + ∆u > 0.

Take

F :=
bt2

2
− bu,

h := utt + 1 + ∆u,

h̃ := eFh,

where b is a constant to be determined later. Without loss of generality, assume h̃ attains maximum

at (p, t0) ∈M × (0, 1).
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Take covariant derivatives under normal coordinates, we have:

h̃t = eF (Fth+ ht), h̃k = eF (Fkh+ hk),

h̃tt = eF (Ftth+ 2Ftht + hFt
2 + htt),

h̃tk = eF (Ftkh+ Fthk + Fkht + FkFth+ htk),

h̃kk = eF (Fkkh+ 2Fkhk + hFk
2 + hkk),

∆h̃ = eF (∆Fh+ 2
∑
k

Fkhk + h
∑
k

Fk
2 + ∆h).

Since at (p, t0), h̃t = h̃k = 0, that is

Fth = −ht, Fkh = −hk.

Then at (p, t0), we have

h̃tt = eF (Ftth+ htt − hF 2
t ),

h̃tk = eF (Ftkh+ htk − hFtFk),

∆h̃ = eF (∆Fh+ ∆h− h
∑
k

F 2
k ).

At (p, t0),

εL(h̃) = utt∆h̃+ (1 + ∆u)h̃tt − 2
∑
k

utkh̃tk,

= eF [utt(∆Fh+ ∆h− h
∑
k

F 2
k ) + (1 + ∆u)(Ftth+ htt − hF 2

t )

− 2
∑
k

utk(Ftkh+ htk − hFtFk)],

= eF [h(utt∆F + (1 + ∆u)Ftt − 2
∑
k

utkFtk)

+ utt∆h+ (1 + ∆u)htt − 2
∑
k

utkhtk

− h(utt
∑
k

F 2
k + (1 + ∆u)F 2

t − 2
∑
k

utkFtFk)]

= eF

(
εhL(F ) + εL(h)− h(utt

∑
k

F 2
k + (1 + ∆u)F 2

t − 2
∑
k

utkFtFk)

)
.
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Since Ft, Fk only involve first order derivative, by C1 estimates, we know they are uniformly

bounded, so

utt
∑
k

F 2
k + (1 + ∆u)F 2

t − 2
∑
k

utkFtFk ≤ C1h.

It follows that

εL(h̃) ≥ eF (εhL(F ) + εL(h)− C1h
2).

Also we calculate

εL(F ) = utt(−b∆u) + (1 + ∆u)(b− butt) + 2b
∑
k

u2
tk

= b(1 + ∆u+ utt − 2ε)

= b(h− 2ε),

where we use the equation in the second equality.

To calculate L(h), let us take derivatives of h first:

ht = uttt + ∆ut, htt = utttt + ∆utt,

hk = uttk + (∆u)k, ∆h = ∆utt + ∆2u, htk = utttk + (∆ut)k,

We calculate

εL(h) = utt(∆utt + ∆2u) + (1 + ∆u)(utttt + ∆utt)

− 2
∑
k

utk(utttk + (∆ut)k).

(2.4.8)

We take first order derivative of the equation (∗∗),

utt∆ut + uttt(1 + ∆u)− 2
∑
k

uttkutk = 0, (2.4.9)

utt(∆u)i + utti(1 + ∆u)− 2
∑
k

utkiutk = 0. (2.4.10)

Continue taking second order derivative we have

utt∆utt + 2uttt∆ut + utttt(1 + ∆u)− 2
∑
k

u2
ttk − 2

∑
k

utttkutk = 0,
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utt∆
2u+ 2

∑
i

utti(∆u)i + ∆utt(1 + ∆u)− 2
∑
k,i

u2
tki − 2

∑
k

utk∆utk = 0.

Combine the above two equations into (2.4.8), we have

εL(h) = 2
∑
k

u2
ttk + 2

∑
k

utttkutk + 2
∑
k,i

u2
tki + 2

∑
k

utk∆utk

− 2uttt∆ut − 2
∑
i

utti(∆u)i − 2
∑
k

utk(utttk + (∆ut)k)

= 2
∑
k

u2
ttk + 2

∑
k,i

u2
tki + 2

∑
k,i

Rkiutkuti − 2uttt∆ut − 2
∑
i

utti(∆u)i,

where we apply commutation formula in the second equality.

Note that

utt(
∑
k

u2
ttk − uttt∆ut) = utt

∑
k

u2
ttk + (1 + ∆u)u2

ttt − 2
∑
k

utkuttkuttt ≥ 0, (2.4.11)

where we used the equation (2.4.9).

Similarly

utt(
∑
k,i

u2
tki −

∑
i

utti(∆u)i) = utt
∑
k,i

u2
tki + (1 + ∆u)

∑
k

u2
ttk − 2

∑
k,i

utkutkiutti ≥ 0, (2.4.12)

where we used the equation (2.4.10).

It follows from (2.4.11), (2.4.12) that

εL(h) ≥ 2
∑
k,i

Rkiutkuti ≥ −C2h
2,

where C2 depends on the Ricci curvature.

In sum, at (p, t0), we have

εL(h̃) ≥
(
(b− C1 − C2)h2 − 2εbh

)
.

Now take b = C1 + C2 + 1, and apply maximum principle at (p, t0), we are done.
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C2 boundary estimate

Lemma 2.4.6 ([24]). If u satisfies (∗∗), then there is a uniform constant C, depending on (M, g),

and u0, u1, such that

max
∂(M×[0,1])

|∇ut| ≤ C(1 + max
M×[0,1]

|∇u|).

Proof. We only consider |∇ut| on M × {0}, since the case on M × {1} is similar.

For any point (p, 0) on M × {0}, we choose local coordinates around p such that

p = (0, . . . , 0, 0), gij(0) = δij , ∂gij(0) = 0.

Then for any x ∈ B0(ρ), which is a small coordinate ball with radius ρ centered at 0, we have

gij(x) = (1 + o(|x|)) δij , ∂gij(x) = o(|x|).

Now for any k = 1, . . . , n, we consider uk−u0,k, which is a local defined function on B0(ρ)× [0, τ ]

with τ small enough.

Take

h := A(u− u0 +At−At2) +B
∑
i

x2
i + uk − u0,k,

By C1 estimates, it is easy to see that h ≥ 0 on ∂(B0(ρ) × [0, τ ]), where we choose A � B big

enough.

We caculate

εL(u− u0 +At−At2) = utt(∆u−∆u0) + (1 + ∆u)utt − 2
∑
i

u2
ti − 2A(1 + ∆u)

= 2ε− utt − utt∆u0 − 2A(1 + ∆u)

≤ −utt(1 + ∆u0),

since we can choose τ small enough such that on M × [0, τ ],

A(1 + ∆u) > ε.

Here we should mention that τ might depend on ε, but A is uniformly bounded.
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And

εL(uk − u0,k) = utt(∆uk −∆(u0,k)) + (1 + ∆u)uttk − 2
∑
i

utiutki

= utt(∆u)k + utt
∑
i

Rkiui + (1 + ∆u)uttk − 2
∑
i

utiutki − utt∆(u0,k)

= utt

(∑
i

Rkiui −∆(u0,k)

)

≤ Cutt,

where we use (2.4.10) in the third equality and C depends on C1 estimates and boundary value.

Moreover,

εL(
∑
i

x2
i ) = utt∆(

∑
i

x2
i ) < (2n+ 1)utt,

So in B0(ρ)× [0, τ ], we have

εL(h) < utt (−A(1 + ∆u0) + (2n+ 1)B + C) < 0.

By maximum principle, h ≥ 0 in B0(ρ)× [0, τ ]. Since h(0) = 0,

∂h

∂t
|t=0 ≥ 0,

which means that

utk ≥ −Aut −A2.

If we take

h̃ := A(u− u0 +At−At2) +B
∑
i

x2
i + u0,k − uk,

similarly we get utk ≤ Aut +A2.

Observe from the equation utt = ε+|∇ut|2
1+∆u that utt is also uniformly bounded on the boundary.

Summing up, we have

Proposition 2.4.2 ([24]). If u satisfies (∗∗), then there is a uniform bound on |u|C0 , |u|C1 , ∆u,

utt and |∇ut|, independent of ε.
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This Proposition implies that the equation (∗∗) is uniformly elliptic. Moreover, if we rewrite

the equation as

log
(
utt(1 + ∆u)− |∇ut|2

)
= log ε,

then from Lemma 2.4.1, we know this new equation is also concave. Thus, the Hölder estimate

of |∇2u| which may depend on ε just follows from the Evans-Krylov theory. Then we can get

estimates for all higher order derivatives of u using the boot-strapping argument.

2.4.3 Weak geodesics

Solving the perturbed equation

We will use the method of continuity to solve the equation (∗∗). We consider the following

continuity family for s ∈ [0, 1],

‖D2u‖M = (1− s)‖D2u−a‖M + sε, (2.4.13)

with the boundary condition

u(·, 0, s) = u0, u(·, 1, s) = u1,

where u−a is defined as in Lemma 2.4.3. Note that we can choose a big enough, so that ‖D2u−a‖M

is positive. Now consider the set

S := {s ∈ [0, 1] : the equation (2.4.13) has a unique smooth solution.}.

Obviously 0 ∈ S. We explain that S is both open and closed. Firstly, since the linearized

operator L is uniformly elliptic, S is open by the inverse function theorem in the Banach space;

secondly, by the a priori estimates derived in the previous section, S is also closed. Therefore,

S = [0, 1]. In particular, 1 ∈ S, which means that

Theorem 2.4.1. For any two points u0, u1 ∈ V and any ε > 0, there exists a unique smooth

solution to the equation (∗∗), u(t) : [0, 1]→ V connecting u0 and u1.
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Existence and uniqueness of the weak solution

Similar as in the Kähler case, we can introduce the weak C2 geodesics.

Here the weak C2 means that only ∆u, utt, ∇ut ∈ L∞(M), while other second order derivatives

might not be bounded. We call a segment U(t) connecting two points in V is a weak C2 geodesic

if it satisfies the geodesic equation (∗) in the weak sense.

Using Proposition 2.4.2 and Theorem 2.4.1, by an approximation process, we know that for

any two points in V, there exists a weak C2 geodesic segment connecting these two points.

To show the weak solution of the geodesic equation (∗) is unique with the fixed boundary data,

we prove the following lemma.

Lemma 2.4.7. Suppose U and V are the weak solutions of the geodesic equation (∗) with prescribed

boundary data (u0, u1) and (v0, v1) respectively. Then

max
M×[0,1]

|U − V | ≤ max
∂(M×[0,1])

(|u0 − v0|, |u1 − v1|).

Proof. For any ε > 0, let u and v be the unique smooth solutions of the perturbed equation (∗∗)

with the boundary data (u0, u1) and (v0, v1) respectively.

It suffices to show that

max
M×[0,1]

|u− v| ≤ max
∂(M×[0,1])

(|u0 − v0|, |u1 − v1|).

Suppose on the contrary, that max(u−v) > max∂(M×[0,1])(|u0−v0|, |u1−v1|), then u−v−at(1−t)

attains its maximum in the interior, say at p, when a is a positive constant small enough. So at

the point p, we have D2u ≤ D2(v + at(1− t)) ≤ D2v, in particular,

utt(p) ≤ vtt(p)− 2a < vtt(p). (2.4.14)

Since ‖D2u‖M = ‖D2v‖M = ε, using Lemma 2.4.2(2) and (2.4.14), we have

‖D2v −D2u‖M < 0 at the point p.

50



This is a contradiction since at this point D2u ≤ D2v implies that ‖D2v−D2u‖M ≥ 0 by lemma

2.4.2(1). Switch u and v, then the lemma follows.

As a consequence, we have the following

Theorem 2.4.2 ([24]). There exists a unique weak solution to the geodesic equation (∗). In other

words, for any two points u0, u1 in V, there exist a weak C2 geodesic segment U(t) connecting

these two points and a uniform constant C such that

0 ≤ 1 + ∆U ≤ C, |Utt|+ |∇Ut| ≤ C.

2.5 V as a metric space

As explained in Section 2.3.4, the problem to show that d defines a distance on V is whether

d(u0, u1) > 0 for any two distinct points u0, u1 ∈ V. We will prove the following quantitative

version of this statement:

Theorem 2.5.1 ([24]). For any u0, u1 ∈ V, we have

d(u0, u1)

≥

√
1

V ol
max

(∫
{u0>u1}

(u0 − u1)2(1 + ∆u0)dg,

∫
{u1>u0}

(u1 − u0)2(1 + ∆u1)dg

)
.

We will prove this theorem following two steps as in [11]: establishing an estimate for the

geodesic distance; showing that d is equal to the geodesic distance.

For simplicity, we call a segment u(t) : [0, 1] → V connecting u0 and u1 an ε-geodesic if u

satisfies the perturbed equation (∗∗). As in [24], we have the following estimate for the ε-geodesic

distance.
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Lemma 2.5.1. Let u be an ε-geodesic connecting u0, u1 ∈ V, and denote the energy element as

e(t) :=
1

2
‖u̇‖2u(t) =

1

2V ol

∫
M

u2
t (1 + ∆u) dg.

Then we have

e(t) ≥ E(u0, u1)− ε|ut|C0 ,

where

E(u0, u1) :=
1

2V ol
max{

∫
{u0>u1}

(u0 − u1)2(1 + ∆u0)dg,

∫
{u1>u0}

(u1 − u0)2(1 + ∆u1)dg}.

In particular,

l(u)2 ≥ 2E(u0, u1)− 2ε|ut|C0 .

Proof. Since

d

dt
e(t) =

1

2V ol

∫
M

(2ututt(1 + ∆u) + u2
t∆ut)dg

=
1

V ol

∫
M

ut(utt(1 + ∆u)− |∇ut|2)dg

=
ε

V ol

∫
M

utdg,

we have | ddte(t)| ≤ ε|ut|C0 , which implies

e(t) ≥ max{e(0), e(1)} − ε|ut|C0 .

Since utt > 0, it follows that

ut(·, 0) ≤ u(·, 1)− u(·, 0) ≤ ut(·, 1).

Therefore,

e(0) ≥ 1

2V ol

∫
{u0>u1}

(u0 − u1)2(1 + ∆u0)dg,

similarly,

e(1) ≥ 1

2V ol

∫
{u1>u0}

(u1 − u0)2(1 + ∆u1)dg.

So the desired estimate follows.
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We will also need the following lemma.

Lemma 2.5.2 ([24]). Suppose that ui(s) : [0, 1] → V(i = 1, 2) are two smooth curves in V. For

any ε > 0 and fixed s, set u(t, s) as the unique ε-geodesic connecting u1(s) and u2(s). Then

u(t, s) ∈ C∞([0, 1]× [0, 1],V) and there exists a uniform constant C = C(M,u1, u2) such that

|u|+ |∂u
∂t
|+ |∂u

∂s
| ≤ C; 0 <

∂2u

∂t2
≤ C;

∂2u

∂s2
≤ C.

Proof. According to Section 2.4.2, the estimates are clear except

|∂u
∂s
| ≤ C, ∂

2u

∂s2
≤ C. (2.5.1)

Since u satisfies the equation log(utt(1 + ∆u)− |∇ut|2) = log ε, taking derivative with respect

to s, we have

L(
∂u

∂s
) = 0,

taking derivative with respect to s twice, we have

L(
∂2u

∂s2
≥ 0,

where we use the concavity of the operator (2.4.3).

Then the inequalities (2.5.1) follow from the maximal principle since the operator L is elliptic.

Theorem 2.5.2. Suppose that v(s) : [0, 1] → V is a smooth curve and u ∈ V \ v([0, 1]). For any

ε > 0, set u(t, s) ∈ C∞([0, 1]× [0, 1],V) as the unique ε-geodesic connecting u and v(s). Then for

ε small enough, we have

l
(
u(·, 0)

)
≤ l(v) + l

(
u(·, 1)

)
+ Cε,

where C > 0 is independent of ε.

Proof. Denote

l1(s) := l(v|[0,s]) =

∫ s

0

√
1

V ol

∫
M

v2
s̃(1 + ∆v)dgds̃,
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l2(s) := l (u(·, s)) =

∫ 1

0

√
1

V ol

∫
M

u2
t (1 + ∆u)dgdt =

∫ 1

0

√
2e(t, s)dt,

where we use the notation e as in Lemma 2.5.1.

It suffices to show that l′1 + l′2 ≥ −Cε on [0, 1].

Compute directly, we have

et =
1

V ol

∫
M

(ututt(1 + ∆u)− ut|∇ut|2)dg =
ε

V ol

∫
M

utdg,

es =
1

V ol

∫
M

(ututs(1 + ∆u)− ut〈∇ut,∇us〉)dg

=
1

V ol

(
∂

∂t

∫
M

utus(1 + ∆u)dg −
∫
M

(usutt(1 + ∆u) + usut∆ut + ut〈∇ut,∇us〉)dg
)

=
1

V ol

(
∂

∂t

∫
M

utus(1 + ∆u)dg − ε
∫
M

usdg

)
.

Therefore

l′2 =

∫ 1

0

(2e)−1/2esdt

=
1

V ol

[
(2e)−1/2

∫
M

utus(1 + ∆u)dg

]t=1

t=0

+
1

V ol

(∫ 1

0

(
(2e)−3/2et

∫
M

utus(1 + ∆u)dg

)
dt− ε

∫ 1

0

(
(2e)−1/2

∫
M

usdg

)
dt

)
.

Since u(0, s) = u, u(1, s) = v(s), we have us(0, s) = 0, us(1, s) = vs. Then by Lemma 2.5.2,

we have

l′2 ≥
1

V ol

1√
2e(1, s)

∫
M

ut(1, s)vs(1 + ∆v)dg − Cε
∫ 1

0

(
(2e)−3/2 + (2e)−1/2

)
dt.

By the Schwartz inequality,

∣∣∣∣ ∫
M

ut(1, s)vs(1 + ∆v)dg

∣∣∣∣ ≤
√∫

M

ut(1, s)2
(
1 + ∆u(1, s)

)
dg

√∫
M

v2
s(1 + ∆v)dg

= V ol ·
√

2e(1, s) · l′1,
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So we have

l′2 ≥ −l′1 − Cε
∫ 1

0

(
(2e)−3/2 + (2e)−1/2

)
dt.

According to Lemma 2.5.1,

e(t, s) ≥ E
(
u, v(s)

)
− ε|ut|C0 ,

Since we assume that u ∈ V \ v([0, 1]), which is crucial for this theorem, E
(
u, v(s)

)
is always

positive for any s by definition, and clearly E
(
u, v(s)

)
is continuous with respect to s, so E

(
u, v(s)

)
has a uniformly positive lower bound. Then for ε small enough, we have e(t, s) ≥ c > 0. Therefore,

l′2 ≥ −l′1 − Cε,

and the theorem follows.

The following theorem shows that d is the same as the geodesic distance.

Theorem 2.5.3. Let uε be the ε-geodesic connecting u0, u1 ∈ V, then

d(u0, u1) = lim
ε→0+

l(uε).

Proof. Let v(s) : [0, 1] → V be an arbitrary smooth curve connecting u0 and u1, we just need to

show that

lim
ε→0+

l(uε) ≤ l(v).

Without loss of generality, we assume that u1 /∈ v
(
[0, 1)

)
. We extend uε(t) : [0, 1] → V to

uε(t, s) : [0, 1]× [0, 1)→ V such that for any s ∈ [0, 1), uε(·, s) is the ε-geodesic connecting u1 and

v(s). By Theorem 2.5.2, we have

l
(
uε(·, 0)

)
≤ l(v|[0,s]) + l

(
uε(·, s)

)
+ C(s)ε, s ∈ [0, 1).

Since clearly lims→1− l(v|[0,s]) = l(v), it remains to show that

lim
s→1−

lim
ε→0+

l
(
uε(·, s)

)
= 0.
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But this follows immediately from the next lemma.

Lemma 2.5.3. Let u be the ε-geodesic connecting u0, u1 ∈ V, then

l(u) ≤ C
(
|u0 − u1|C0 +

2ε+ |∇u1 −∇u0|2

2 min
(
1 + ∆u0, 1 + ∆u1

)),
where C is a uniform constant independent of ε.

Proof. By Proposition 2.4.2,

l(u) =

∫ 1

0

√
1

V ol

∫
M

u2
t (1 + ∆u)dgdt ≤ C|ut|C0 ,

where C is a uniform constant independent of ε.

By Lemma 2.4.4, we have

l(u) ≤ C
(
a+ |u0 − u1|C0

)
,

where a is a constant the same as in Lemma 2.4.3. But in the proof of Lemma 2.4.3, to make the

inequality (2.4.5) hold, we can choose

a =
2ε+ |∇u1 −∇u0|2

2 min
(
1 + ∆u0, 1 + ∆u1

) ,
then the result follows.

Corollary 2.5.1 ([24]). The space (V, d) is a metric space. Moreover, the distance function is at

least C1.

Proof. We only need to show the differentiability of the distance function. Following from the

proof of Theorem 2.5.2, we have

dl
(
uε(·, s)

)
ds

=
1

V ol

1√
2e(1, s)

∫
M

ut(1, s)vs(1 + ∆v)dg +O(ε),

by Theorem 2.5.3,

d
(
u, v(s)

)
= lim
ε→0+

l
(
uε(·, s)

)
,
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we have

lim
s→s0

d
(
u, v(s)

)
− d
(
u, v(s0)

)
s− s0

=
1

V ol

1√
2e(1, s0)

∫
M

ut(1, s0)vs(s0)(1 + ∆v)dg,

which means that d is a differential function.

Lastly, we show that (V, d) is non-positively curved in the sense of Alexandrov following Calabi

and Chen [20]. We will need the following lemma, which says that the Jacobi vector field along

any geodesic grows super-linearly.

Lemma 2.5.4 ([24]). Let u(t, s) be the two-parameter families of ε-geodesics defined as in Lemma

2.5.2. Let X(t, s) = ∂u
∂t be the tangential vector fields and Y (t, s) = ∂u

∂s the deformation vector

fields along the ε-geodesics. Then we have

∂2‖Y ‖
∂t2

≥ 0.

Proof. By definition,

‖Y ‖2 =
1

V ol
〈〈Y, Y 〉〉 =

∫
M

|us|2(1 + ∆u)dg.

Then

1

2

∂‖Y ‖2

∂t
= 〈〈DXY, Y 〉〉 = 〈〈DYX,Y 〉〉,

since the covariant derivative D is compatible with the metric and torsion free.

It follows that

1

2

∂2‖Y ‖2

∂t2
= 〈〈DYX,DXY 〉〉+ 〈〈DXDYX,Y 〉〉

= ‖DXY ‖2 + 〈〈R(X,Y )X,Y 〉〉+ 〈〈DYDXX,Y 〉〉

≥ ‖DXY ‖2 + 〈〈DYDXX,Y 〉〉,

where the last inequality follows from Theorem 2.3.5 saying that the sectional curvature of V is

non-negative.
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Since for any fixed s, u(t, s) is an ε-geodesic, we have

DXX = utt −
1

1 + ∆u
〈∇ut,∇ut〉 =

ε

1 + ∆u
.

Then by definition

〈〈DYDXX,Y 〉〉 =
1

V ol

∫
M

usDY

(
ε

1 + ∆u

)
(1 + ∆u)dg

=
ε

V ol

∫
M

(
− us∆us

1 + ∆u
− us〈∇us,∇

( 1

1 + ∆u

)
〉
)
dg

=
ε

V ol

∫
M

|∇us|2

1 + ∆u
dg ≥ 0.

It follows that

1

2

∂2‖Y ‖2

∂t2
≥ ‖DXY ‖2.

Since

1

2

∂2‖Y ‖2

∂t2
= ‖Y ‖∂

2‖Y ‖
∂t2

+

(
∂‖Y ‖
∂t

)2

,

and

∂‖Y ‖
∂t

=
1

2‖Y ‖
∂‖Y ‖2

∂t
=
〈〈Y,DXY 〉〉
‖Y ‖

≤ ‖DXY ‖,

we have

∂2‖Y ‖
∂t2

≥ 0.

Theorem 2.5.4 ([24]). The space (V, d) is non-positive curved in the following sense. Given

any three points A,B,C ∈ V, for any λ ∈ [0, 1], let P be the point on the weak geodesic segment

connecting B and C such that d(B,P ) = λd(B,C) and d(P,C) = (1 − λ)d(B,C). Then the

following inequality holds

d2(A,P ) ≤ (1− λ)d2(A,B) + λd2(A,C)− λ(1− λ)d2(B,C).

Proof. For any small ε > 0, let u(s) ≡ A, and v(s) be the ε-geodesic connecting B and C. Set

u(t, s) as the ε-geodesic connecting A and v(s). The energy of the path u(·, s) connecting A and
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v(s) is by definition given by

Eε(u(·, s)) =

∫ 1

0

eε(t, s)dt,

where

eε(t, s) :=
1

2
‖u̇‖2u(t,s) =

1

2V ol

∫
M

u2
t (1 + ∆u) dg.

Since

∂eε(u(t, s))

∂t
=

ε

V ol

∫
M

utdg,

when ε→ 0, eε(t, s) is a constant for any fixed s, therefore

d(A, v(s)) = lim
ε→0

l(u(·, s)) = lim
ε→0

√
2eε(t, s) = limε→0

√
2Eε(u(t, s)). (2.5.2)

As in Theorem 2.5.2, we have

∂Eε
∂s

=

∫ 1

0

∂eε
∂s

dt

=

∫ 1

0

1

V ol

(
∂

∂t

∫
M

utus(1 + ∆u)dg − ε
∫
M

usdg

)
dt

=
1

V ol

∫
M

ut(1, s)vs(1 + ∆v)dg − ε

V ol

∫ 1

0

∫
M

usdgdt.

We follow the notations in Lemma 2.5.4, thus

∂Eε
∂s

= 〈〈X,Y 〉〉t=1 −
ε

V ol

∫ 1

0

∫
M

usdgdt.

Then

∂2Eε
∂s2

= 〈〈DYX,Y 〉〉t=1 + 〈〈X,DY Y 〉〉t=1 −
ε

V ol

∫ 1

0

∫
M

ussdgdt.

According to Lemma 2.5.4, ‖Y ‖ is a convex function of t. And here we have Y (0) = 0, it

follows that

∂

∂t
‖Y (t)‖t=1 ≥ ‖Y (1)‖,

therefore,

〈〈DXY, Y 〉〉t=1 ≥ 〈〈Y, Y 〉〉t=1.
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So

∂2Eε
∂s2

≥ 〈〈Y, Y 〉〉t=1 + 〈〈X,DY Y 〉〉t=1 −
ε

V ol

∫ 1

0

∫
M

ussdgdt,

moreover, at t = 1, u(1, s) = v(s) is also an ε-geodesic, we have

DY Y =
ε

1 + ∆u
,

and

〈〈Y, Y 〉〉t=1 =
1

V ol

∫
M

v2
s(1 + ∆v)dg ≥ 2Eε(v(·))− Cε,

finally we obtain

∂2Eε
∂s2

≥ 2Eε(v(·))− Cε.

Therefore

Eε(u(·, λ)) ≤ (1− λ)Eε(u(·, 0)) + λEε(u(·, 1))− λ(1− λ)Eε(v(·))− Cε.

Now we fix λ and let ε→ 0, by the equality (2.5.2), the theorem follows.

We know that every geodesic segment achieves the minimum length of all paths connecting its

end points. The following statement shows that any length minimizing sequence of paths joining

any two points in V must contain a subsequence converging to the unique weak geodesic in the

distance topology.

Corollary 2.5.2. Let u0, u1 ∈ V, and let {ui} be any sequence of paths in V from u0 to u1 and

whose length converges to the least possible limit. Then {ui} converges, in the distance topology,

to the unique weak geodesic joining u0 and u1.

Proof. Let u(t) : [0, 1]→ V be the unique weak geodesic joining u0 and u1. Then l(u) = d(u0, u1).

By assumption, we have

lim
i→+∞

l(ui) = l(u).
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For simplicity, we assume that each curve involved is parameterized proportionally to the

arclength. For any t ∈ [0, 1], using Theorem 2.5.4, we have

d(ui(t), u(t))2 ≤ td(ui(t), u1)2 + (1− t)d(ui(t), u0)2 − t(1− t)d(u0, u1)2,

thus

d(ui(t), u(t))2 ≤ tl(ui|[t,1])
2 + (1− t)l(ui|[0,t])2 − t(1− t)l(u)2

= t(1− t)2l(ui)
2 + (1− t)t2l(ui)2 − t(1− t)l(u)2

= t(1− t)(l(ui)2 − l(u)2),

as a result,

d(ui(t), u(t))→ 0,

uniformly as i→ +∞. The theorem follows.

2.6 C1,1 geodesics in real case when sectional curvature is

non-negative

To prove Theorem 1.0.1, it suffices to prove the following a priori estimates:

Proposition 2.6.1. Assume that the sectional curvature of M is nonnegative. If u satisfies (∗∗),

then there is a uniform constant C which is independent of ε such that

|∇2u| ≤ C. (2.6.1)

Proof. According to Chen and He [24], we know that there is a uniform bound for u, ∇u, ∆u, utt

and ∇ut, independent of ε. On M × [0, 1], we define a function

α := max
X∈TM, |X|=1

〈∇X∇u,X〉+ |∇u|2 +A(−u+
t2

2
),
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where A is a constant to be determined later. Thus, to prove the estimate (2.6.1), it suffices to

bound α.

We assume that α attains maximum at an interior point (x0, t0) ∈ M × (0, 1), otherwise we

are done.

Let e1, ..., em be an orthonormal local frame of vector fields near x0 which is normal at x0.

This means that gij = 〈ei, ej〉 = δij near x0 and Γkij = 0 at x0. We may also assume that at

(x0, t0),

max
X∈TM, |X|=1

〈∇X∇u,X〉 = u11.

Note that u11 is a well-defined function near (x0, t0), and if we define

α̃ := u11 + |∇u|2 +A(−u+
t2

2
),

near (x0, t0), then α̃ also has a maximum at (x0, t0), since

α̃ ≤ α ≤ α(x0, t0) = α̃(x0, t0).

Similarly as in Guan [40], one can show that u1j(x0, t0) = 0 for j ≥ 2, and therefore the m×m

matrix (uij) can be diagonalized at (x0, t0). To see this let eθ = e1 cos θ + ej sin θ, then

ueθeθ (x0, t0) = u11 cos2 θ + 2u1j sin θ cos θ + ujj sin2 θ

has a maximum at θ = 0. So

d

dθ

∣∣∣∣
θ=0

ueθeθ (x0) = 0,

which gives u1j(x0, t0) = 0.

Near (x0, t0) we define the (m+ 1)× (m+ 1) matrix

∇2u =



u11 . . . u1m u1t

...
. . .

...
...

um1 . . . umm umt

ut1 . . . utm utt


,
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that is, the Hessian of the function u defined on M × [0, 1], and we rewrite the equation as

F (∇2u) := log(utt(1 + ∆u)− |∇ut|2) = log ε. (2.6.2)

We mention again the linearization of the left-hand side of (2.6.2) given by

L(h) =
1

ε
(utt∆h+ (1 + ∆u)htt − 2〈∇ut,∇ht〉) ,

is an elliptic and concave operator.

We compute

L(u11) =
1

ε

(∑
i

utt(u11)ii + (1 + ∆u)utt11 − 2
∑
i

uti(ut11)i

)
. (2.6.3)

At (x0, t0), in fact we have

(uii)j = uiij , (2.6.4)

and

(ukk)ij = ukkij . (2.6.5)

Following Guan [40], here we also provide some explanations. First, the equality (2.6.4) is

obvious when the local frame is normal at x0. In general, since e1, ..., em are orthonormal, we have

〈∇ekei, ej〉+ 〈ei,∇ekej〉 = 0,

〈∇eiek,∇ejek〉+ 〈ek,∇ei∇ejek〉 = 0.

Thus

Γjki + Γikj = 0,

ΓlikΓljk +∇ei(Γkjk) + ΓljkΓkil = 0,

which means Γiki = 0 and ∇ei(Γkjk) = 0.
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By definition, at (x0, t0),

(uii)j = uiij + 2Γkjiuki = uiij + 2Γijiuii,

since (uij) is diagonal at (x0, t0). By Γiji = 0, we have (2.6.4).

Next we compute directly

(ukk)ij = ∇ej∇ei(ukk)− Γlji∇el(ukk)

= ∇ej (ukki + 2Γlikulk)− Γljiukkl

= ukkij + 2Γljkulki + Γljiukkl + 2∇ej (Γlik)ulk

+ 2Γlikulkj + 2ΓlikΓpjlupk + 2ΓlikΓpjkulp − Γljiukkl

= ukkij + 2Γljkulki + 2∇ej (Γkik)ukk + 2Γlikulkj − 2ΓlikΓljkukk + 2ΓlikΓljkull,

by Γkij = 0 at x0 and ∇ej (Γkik) = 0, we have (2.6.5).

From now on, we emphasize that all the calculation will be carried out at the point (x0, t0).

Taking covariant derivative of (2.6.2) twice, we have

F pq(upq)k = 0, for any k, (2.6.6)

F pq(upq)11 + F pq,rs(upq)1(urs)1 = 0,

where we use the notation F pq := ∂F
∂upq

, F pq,rs := ∂2F
∂upq∂urs

.

By concavity of the operator F , we obtain

F pq(upq)11 ≥ 0,

which means that

utt
∑
i

uii11 + (1 + ∆u)utt11 − 2
∑
i

uti(uti)11 ≥ 0. (2.6.7)
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By the commutation formula (2.1.4),

u11ii − uii11 = (∇eiR)m1i1um +Rm1i1umi +Rm1iiu1m

+Rm1i1umi + (∇e1R)m1iium +Rm1iium1

= 2R1ii1(u11 − uii) + C(|∇R|, |∇u|),

where C is a constant under control which may be different from line to line in the following.

Since we assume the sectional curvature ofM is nonnegative, which impliesR1ii1 ≥ 0, therefore,

u11ii ≥ uii11 + C(|∇R|, |∇u|). (2.6.8)

In fact here is the only time we use this assumption.

Inserting the inequalities (2.6.7) and (2.6.8) into (2.6.3), we get

L(u11) ≥ 1

ε

[
C(|∇R|, |∇u|)utt + 2

∑
i

uti ((uti)11 − ut11i)

]
.

By definition,

(uti)11 = ∇e1∇e1(uti)− Γk11∇k(uti)

= uti11 + C(|R|, |∇ut|)

= ut11i + C(|R|, |∇ut|),

where we use the commutation formula again, finally we have

L(u11) ≥ −Cutt + ∆u+ 1

ε
. (2.6.9)

Next we estimate L(|∇u|2). First, we compute directly

(|∇u|2)i = 2
∑
k

ukuki = 2uiuii, (|∇u|2)t = 2
∑
k

ukutk,

(|∇u|2)ii = 2
∑
k

(u2
ki + ukukii) = 2u2

ii + 2
∑
k

uk(uiik +Rmiikum),

(|∇u|2)tt = 2
∑
k

(u2
tk + ukuttk),

(|∇u|2)ti = 2
∑
k

ukiutk + 2
∑
k

ukutki = 2uiiuti + 2
∑
k

ukutki,
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then

L(|∇u|2) =
1

ε

(∑
i

utt(|∇u|2)ii + (1 + ∆u)(|∇u|2)tt − 2
∑
i

uti(|∇u|2)ti

)

=
2

ε
(
∑
i

uttu
2
ii +

∑
k

uttuk(∆u)k + uttRic(∇u,∇u)

+ (1 + ∆u)
∑
k

u2
tk + (1 + ∆u)

∑
k

ukuttk − 2
∑
i

u2
tiuii − 2

∑
k,i

ukutiutki).

Using the equation (2.6.6), we have

L(|∇u|2) =
2

ε

(∑
i

uttu
2
ii + uttRic(∇u,∇u) + (1 + ∆u)

∑
k

u2
tk − 2

∑
i

u2
tiuii

)

≥ 2

ε

(∑
i

uttu
2
ii + (1 + ∆u− 2u11) (utt(1 + ∆u)− ε)− C(|R|, |∇u|)utt

)

≥ 4u11 − C
utt + ∆u+ 1

ε
.

Summing up, by maximal principle, we will obtain at (x0, t0),

0 ≥ L(α̃) ≥ 4u11 + (A− C)
utt + ∆u+ 1

ε
− 2A,

now we may take A >> 0, it follows that u11 ≤ C at (x0, t0), and

α ≤ α(x0, t0) ≤ C,

and the theorem follows.
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Chapter 3

Complex Hessian equations on

compact Hermitian manifolds

with boundary

Organisation. In Section 3.1 we give definitions for generalised m−subharmonic functions together

with some basic properties. Assuming Theorem 1.0.2, in Section 3.2 we develop “pluripotential

theory” for generalised m−subharmonic functions in a Euclidean ball. Section 3.3 is devoted to

study weak solutions to the Dirichlet problem. Finally, in Sections 3.4, we prove Theorem 1.0.2

independent of other sections. The appendix is given in Section 3.5.

3.1 Generalised m-subharmonic functions

Fix a Hermitian metric α =
√
−1αij̄dz

i ∧ dz̄j on a bounded open set Ω in Cn. A C2 function u

on Ω is called α-subharmonic if

∆αu(z) =
∑

αj̄i(z)
∂2u

∂zi∂z̄j
(z) ≥ 0, (3.1.1)
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where αj̄i is the inverse of αij̄ . We can rewrite it simply in term of (n, n)-positive forms

ddcu ∧ αn−1 ≥ 0, where d = ∂ + ∂̄, dc =

√
−1

2π
(∂̄ − ∂).

This form has the advantage that one can generalise to non-smooth functions and with possibility

define higher power of the wedge product of ddcu (see Remark 3.1.5). We start with the following

definition which is adapted from subharmonic functions.

Definition 3.1.1. A function u : Ω→ [−∞,+∞[ is called α−subharmonic if

(a) u is upper semicontinuous and u ∈ L1
loc(Ω);

(b) for every relatively compact open set D ⊂⊂ Ω and every h ∈ C0(D̄) satisfying ∆αh = 0 in

D, if h ≥ u on ∂D, then h ≥ u on D̄.

Remark 3.1.2. Comparing with subharmonic functions we have that

1. If an upper semicontinuous u satisfies (b), then by Harvey-Lawson [47, Theorem 9.3(A)] it

follows that either u ≡ −∞ or u ∈ L1
loc(Ω).

2. The α−subharmonicity for continuous function u is equivalent to the inequality ∆αu ≥ 0

in the distributional sense, a detailed statement of this fact will be given in Lemma 3.5.3

(Appendix).

Given another real (1, 1)-form χ =
√
−1χij̄dz

i∧dz̄j . We shall define (χ,m)−α-subharmonicity

for non-smooth functions. We denote by

Γm = {λ = (λ1, ..., λn) ∈ Rn : S1(λ) > 0, ..., Sm(λ) > 0}

the symmetric positive cone associated with k-th elementary symmetric functions

Sk(λ) =
∑

1≤i1<···<ik≤n

λi1λi2 · · ·λik .

It is well known that Γm is an open convex cone in Rn. The positive cone Γm(α) associated with

the metric α is defined as

Γm(α) = {γ real (1, 1)− form: γk ∧ αn−k > 0 for every k = 1, ...,m}.
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In other words, in the orthonormal coordinate such that α =
∑
i

√
−1dzi ∧ dz̄i at a given point in

Ω, also diagonalising γ =
∑
i λi
√
−1dzi ∧ dz̄i, then γ ∈ Γm(α) if (λ1, ..., λn) ∈ Γm.

Definition 3.1.3. A function u : Ω → [−∞,+∞[ is called m − α-subharmonic if u is α̃-

subharmonic for any α̃ of the form α̃n−1 = γ1 ∧ · · · ∧ γm−1 ∧ αn−m, where γ1, ..., γm−1 ∈ Γm(α).

Here, the metric α̃ is uniquely defined thanks to a result of Michelsohn [70]. By a simple

consideration we have a generalisation

Definition 3.1.4. A function u : Ω → [−∞,+∞[ is called (χ,m) − α-subharmonic if u + ρ is

α̃-subharmonic for any α̃ of the form α̃n−1 = γ1 ∧ · · · ∧ γm−1 ∧αn−m, where γ1, ..., γm−1 ∈ Γm(α),

and the smooth function ρ is defined, up to a constant, by the equation ddcρ ∧ α̃n−1 = χ ∧ α̃n−1.

Notice that when χ ≡ 0, Definition 3.1.4 coincides with Definition 3.1.3. Thanks to Lemma 3.5.3

in Appendix, we get that for a (χ,m)− α-subharmonic function u,

(χ+ ddcu) ∧ γ1 ∧ · · · ∧ γm−1 ∧ αn−m ≥ 0 (3.1.2)

for any collection γi ∈ Γm(α), in the weak sense of currents. We denote the set of all (χ,m)− α-

subharmonic functions in Ω by

SHχ,m(α,Ω) or SHχ,m(α)

(for short) if the considered set is clear from the context.

Remark 3.1.5. (1) For a C2 function u the inequality (3.1.2) is equivalent to the inequalities

(χ+ ddcu)k ∧ αn−k ≥ 0 for k = 1, ...,m. (3.1.3)

In other words, u ∈ SHχ,m(α,Ω) if and only if χ+ ddcu ∈ Γm(α) at any given point in Ω.

This fact can be seen as follows: for any real (1, 1)-form τ ∈ Γm(α) and 1 ≤ k ≤ m,

τk ∧ αn−k

αn
=

(
inf
γ

{
τ ∧ γk−1 ∧ αn−k

αn

})k
, (3.1.4)

where γ is taken such that γ ∈ Γm(α) and γk ∧ αn−k/αn = 1.
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Indeed, By G̊arding inequality,

τ ∧ γk−1 ∧ αn−k

αn
≥
(
τk ∧ αn−k

αn

) 1
k

·
(
γk ∧ αn−k

αn

) k−1
k

,

thus ≤ follows. To show ≥, consider the orthonormal coordinate with respect to α at a given point,

diagonalising τ =
∑
i τi
√
−1dzi∧dz̄i, we let γ =

∑
i γi
√
−1dzi∧dz̄i, where γi = τi

/(
τk∧αn−k

αn

) 1
k

,

then the infimum is attained. Also, the equality (3.1.4) implies that the operator Sk(λ)
1
k is concave.

(2) There are other definitions for m − α-subharmonic functions. The first one is suggested by

B locki [9] and the second one is given by Lu [66, Definition 2.3] in a more general setting. All

definitions are equivalent in the case of m−subharmonic functions, i.e. α = ddc|z|2. Later on, by

Lemma 3.5.8, we will find that our definition is equivalent to the one in [66].

We list here some basic properties of (χ,m)− α-subharmonic functions.

Proposition 3.1.1. Let Ω be a bounded open set in Cn.

(a) If u1 ≥ u2 ≥ · · · is a decreasing sequence of (χ,m) − α-subharmonic functions, then u :=

limj→∞ uj is either (χ,m)− α-subharmonic or ≡ −∞.

(b) If u, v belong to SHχ,m(α), then so does max{u, v}.

(c) Let a family of functions {uα}α∈I ⊂ SHχ,m(α) be locally uniformly bounded above. Then,

the upper semicontinuous regularisation u∗ of u(z) := supα uα(z) is (χ,m)−α-subharmonic.

Proof. It is enought to verify α̃−subharmonicity for every α̃n−1 = γ1∧· · ·∧γm−1∧αn−m with γi ∈

Γm(α). Once α̃ is fixed the proof follows from Appendix (Proposition 3.5.1, Corollary 3.5.5).

3.2 Pluripotential estimates in a ball

In this section we develop pluripotential theory for (χ,m)−α-subharmonic functions in a Euclidean

ball, where α is conformal to a Kähler metric on this ball. To do this we fix a ball B := B(z, r) ⊂⊂
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Ω with small radius, where Ω is a bounded open set in Cn. We also fix a smooth functionG : B̄ → R

such that ω := eGα is Kähler, i.e.,

d(eGα) = 0 on B̄. (3.2.1)

Notice that by Definition 3.1.4 we have SHχ,m(α) ≡ SHχ,m(ω) as Γm(α) ≡ Γm(ω).

For 1 ≤ m ≤ n and a general Hermitian metric α, it is not known yet whether any (χ,m) −

α-subharmonic function can be approximated by a decreasing sequence of smooth (χ,m) − α-

subharmonic functions. So we make the following definition.

Definition 3.2.1. Let v be a (χ,m)− α-subharmonic function in a neighborhood of B̄. v is said

to belong to A if there exists a sequence of smooth (χ,m)−α-subharmonic functions vj ∈ C∞(B̄)

decreasing point-wise to v in B as j goes to +∞.

For simplicity we also assume in this section that for every z ∈ Ω̄,

χ(z) ∈ Γm(α), (3.2.2)

(otherwise we replace χ by χ̃ := χ + Cddcρ where ρ is a strictly plurisubharmonic function in Ω̄

and C > 0 large.) Since B̄ is compact, there exist 0 < c0 ≤ 1, depending on χ, α, B̄, such that

χ− c0α ∈ Γm(α).

Throughout this chapter we often write

χu := χ+ ddcu for u ∈ SHχ,m(α).

3.2.1 Hessian operator

According to the results in [60] for any v1, ..., vm ∈ A ∩ C0(B̄), the wedge product

χv1
∧ · · · ∧ χvm ∧ αn−m

is a well-defined positive Radon measure for a general Hermitian metric α. However, to define the

wedge product for vi ∈ A ∩ L∞(B̄) we will need the Kähler property of ω = eGα in (3.2.1).
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Following Bedford-Taylor [5], by a simple modification, we can define the wedge product for

vi ∈ A ∩ L∞(B̄) as follows. Fix a strictly plurisubharmonic function ϕ in a neighborhood of B̄

such that

τ := ddcϕ− χ > 0.

Let us denote wi := vi + ϕ. Then wi is m− ω-subharmonic and bounded. Since ω is Kähler, we

define inductively for 1 ≤ k ≤ m,

ddcwk ∧ · · · ∧ ddcw1 ∧ ωn−m := ddc(wkdd
cwk−1 ∧ · · · ∧ ddcw1 ∧ ωn−m). (3.2.3)

The resulted wedge product is a positive (n−m+ k, n−m+ k)−current. Then, one puts

ddcwk ∧ · · · ∧ ddcw1 ∧ αn−m := e(m−n)Gddcwk ∧ · · · ∧ ddcw1 ∧ ωn−m. (3.2.4)

We see that local properties that hold for a positive current on the right hand side will be preserved

to the positive currents on the left hand side. Finally, using a formal expansion, we set

χv1 ∧ · · · ∧ χvm ∧ αn−m

:=
∑

1≤i1<···<ik≤m

(−1)m−kddcwi1 ∧ · · · ∧ ddcwik ∧ αn−m ∧ τm−k.
(3.2.5)

This is an honest equality in the case v′is are smooth functions. The right hand side still makes

sense, when v′is are only bounded, by (3.2.3) and (3.2.4). Thus, the wedge product on the left

hand side is a well-defined (n, n)−positive current.

We also observe that the equality (3.2.5) does not depend on the choice of ϕ. Moreover, let

T = χv1 ∧ · · · ∧ χvk ∧ αn−m for vi ∈ A ∩ L∞(B̄) and w ∈ A ∩ L∞(B̄). Then, we have

(χ+ ddcw) ∧ T = χ ∧ T + ddcw ∧ T.

In other words, the definition of the wedge product obeys the linearity as in the smooth case.

Remark 3.2.2. If we do not assume dα = 0 (or d(eGα) = 0 for some function G), then in the

inductive process we cannot get rid of the extra terms, e.g.,

ddcvk ∧ · · · ∧ ddcv1 ∧ ddcαn−m.
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As ddcvi is not positive, we do not know how to define the wedge product for bounded functions

vi in A once the power of the base α is less than n −m. It is worth mentioning that if v′is are

continuous and belong to A, then we can use the uniform convergence of potentials to define wedge

product as in [60].

As in [60] the Chern-Levine-Nirenberg (CLN) inequalities are proved quickly in the present

setting.

Lemma 3.2.1. Let u1, ..., um ∈ A ∩ L∞(B̄). Let K ⊂⊂ B be a compact set. Then,

∫
K

χu1
∧ · · · ∧ χum ∧ αn−m ≤ C,

where C depends on α,K,B, ‖u1‖L∞(B), ..., ‖um‖L∞(B).

Proof. Since ω = eGα is Kähler and G is bounded on B̄, using formulas (3.2.4), (3.2.5),

∫
K

χu1 ∧ · · · ∧ χum ∧ αn−m ≤ e(n−m) supB̄ |G|
∫
K

χu1 ∧ · · · ∧ χum ∧ ωn−m.

Then, the lemma follows from integration by parts (see [60, Proposition 2.9]).

The following Bedford-Taylor convergence theorems are crucial in our approach.

Theorem 3.2.3. Let {uj1}j≥1, ..., {ujm}j≥1 ⊂ A ∩ L∞(B̄) be decreasing (or increasing) sequences

which converge point-wise to u1, ..., um ∈ A ∩ L∞(B̄), respectively. Then, the sequence of positive

measures

(χ+ ddcuj1) ∧ · · · ∧ (χ+ ddcujm) ∧ αn−m

converges weakly to the positive measure

(χ+ ddcu1) ∧ · · · ∧ (χ+ ddcum) ∧ αn−m

as j → +∞.

Proof. Recall that ω := eGα is a Kähler form on B̄. By definitions (3.2.4) and (3.2.5) it is enough

to show that if decreasing sequences of bounded m−ω-suharmonic functions {vj1}j≥1, ..., {vjm}j≥1
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converge to bounded m − ω-subharmonic functions v1, ..., vm, respectively, then the sequence of

(n, n)−positive currents ddcvj1∧· · ·∧ddcvjm∧ωn−m weakly converges to ddcv1∧· · ·∧ddcvm∧ωn−m.

Therefore, the theorem follows from an easy adaption of arguments in Bedford-Taylor [5].

Let us define the notion of capacity associated with Hessian operators which plays an important

role in the study of bounded (χ,m)− α-subharmonic functions. For a Borel set E ⊂ B,

cap(E) := sup

{∫
E

(χ+ ddcv)m ∧ αn−m : v ∈ A, 0 ≤ v ≤ 1

}
. (3.2.6)

We first observe that this capacity is equivalent to another capacity.

Lemma 3.2.2. For a Borel set E ⊂ B,

cm(E) := sup

{∫
E

(ddcw)m ∧ αn−m : w ∈ A0, 0 ≤ w ≤ 1

}
, (3.2.7)

where A0 is the class A with χ ≡ 0. Then, there exists a constant C depending on χ, α such that

1

C
cap(E) ≤ cm(E) ≤ Ccap(E)

for any Borel set E ⊂ B.

Proof. Since χ ≤ ddcϕ for some smooth plurisubharmonic function on B̄, the first inequality

follows. To show the second one, we need to use the positivity of α. By (3.2.2) there is a constant

C > 0 such that

χ− 1

C
ddcρ ∈ Γm(α),

where ρ = |z|2 − r2 ≤ 0. We can choose C such that |ρ/C| ≤ 1/2. Take a function 0 ≤ w ≤ 1/2

in A0, then it is easy to see that

∫
E

(ddcw)m ∧ αn−m ≤
∫
E

(
χ+ ddc(w − ρ

C
)
)m
∧ αn−m ≤ cap(E).

Hence, cm(E) ≤ 2mcap(E).

Corollary 3.2.1. Let u ∈ A ∩ L∞(B̄). Then, u is quasi-continuous with respect to the capacity

cap(·).
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Proof. Observe that v := u+ϕ is m−α subharmonic for some smooth plurisubharmonic function

ϕ on B̄. Therefore, v is also approximated by a decreasing sequence of smooth m−α subharmonic

functions. By the arguments in Bedford-Taylor [5] adapted to the case ω = eGα (see similar argu-

ments in Lemma 3.5.10), we get that v is quasi-continuous with respect to cm(·). By Lemma 3.2.2

the proof is completed.

The next consequence is an inequality between volume and capacity.

Lemma 3.2.3. Fix 1 < τ < n/(n−m). There exists a constant C(τ) such that for any Borel set

E ⊂ B,

Vα(E) ≤ C(τ)
[
cap(E)

]τ
, (3.2.8)

where Vα(E) :=
∫
E
αn.

The exponent here is optimal because if we take α = ddc|z|2, then the explicit formula for

cm(B(0, s)) in B = B(0, r) with 0 < s < r, provides an example.

Proof. From [29, Proposition 2.1] we knew that Vα(E) ≤ C[cm(E)]τ with cm(E) defined in (3.2.7).

Note that the argument in [29] remains valid for non-Kähler α since the mixed form type in-

equality used there still holds by stability estimates for the Monge-Ampère equation. Thanks to

Lemma 3.2.2 the proof follows.

3.2.2 Comparison principle in A ∩ L∞(B̄)

For simplicity if u, v ∈ A ∩ L∞(B̄) we write

u ≥ v on ∂B meaning that lim inf
z→∂B

(u− v) ≥ 0. (3.2.9)

Lemma 3.2.4. Let u, v ∈ SHχ,m(α) ∩ L∞(B̄) be such that u ≥ v on ∂B. Let T = χv1
∧ · · · ∧

χvm−1 ∧ αn−m with vi ∈ SHχ,m ∩ L∞(B̄). Then,∫
{u<v}

ddcv ∧ T ≤
∫
{u<v}

ddcu ∧ T +

∫
{u<v}

(v − u)ddcT.
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Notice that by the equations (3.2.4) and (3.2.5)

ddcT = ddc
(
e(m−n)Gχv1

∧ · · · ∧ χvm−1
∧ ωn−m

)
= ddc

(
e(m−n)Gχv1

∧ · · · ∧ χvm−1

)
∧ ωn−m,

where ω = eGα is a fixed Kähler form as in (3.2.1).

Proof. By replacing u by u + δ for δ > 0 and then letting δ ↘ 0 we will work with {u < v} ⊂⊂

K ⊂⊂ B, where K is an open set. By the CLN inequality (Lemma 3.2.1)

∫
K

‖ddcT‖ < +∞.

By Theorem 3.2.3, Corollary 3.2.1, and arguments in [6] we get that

1{u<v}dd
c max{u, v} ∧ T = 1{u<v}dd

cv ∧ T (3.2.10)

as two measures. Since {u+ ε < v} ⊂⊂ K for ε > 0, Stokes’ theorem gives∫
K

ddc max{u+ ε, v} ∧ T

=

∫
∂K

dcu ∧ T +

∫
K

dc max{u+ ε, v} ∧ dT

=

∫
∂K

dcu ∧ T +

∫
∂K

u ∧ dT +

∫
K

max{u+ ε, v}ddcT

=

∫
K

ddcu ∧ T −
∫
K

uddcT +

∫
K

max{u+ ε, v}ddcT

=

∫
K

ddcu ∧ T +

∫
{u+ε<v}∩K

(v − u)ddcT + ε

∫
{u+ε≥v}∩K

ddcT.

Moreover, by the identity (3.2.10)∫
{u+ε<v}

ddcv ∧ T

=

∫
{u+ε<v}

ddc max{u+ ε, v} ∧ T

=

∫
K

ddc max{u+ ε, v} ∧ T −
∫
{u+ε≥v}∩K

ddc max{u+ ε, v} ∧ T

≤
∫
K

ddc max{u+ ε, v} ∧ T −
∫
{u+ε>v}∩K

ddcu ∧ T.
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Thus, it follows that∫
{u+ε<v}

ddcv ∧ T ≤
∫
{u+ε≤v}

ddcu ∧ T +

∫
{u+ε<v}

(v − u)ddcT

+ ε

∫
K

‖ddcT‖.

Letting ε↘ 0 we get the desired inequality.

In the Hermitian setting due to the torsion of α and χ, the classical comparison principle no

longer holds. However, its weak versions in [28] and [58] are enough for several applications. We

state the local counterparts of those.

Let D1, D2 be two constants such that on B̄,

−D1α
2 ≤ ddcα ≤ D1α

2, −D1α
3 ≤ dα ∧ dcα ≤ D1α

3;

−D2α
2 ≤ ddcχ ≤ D2α

2, −D2α
3 ≤ dχ ∧ dcχ ≤ D2α

3.

(3.2.11)

Lemma 3.2.5. Let u, v ∈ A∩L∞(B̄) be such that u ≥ v on ∂B. Assume that d = supB̄(v−u) > 0.

and D1D2 sup{u<v}(v − u) ≤ 1. Then,∫
{u<v}

(χ+ ddcv)m ∧ αn−m ≤
∫
{u<v}

(χ+ ddcu)m ∧ αn−m+

+ CD1D2 sup
{u<v}

(v − u)

m−1∑
k=0

∫
{u<v}

(χ+ ddcu)k ∧ αn−k.

The constant C depends only on n,m.

Proof. We use repeatedly Lemma 3.2.4 (for T = χku ∧ χlv ∧ αn−k−l, k + l ≤ m − 1), and bounds

in (3.2.11) to replace v by u. Thanks to results in [60, Section 2] the arguments go through for

general Hessian operators with respect to the Hermitian metric α.

Recall from (3.2.2) that there exists 0 < c0 ≤ 1, depending on χ, α, B̄, such that

χ− c0α ∈ Γm(α). (3.2.12)

The weak comparison principle is a crucial tool in pluripotential theory approach to study weak

solutions of Hessian type equations [58, 59, 60]. We state a local version.
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Lemma 3.2.6. Let u, v ∈ A∩L∞(B̄) be such that u ≥ v on ∂B. Assume that d = supB(v−u) > 0.

Fix 0 < ε < min{1/2, d/(1 + 2‖v‖∞)}. Denote S(ε) = infB [u− (1− ε)v], and for s > 0,

U(ε, s) := {u < (1− ε)v + S(ε) + s}.

Then, for 0 < s < (c0ε)
3/(16D1D2),

∫
U(ε,s)

(
χ+ (1− ε)ddcv

)m ∧ αn−m ≤ (1 +
Cs

(c0ε)m

)∫
U(ε,s)

(χ+ ddcu)m ∧ αn−m.

The constant depends on n,m,D1, D2.

Proof. We only give here a brief argument as it is very similar to the one of [58, Theorem 2.3].

Set for 0 ≤ k ≤ m,

ak :=

∫
U(ε,s)

χku ∧ αn−k.

Then,

(c0ε)ak ≤ ε
∫
U(ε,s)

χku ∧ χ ∧ αn−k−1 ≤
∫
U(ε,s)

χku ∧ χ(1−ε)v ∧ αn−k−1.

By Lemma 3.2.4

∫
U(ε,s)

χku ∧ χ(1−ε)v ∧ αn−k−1 ≤
∫
U(ε,s)

χk+1
u ∧ αn−k−1 +R,

where R =
∫
U(ε,s)

[(1− ε)v + S(ε) + s− u]ddc
(
χku ∧ αn−k−1

)
. It is bounded by

R ≤ sD1D2(ak + ak−1 + ak−2),

where we simply understand ak ≡ 0 for k < 0. To be honest, here we used [60, Lemma 2.3], hence

we should multiply the right hand side with a constant Cm,n > 0 depending only on m,n. This is

no harm as we could adjust the definitions of D1, D2.

Thus, for 0 < s < δ := (c0ε)
3

D1D2
, (c0ε)ak ≤ δ(D1D2)(ak + ak−1 + ak−2) + ak+1. The rest goes in

the same way as in [58, Theorem 2.3].

The following result is obvious if potential functions are smooth.
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Corollary 3.2.2. Let u, v ∈ A ∩ L∞(B̄) be such that u ≥ v on ∂B. Suppose that χmu ∧ αn−m ≤

χmv ∧ αn−m in B. Then, u ≥ v on B̄.

Proof. It follows from the proof of [58, Corollary 3.4.] with obvious modifications. The reason is

that there exists a C2 strictly plurisubharmonic function on B̄.

We have proved the comparison principle (Lemma 3.2.6) and volume-capacity inequality (Lemma 3.2.3).

The following uniform a priori estimate is proved in the identically way as [60, Theorem 3.10].

Theorem 3.2.4. Let u, v ∈ A ∩ L∞(B̄) be such that

lim inf
z→∂B

(u− v) ≥ 0, d := sup
B

(v − u) > 0.

Let us fix the following constants:

p > n/m, 0 < τ <
p− n

m

p(n−m)
, τ∗ =

(1 +mτ)p

p− 1
;

0 < ε < min{1/2, d/3(1 + ‖v‖∞)};

ε0 :=
1

3
min{(c0ε)m,

(c0ε)
3

16D1D2
}.

Suppose that (χ+ ddcu)m ∧ αn−m = fαn on B with f ∈ Lp(B,αn). Assume that v is continuous

and put

U(ε, s) = {u < (1− ε)v + inf
B

[u− (1− ε)v] + s}.

Then, there exists a constant C = C(τ, α,B) such that for every 0 < s < ε0,

s ≤ C(1 + ‖v‖L∞(B))‖f‖
1
m

Lp(B) [Vα(U(ε, s))]
τ
τ∗ ,

where Vα(E) =
∫
E
αn for a Borel set E.

Notice that from assumptions, the sub-level sets near the infimum point will be non-empty

and relatively compact in the ball B. The restriction on the class A will be relaxed later (see

Remark 3.2.7).
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3.2.3 The Dirchlet problem on B̄

Consider the Dirichlet problem with the right hand side in Lp(B), p > n/m. Notice that n/m is

the optimal exponent.

u ∈ A ∩ C0(B̄),

(χ+ ddcu)m ∧ αn−m = fαn,

u = ϕ ∈ C0(∂B).

(3.2.13)

Lemma 3.2.7. Let f, g be non-negative functions in Lp(B), p > n/m. Let ϕ,ψ ∈ C0(∂B).

Suppose that u, v are solutions to the corresponding Dirichlet problems (3.2.13) with the datum

(f, ϕ) and (g, ψ). Then,

‖u− v‖L∞(B) ≤ sup
∂B
|ϕ− ψ|+ C‖f − g‖

1
m

Lp(B),

where C depends only on p and the diameter of B.

Proof. We use an idea in [29], which used the uniform a priori estimate for Monge-Ampère equation

due to Ko lodziej [54]. The proof here is similar to [72, Theorem 3.11]. Put h = |f − g| nm in B. It

follows that h ∈ L
pm
n (B), where pm

n > 1. Moreover,

‖h‖
1
n

L
pm
n (B)

= ‖f − g‖
1
m

Lp(B).

By a theorem in [54], there exists ρ ∈ PSH(B) ∩ C0(B̄) solving

(ddcρ)n = hαn, ρ|∂B = 0.

We also have

‖ρ‖L∞ ≤ C‖h‖
1
n

L
pm
n (B)

= C‖f − g‖
1
m

Lp(B),

where C = C(m,n, p,B, α) a uniform constant. Furthermore, by the mixed-form inequality,

(ddcρ)m ∧ αn−m ≥ hmn αn = |f − g|αn.
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Therefore,

[χu + ddcρ]m ∧ αn−m ≥ χmu ∧ αn−m + (ddcρ)m ∧ αn−m

≥ fαn + |f − g|αn

≥ gαn.

Since ρ ≤ 0 in B̄, it follows from the domination principle (Corollary 3.2.2) that u + ρ ≤ v +

sup∂B |u− v|. Hence,

u− v ≤ −ρ+ sup
∂B
|u− v| ≤ sup

∂B
|u− v|+ C‖f − g‖

1
m

Lp(B).

Similarly, v − u ≤ sup∂B |u− v|+ C‖f − g‖
1
m

Lp(B). Thus, the theorem follows.

We also need another stability estimate for solutions whose Hessian operators are in Lp, p >

n/m.

Lemma 3.2.8. Under the assumptions of Lemma 3.2.7 there exist a uniform constant C =

C(p,m, n, ‖f‖p, ‖g‖p) and a constant a = a(p,m, n) > 0 such that

‖u− v‖L∞(B) ≤ sup
∂B
|ϕ− ψ|+ C‖u− v‖aL1(B).

Proof. Having Theorem 3.2.4 we can repeat the proof of [60, Theorem 3.11] two times, one for

the pair u+ sup∂B |ϕ− ψ| and v, another for the pair v + sup∂B |ϕ− ψ| and u.

From the existence of smooth solutions (Theorem 1.0.2) and stability estimates (Lemma 3.2.7),

we obtain the existence and uniqueness of weak solutions on B̄.

Theorem 3.2.5. Let 0 ≤ f ∈ Lp(B) with p > n/m. Then, there exists a unique solution to the

Dirichlet problem (3.2.13).

The last ingredient to prove the approximation property for (χ,m)−α-subharmonic functions

is the existence of smooth solutions for a Hessian type equation.
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Lemma 3.2.9. Let H be a smooth function on B̄ and ϕ ∈ C∞(∂B). Then, there exists a unique

u ∈ SHχ,m(α) ∩ C∞(B̄) solving the Hessian equation

(χ+ ddcu)m ∧ αn−m = eu+Hαn,

u = ϕ on ∂B.

Proof. The right hand side depends also on u but with the right sign. We solve the equation by

the continuity method as in the proof of Theorem 1.0.3, provided a priori estimates up to second

order. The C0−estimate easily follows by considering the maximum point and the minimum

point of the solution. So does the C1−estimate on the boundary. The proof of C1−estimate at an

interior point will be affected at equations (3.4.12) and (3.4.13) in Section 3.4.2. The extra terms

appear in these equations are O(|∇u|2). So this will not affect the conclusion of the inequality

(3.4.14). Therefore, we will get C1−estimate. The C2−estimate at an interior point goes through

as in Section 3.4.3, as it is explained in [60, Lemma 3.18]. For the C2−estimates at a boundary

point, the equation (3.4.32) contains a bounded term O(|∇u|) under control by the C1−estimate.

Therefore, the equality (3.4.33) still holds and we get the desired estimates.

Lemma 3.2.10. Let 0 ≤ f ∈ Lp(B), p > n/m, and ϕ ∈ C0(∂B). Let {fj}j≥1 be smooth and

positive functions on B̄, converging in Lp(B) to f , and {ϕj}j≥1 ∈ C∞(∂B), converging uniformly

to ϕ, as j → +∞. Assume that

χmuj ∧ α
n−m = eujfjα

n,

uj = ϕj on ∂B.

Then, uj converges uniformly to u ∈ A ∩ C0(B̄), which is the unique solution in A ∩ C0(B̄) of

χmu ∧ αn−m = eufαn,

u = ϕ on ∂B.

Proof. Observe that uj is uniformly bounded above. It follows that the right hand side of equations

are uniformly bounded in Lp. Applying Lemma 3.2.7 for ψ = 0 and g = 0, this gives the uniform

bound for uj . Then, by compactness of the sequence uj in L1 and Lemma 3.2.8 we get a continuous

solution by passing to a limit. The uniqueness follows as in [73, Lemma 2.3].
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3.2.4 Approximation property on B̄

We have all ingredients ready to prove the main theorem of this section. By using results of Plís

[77], Harvey - Lawson - Plís [50, Theorem 6.1] also proved this theorem in the case when χ ≡ 0

and α is Kähler.

Theorem 3.2.6. Let u be (χ,m)− α-subharmonic in a neighborhood of B̄. Then, there exists a

sequence of smooth functions uj ∈ SHχ,m(α) ∩ C∞(B̄) such that uj decreases to u point-wise in

B as j → +∞.

Proof. We follow closely the proof of [60, Lemma 3.20], which in turn uses the scheme introduced

by Berman [7] and Eyssidieux-Guedj-Zeriahi [36] (see also Lu-Nguyen [68]).

By positivity assumption on χ ∈ Γm(α) for every z ∈ B̄ we have that j ∈ SHχ,m(α) for any

constant j. As max{u,−j} belongs to SHχ,m(α), we may assume that u is bounded. Since u is

upper semicontinuous on B̄, there exists a sequence of smooth functions φj decreasing to u on B̄.

Fix such an h := φj . Consider the envelope

h̃ := sup{v ∈ SHχ,m(α) ∩ L∞(B) : v ≤ h}. (3.2.14)

Then, h̃ ∈ SHχ,m(α) and u ≤ h̃ ≤ h. Therefore, if h̃ ∈ A, i.e. it has the approximation property,

then so does u by letting h = φj ↘ u. We shall prove that h̃ can be approximated uniformly and

then the lemma will follow.

Since h ∈ C∞(B̄), we can write χmh ∧ αn−m = Fαn with F being a smooth function on B̄.

Let us denote F∗ = max{F, 0}. We choose a sequence of smoothly non-negative functions Fj

decreasing uniformly to F∗ as j → ∞. Fix such a F̃ := Fj ≥ F∗. By Lemma 3.2.9 we solve for

0 < ε ≤ 1,

χmw̃ε ∧ α
n−m = e

1
ε (w̃ε−h)[F̃ + ε]αn,

w̃ε = h on ∂B.

By maximum principle, w̃ε ≤ h and w̃ε is increasing as ε decreases to 0. Keep ε fixed, and take
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limit on both sides for F̃ = Fj → F∗, i.e. letting j →∞, we get from Lemma 3.2.10,

χmwε ∧ α
n−m = e

1
ε (wε−h)[F∗ + ε]αn,

wε = h on ∂B.

Here w̃ε uniformly increases to wε. Thus, wε ∈ A ∩ C0(B̄) and wε is increasing as ε decreases to

0. Since wε ≤ h, the right hand side is uniformly bounded in L∞(B̄). The monotone sequence

wε, bounded above by h, is a Cauchy sequence in L1(B). By Lemma 3.2.8, this sequence is also

Cauchy in the uniform norm in B̄. So, wε uniformly increases to w which satisfies

χmw ∧ αn−m ≤ 1{w=h}F∗α
n,

w = h on ∂B.

In particular, w ∈ A ∩ C0(B̄). Now, we claim that w = h̃. The inequality w ≤ h̃ is clear. One

needs to verify that w ≥ h̃ on {w < h}. Take a candidate v in the envelope (3.2.14), i.e, v ≤ h.

Observe that χmw ∧ αn−m = 0 on {w < v} ⊂ {w < h}. By Corollary 3.2.2 it follows that w is

maximal on {w < h}. Thus, the set {w < v} is empty, i.e., w ≥ v. Since v is arbitrary, so w ≥ h̃.

The claim follows and so does the theorem.

Remark 3.2.7. (a) In the proof we only used the wedge product for continuous potentials, so

Theorem 3.2.6 holds for a general Hermitian metric α. In this case one should use a counterpart

of [60, Theorem 2.16] instead of Corollary 3.2.2 in the last argument.

(b) An immediate consequence is that the class A coincides with SHχ,m(α).

Thanks to the quasi-continuity and approximation property of (χ,m)−α-subharnonic functions

we get an inequality similar to the one for plurisubharmonic functions in Cegrell-Ko loldziej [16].

Proposition 3.2.1. Let u, v ∈ SHχ,m(α) ∩ L∞(B). Let µ be a positive measure such that χmu ∧

αn−m ≥ µ and χmv ∧ αn−m ≥ µ. Then

(χ+ ddc max{u, v})m ∧ αn−m ≥ µ.

Proof. It is readily adaptable from [16, Theorem 1] with an obvious change of notations.
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3.3 Weak solutions to the Dirichlet problem on Hermitian

manifolds

On the complex manifold M = M̄ \ ∂M we define the class SHχ,m(α,M) in local coordinates.

One main difference is that for an arbitrary real (1, 1)-form χ on M , there are plenty of local

(χ,m) − α-subharmonic functions on each local chart. However, the global class SHχ,m(α,M)

may be empty, e.g. for negative χ. Thus, the existence of a subsolution will guarantee that

SHχ,m(α) is non empty.

In this section we shall study weak solution to the Dirichlet problem for the complex Hessian

type equation. As we pointed out in Section 3.2.1 the assumption that α is locally conformal to

a Kähler metric on M is needed to develop potential theory for bounded functions.

Fix a continuous right hand side density 0 ≤ f ∈ C0(M̄) and a continuous boundary data

ϕ ∈ C0(∂M). Let us denote

µ := fαn.

We wish to solve the Dirichlet problem:

w ∈ SHχ,m(α) ∩ C0(M̄),

(χ+ ddcw)m ∧ αn−m = µ,

w = ϕ on ∂M.

(3.3.1)

The C2 subsolution ρ to the equation (3.3.1) satisfies:

χρ := χ+ ddcρ ∈ Γm(α),

and

(χ+ ddcρ)m ∧ αn−m ≥ µ, ρ = ϕ on ∂M. (3.3.2)

By replacing χ by χρ and u by u−ρ we can reduce the problem to the case of zero boundary data
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and χ ∈ Γm(α) as follows:

w ∈ SHχ,m(α) ∩ C0(M̄),

(χ+ ddcw)m ∧ αn−m = µ,

w = 0 on ∂M.

(3.3.3)

Then 0 is a subsolution to the equation (3.3.3), and there exists 0 < c0 ≤ 1 such that

χ− c0α ∈ Γm(α).

3.3.1 Envelope of continuous subsolutions

By assumption (3.3.2) the set

S = {v ∈ SHχ,m(α) ∩ C0(M̄) : χmv ∧ αn−m ≥ µ, v|∂M ≤ 0}

is not empty. Hence, we define the envelope

u0(z) := sup
v∈S

v(z). (3.3.4)

One expects that it will be a solution to the continuous Dirichlet problem.

Theorem 3.3.1. If u0 is continuous, then it solves the Dirichlet problem (3.3.1).

Proof. We first have u0 ∈ S by Proposition 3.1.1-(b) and Proposition 3.2.1. In particular,

(χ+ ddcu0)m ∧ αn−m ≥ µ.

It remains to show that χmu0
∧αn−m = µ. Fix a small ball B ⊂M and find w ∈ SHχ,m(α)∩C0(B̄)

solving w = u0 on ∂B and

(χ+ ddcw)m ∧ αn−m = µ in B.

Hence, w ≥ u0 in B̄. Consider the lift ũ ∈ S of u0 with respect to this ball defined by

ũ =


max {w, u0} on B,

u0 on M̄ \B.
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Thus, we have ũ ∈ S and u0 ≤ ũ in B. On the other hand by the definition of u0 we have

ũ ≤ u0. Thus, u0 = ũ in B, which means χmu0
∧αn−m = µ. This holds for any ball, so the theorem

follows.

Remark 3.3.2. For continuous (χ,m) − α-subharmonic functions the wedge product is always

well-defined. Theorem 3.3.1 is valid for a general Hermitian metric α. The remaining issue is to

verify the continuity of the envelope u0. So far we could not do this for a general Hermitian metric

α.

Remark 3.3.3. Let us consider m = n and f ≡ 0 in connection with the geodesic equation

studied notably by Semmes [78], Donaldson [32], Chen [23] and Blocki [11]. It follows from the

comparison principle (an extension of Lemma 3.2.6 for M in the place of B), that there exists

at most one continuous solution to the equation. Guan and Li [41] have extended the gradient

estimate in [10] to this case. Hence, we can get a continuous solution to the homogeneous equation

by a compactness argument. This solution is maximal on M , thus equal to u0. Thus, we get the

unique solution even in the case when the background metric is only Hermitian.

3.3.2 Envelope of bounded subsolutions

In this section we shall prove Theorem 1.0.3, where α is locally conformal Kähler. First we enlarge

the class S above,

Ŝ := {v ∈ SHχ,m(α) ∩ L∞(M̄) : χmv ∧ αn−m ≥ µ, v∗|∂M ≤ 0}.

The locally conformal Kähler assumption of α allows us to use potential theory which has been

developed in Section 3.2 for bounded (χ,m)− α-subharmonic functions. Set

u(z) := sup
v∈Ŝ

v(z)
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It follows from Proposition 3.1.1-(b) and Proposition 3.2.1 that u∗ ∈ Ŝ. Hence, u = u∗. Let us

solve the linear PDE

(χ+ ddcρ1) ∧ αn−1 = 0,

ρ1 = 0 on ∂M.

Therefore, 0 ≤ u ≤ ρ1. It implies that u = 0 and it is continuous on ∂M .

Remark 3.3.4. It is obvious that u0 ≤ u. If we can show that u is continuous on M , then u ∈ S

automatically. Then, u0 = u is indeed continuous.

In what follows, we shall prove that u is a solution to the (bounded) Dirichlet problem, and

then we will prove its regularity by using the a priori estimate (Theorem 3.2.4).

Lemma 3.3.1 (lift). Let v ∈ Ŝ. Let B ⊂ M be a small ball. There exists ṽ ∈ Ŝ such that v ≤ ṽ

and χmṽ ∧ αn−m = µ in B.

Proof. Choose C0(∂B) 3 φj ↘ v on ∂B and solve the Dirichlet problem

vj ∈ SHχ,m(α) ∩ C0(B̄),

(χ+ ddcvj)
m ∧ αn−m = µ,

vj = φj on ∂B.

It follows from Corollary 3.2.2 that vj ↘ w ∈ SHχ,m(α,B) satisfying

(χ+ ddcw)m ∧ αn−m = µ.

Furthermore, lim supz→ζ∈∂B w(z) ≤ v(ζ). By the domination principle (Corollary 3.2.2) we have

vj ≥ v on B. Thus, w ≥ v on B. Define

ṽ =


max {w, v} on B,

v on M̄ \B.

Then, ṽ is the function we are looking for.

Lemma 3.3.2. u ∈ SHχ,m(α) ∩ L∞(M) ∩ C0(∂M) and χmu ∧ αn−m = µ.
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Proof. It only remains to show that χmu ∧ αn−m = µ. Fix a small ball B ⊂ M and consider the

lift ũ ∈ Ŝ of u with respect to this ball. Then, u ≤ ũ in B. On the other hand by the definition

of u we have ũ ≤ u. Thus, u = ũ in B. Since B is arbitrary, χmu ∧ αn−m = µ on M .

We shall prove the most technical part.

Lemma 3.3.3. u is continuous on M̄ .

By Lemma 3.3.2, the function u satisfies the (bounded) Dirichlet problem:

w ∈ SHχ,m(α) ∩ L∞(M),

(χ+ ddcw) ∧ αn = µ,

lim
z→ζ

w(z) = 0 for every ζ ∈ ∂M.

Proof of Lemma 3.3.3. We follow closely [55, Section 2.4]. We argue by contradiction. Suppose u

is not continuous, then the discontinuity of u occurs at an interior point of M . Hence

d = sup
M̄

(u− u∗) > 0,

where u∗(z) = limε→0 infw∈B(z,ε) u(w) is lower regularisation of u. Consider the closed nonempty

set

F = {u− u∗ = d} ⊂⊂M.

We remark that F is closed and u|F is continuous on F . Therefore, we may choose a point x0 ∈ F

such that

u(x0) = min
F

u.

Choose a local coordinate chart about x0, relatively compact in M , which is isomorphic to a small

ball B := B(0, r) ⊂ Cn with origin at z(x0) = 0 and of small radius. Since χ ∈ Γm(α), there

exists δ > 0 such that

γ(z) := χ(z)− δddc|z|2 ∈ Γm(α) (3.3.5)

for every z ∈ B̄. Set

v := u+ δ|z|2 ∈ SHγ,m(α).
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Since u ≥ 0 on M , v∗(0) = u∗(0) ≥ 0. Hence, we have v ∈ L∞(B̄), which solves

(γ + ddcv)m ∧ αn−m = µ. (3.3.6)

We also find that

sup
B̄

(v − v∗) = sup
B̄

(u− u∗) = u(0)− u∗(0) = d.

Let us consider the sublevel sets, for 0 < s < d,

E(s) = {u∗ ≤ u− d+ s} ∩ B̄. (3.3.7)

It’s clear that E(s) is closed and by our assumption 0 ∈ E(s). Furthermore,

E(s)↘ E(0) = {u∗ = u− d} ∩B(0, r) 3 0.

Let us denote

τ(s) = u(0)− inf
E(s)

u(z).

Since E(s) is decreasing, it follows that τ(s) decreasing as s ↘ 0. Moreover, τ(s) is bounded for

0 ≤ s ≤ d. We also need the following fact.

Claim 3.3.5. lims→0 τ(s) = 0.

Proof of Claim 3.3.5. It is easy to see that lim infs→0 τ(s) ≥ τ(0) = 0. It is enough to show that

lim sups→0 τ(s) ≤ 0. Suppose that it is not true, i.e.,

lim sup
s→0

τ(s) = 2ε > 0

for some ε > 0. Then, there exists a sequence sj → 0 such that τ(sj) > ε for every integer j > 0.

It means that

inf
E(sj)

u < u(0)− ε.

Therefore, there is a sequence {zj}j≥1 ⊂ E(sj) satisfying u(zj) < u(0) − ε. Since any limit point

z of {zj}j≥1 belongs to E(0), u(z) ≥ u(0). Hence,

lim sup
j→∞

u(zj) ≤ u(0)− ε ≤ u(z)− ε.
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The upper semicontinuity of −u∗ gives

lim sup
j→+∞

[−u∗(zj)] ≤ −u∗(z).

Hence, d = lim supj→+∞[u(zj)− u∗(zj)] ≤ u(z)− ε− u∗(z) = d− ε. This is not possible and the

claim follows.

Take B′ = B(0, r′) with a bit larger r′ > r. By the approximation property in a small ball

(Theorem 3.2.6), one can find a sequence

SHγ,m(α) ∩ C∞(B′) 3 vj ↘ v = u+ δ|z|2 in B′. (3.3.8)

Let us fix this sequence from now on. If there is no otherwise indication then v and vj ’s are these

functions. The following result is a variation of the Hartogs lemma (Lemma 3.5.7).

Lemma 3.3.4. Let K ⊂ B̄ be a compact set and c ≥ 1 a constant. Assume that for some t > 0,

v < c v∗ + t on K.

Then

vj < c v + t on K

for j > j0 with a fixed j0 > 0 depending only on K, t.

Proof of Lemma 3.3.4. Let z0 ∈ K. It follows from the assumption that z0 ∈ {v − c v∗ < t}

which is an open set by the upper semicontinuity of v − c v∗. Thus, z0 ∈ {v − c v∗ < t′} for some

0 < t′ < t. Hence, v(z0)− c v∗(z0) < t′, i.e., by definition

lim
ε′→0

(
sup

B(z0,2ε′)

v − c inf
B(z0,2ε′)

v

)
< t′.

Therefore, for 0 < t1 = t−t′
2 , there exists ε′ = ε′(t1, z0) > 0 such that

B(z0, 2ε
′) ⊂ {v < v∗ + t},
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and supB(z0,2ε′) v − c infB(z0,2ε′) v ≤ t′ + t1. It implies that

sup
B̄(z0,ε′)

v ≤ c v + t′ + t1 on B̄(z0, ε
′).

By Hartogs’ lemma for (γ, 1)− α-subharmonic functions (Corollary 3.5.4),

vj ≤ sup
B̄(z0,ε′)

v + t1 < c v + t′ + 2t1 = c v + t.

for j ≥ j(t1, z0, ε
′). Because K is compact it is covered by a finite many balls B(zj , ε

′
j). Thus, the

proof follows.

We wish to apply Theorem 3.2.4 for the function v and its approximants v′js defined in (3.3.8)

to get a contradiction. Therefore, we need to study the value of v and vj ’s on the boundary ∂B.

More precisely, we are going to show that there exists c > 1, a > 0 and s0, which are independent

of j, such that

{c v + d− a+ s < vj} (3.3.9)

is non-empty and relatively compact in B = B(0, r) for every 0 < s < s0. For this purpose we

need to analyse the value of the function c v− vj on the boundary S(0, r) of B(0, r), with the help

of Lemma 3.3.4.

Take two parameters c > 1 and 0 < a < d which are determined later. We need to estimate

c v + d− a− vj

on S(0, r). Recall that v = u+ δ|z|2 and

E(s) = {u∗ ≤ u− d+ s} ∩B(0, r)

= {v∗ ≤ v − d+ s} ∩B(0, r).

We consider two cases:

Case 1: z ∈ S(0, r) ∩ E(a). We have

v∗(z) = u∗(z) + δr2

≥ u(z)− d+ δr2

= (u(z)− u(0)) + (u(0)− d) + δr2.
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As 0 ∈ E(a), we have τ(a) ≥ u(0)− u(z). Combining with u(0)− u∗(0) = d, we get that

v∗(z) ≥ v∗(0)− τ(a) + δr2.

Note that r > 0 (small) is already fixed. It implies that, for c > 1,

v(z) ≤ v∗(z) + d < c v∗(z) + d− (c− 1)
[
v∗(0) + δr2 − τ(a)

]
.

Since v − cv∗ is upper semicontinuous,

v < c v∗ + d− (c− 1)
[
v∗(0) + δr2 − τ(a)

]
on the closure of a neighbourhood V of S(0, r) ∩ E(a). Applying Lemma 3.3.4 for the compact

set V̄ ∩ B̄ and

t := d− (c− 1)
[
v∗(0) + δr2 − τ(a)

]
> 0, (3.3.10)

we get

vj < c v + d− (c− 1)
[
v∗(0) + δr2 − τ(a)

]
on V̄ ∩ B̄, (3.3.11)

if j > j1(V ).

Case 2: z ∈ S(0, r) \ V . Since E(a) ∩ (S(0, r) \ V ) = ∅, the inequality

v < v∗ + d− a

holds on S(0, r) \ V . Applying Lemma 3.3.4 again, we get

vj < v + d− a < c v + d− a on S(0, r) \ V (3.3.12)

for j > j2(V ). Thus, it follows from (3.3.11) and (3.3.12) that

vj < c v + d−min
{
a, (c− 1)

[
v∗(0) + δr2 − τ(a)

]}
(3.3.13)

on S(0, r) for j > max{j1, j2}.

Next, if there exists c > 1 such that for 0 < s0 < a,

(c− 1)v∗(0) < a− s0 (3.3.14)
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then c v∗(0)+d− (a−s0) < v(0) ≤ vj(0). It follows that the set {c v+d−a+s < vj} is non-empty

for 0 < s < s0.

According to Claim 3.3.5, (3.3.10), (3.3.13) and (3.3.14) we need to choose 0 < a < d, c > 1

and 0 < s0 < a, in this order, such that

τ(a) ≤ δr2

2
;

d− (c− 1)
[
v∗(0) + δr2 − τ(a)

]
> 0;

(c− 1)v∗(0) < a < (c− 1)

(
v∗(0) +

δr2

2

)
;

s0 =
a− (c− 1)v∗(0)

2
> 0.

This is always possible. Thus, we get relatively compact subsets that satisfy (3.3.9).

Now we can apply Theorem 3.2.4 to get that a contradiction. In fact, we have for wj := vj/c

and 0 < s < s0,

{c v + d− a+ s < vj} = {v + (d− a+ s)/c < wj} ⊂⊂ B.

It follows that

dj := sup
B

(wj − v) ≥ d− a+ s0

c
> 0.

We denote for 0 < s < ε0 < ε (as in Theorem 3.2.4),

Uj(ε, s) := {v < (1− ε)wj + inf
Ω

[v − (1− ε)wj ] + s}.

Notice that ε0 depends only on d, a, s0. Hence, applying Theorem 3.2.4 for v in (3.3.6) and γ in

(3.3.5), we get that for 0 < s < ε0,

s ≤ C(1 + ‖v‖∞)‖f‖
1
m
p [Vα(Uj(ε, s))],

where Vα(Uj(ε, s)) =
∫
Uj(ε,s)

αn. Furthermore, for such a fixed s > 0,

Uj(ε, s) ⊂ {v < wj − dj + ε‖wj‖∞ + s} ⊂ {v < vj}.

Since Vα({v < vj}) → 0 as j → +∞, we get the contradiction. The proof of Lemma 3.3.3 is

finished.
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3.3.3 Some applications

The first application is the mixed type inequality for Hessian operators with the Hermitian form.

When both χ and ω are Kähler metrics the inequality is proved by Dinew and Lu [31]. Since the

inequality is local, we state it for a small Euclidean ball B in Cn.

Proposition 3.3.1. Let f, g ∈ Lp(B), p > n/m. Suppose that u, v ∈ SHχ,m(α) ∩ C0(B̄) satisfy

χmu ∧ αn−m = fαn, χmv ∧ ωn−m = gαn. (3.3.15)

Then, for any 0 ≤ k ≤ m,

χku ∧ χm−kv ∧ αn−m ≥ f k
m g

m−k
m αn. (3.3.16)

Proof. It is a simple consequence of the mixed type inequality in the smooth case, and then for

continuous functions we use Theorem 1.0.2 and Lemma 3.2.7.

Thanks to this type of inequality with χ = α = ω we are able to relax the smoothness

assumption on potentials in the statement of [60, Proposition 3.16]. In particular, the uniqueness

of continuous solutions to the complex Hessian equation on compact Hermitian manifolds with

strictly positive right hand side in Lp, p > n/m follows.

Corollary 3.3.1. Let (X,ω) be a compact Hermitian manifold. Suppose that u, v ∈ SHm(ω) ∩

C0(X), supX u = supX v = 0, satisfy

ωmu ∧ ωn−m = fωn, ωmv ∧ ωn−m = gωn, (3.3.17)

where f, g ∈ Lp(X,ωn), p > n/m. Assume that

f ≥ c0 > 0 (3.3.18)

for some constant c0. Fix 0 < a < 1
m+1 . Then,

‖u− v‖L∞ ≤ C‖f − g‖aLp , (3.3.19)

where the constant C depends on c0, a, p, ‖f‖Lp , ‖g‖Lp , ω,X.
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We can also show that continuous solutions obtained in [60] are also the continuous solutions

in the viscosity sense and vice versa (Lu [65] proved the existence and uniqueness of viscosity

solutions to the complex Hessian equation on some special compact Hermitian manifolds). The

viscosity approach for the Monge-Ampère equation on Kähler manifolds was used by Eyssidieux,

Guedj, Zeriahi [35], Wang [86]. It seems to be interesting to investigate the viscosity method

for the complex Hessian equation on compact Hermitian manifolds with or without boundary.

We refer the readers to [48, Example 18.1], [49, Example 3.2.7] for some partial results in this

direction.

3.4 Proof of Theorem 1.0.2

In this section we proceed to prove Theorem 1.0.2, which we used in Sections 3.2, 3.3. The proof

is independent of results in those sections.

Let us rewrite the equation in the PDE form as in the paper by Székelyhidi [80]. Without loss

of generality we fix Ω := B(0, δ) ⊂ B(0, 1) ⊂ Cn for 0 < δ << 1. Let α be a Hermitian metric

in B(0, 1). Fix a smooth real (1, 1)-form χ on B(0, 1). For a C2 function u we consider the real

(1, 1)-form g = χ +
√
−1∂∂u, i.e., gij̄ = χij̄ + uij̄ . We can define Aij := αp̄igjp̄, where αj̄i is the

inverse of αij̄ . Then, the matrix Aij is Hermitian with respect to the metric α, i.e., A × [αij̄ ] is

a Hermitian matrix. Denote λ(A) = (λ1, ..., λn) ∈ Rn the n-tuple of eigenvalues of A. In other

words, λ is the eigenvector of gij̄ with respect to the metric α. The complex Hessian equation

(1.0.1) is

F (A) = h,

where

F (A) := f(λ(A)) = [(Sm(λ)]1/m,

and f is a symmetric increasing concave function defined on the cone Γm. Recall that the m-th
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elementary symmetric cone is

Γm = {λ ∈ Rn : S1(λ) > 0, ..., Sm(λ) > 0}.

Fix 0 < h ∈ C∞(Ω̄) and a smooth boundary data ϕ ∈ C∞(∂Ω). We wish to study the Dirichlet

problem, seeking u ∈ C∞(Ω̄) and u = ϕ smooth on ∂Ω such that
λ(A) ∈ Γm,

F (A) = h,

(3.4.1)

where Aij = αp̄i(χjp̄+ujp̄). To simplify notation, first we extend ϕ ∈ C∞(∂Ω) smoothly to B(0, 1).

Upon replacing

ũ := u− C(|z|2 − δ2)− ϕ,

χ̃ := χ+
√
−1∂∂[C(|z|2 − δ2) + ϕ],

with C > 0 large enough, which does not change gij̄ , we may assume that

u = 0 on ∂Ω, χ ≥ α on Ω̄ (3.4.2)

and 0 is the subsolution, i.e., χm ∧ αn−m ≥ h.

Let F ij(A) := ∂F/∂aij be the partial derivative of F at A with respect to entry aij . We also

denote

F :=
∑

1≤i≤n

fi,

where fi = ∂f/∂λi > 0 are precisely eigenvalues of F ij with respect to metric α. If we choose

coordinates in which α is orthonormal and A being diagonal, then

F ij = δijfi,

and thus F =
∑n
i=1 F

ii.

We will proceed in Sections 3.4.1, 3.4.2, 3.4.3 to get a priori estimates, up to second order, and

then, using the results in Tosatti-Weinkove-Wang-Yang [82], to get C2,α interior estimates. This

combined with the C2 estimates on the boundary thus gives full C2 estimates up to the boundary.
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Then we can apply Krylov’s boundary estimate to get the desired C2,α(Ω̄) estimate. The higher

order estimates are obtained by the bootstrapping argument, and then using the continuity method

we obtain a solution to the equation (3.4.1). The uniqueness follows from the maximum principle.

3.4.1 C0−estimate

Denote Bij = αp̄iχjp̄. Then, F (A) = h ≤ F (B) and u ≥ 0 on ∂Ω. Solve the linear PDE
n(χ+

√
−1∂∂u1) ∧ αn−1/αn = 0,

u1 = 0 on ∂Ω.

By the maximum principle we get that for some C0 > 0,

0 ≤ u ≤ u1 ≤ C0. (3.4.3)

As u = u1 = 0 on ∂Ω, it also follows that for some C ′0 > 0,

|∇u| ≤ C ′0 on ∂Ω. (3.4.4)

3.4.2 C1−estimate

In this section we prove the gradient estimate. Here the assumption of small radius is important.

(Notice that Plís [77] has claimed this estimate in the case χ ≡ 0 and α Kähler for any ball but

no proof was given there.)

By (3.4.2) we may suppose that for some C1 > 0,

δij
C1
≤ αij̄ ≤ χij̄ ≤ C1δij . (3.4.5)

L := sup
Ω
|u|+ 1.

Let ∇ denote the Chern connection with respect to α. Note that ‖z‖2α is strictly plurisubharmonic

as long as δ small. More precisely, we choose δ so that

∇p̄∇p‖z‖2α = ∂p̄∂p(αij̄z
iz̄j) = αpp̄ +O(|z|) ≥ αpp̄/2. (3.4.6)
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Denote v = N(supz∈Ω ‖z‖2α − ‖z‖2α), where N > 0 is a constant to be determined later. We see

that

0 ≤ v ≤ NC1δ
2 and − vpp̄ = −∂p∂p̄v ≥ N/2C1. (3.4.7)

Consider

G = log ‖∇u‖2α + ψ(u+ v),

with

ψ(t) = −1

2
log(1 +

t

L+NC1δ2
).

Note that a similar function was considered by Hou-Ma-Wu [53] and it satisfies

ψ′ < 0, ψ′′ = 2ψ′2. (3.4.8)

If G attains its maximum at a boundary point, then supΩ |∇u| is uniformly bounded by

sup∂Ω |∇u|, up to a uniform constant. By (3.4.4), the latter one is uniformly bounded. Then, we

will get the C1– estimate. Therefore, we may assume that the maximum point belongs to Ω. We

shall derive the desired estimate by using maximum principle at this point.

We choose the orthonormal coordinates for α such that at this point αij̄ is the identity matrix

and Aij is diagonal. All computations bellow are performed at this point and here the subscripts

stand for usual derivatives if there is no otherwise indication.

Differentiating G twice and evaluating the equations at the maximum point we have:

Gp =
(∇p∇iu)uī + ui∇p∇īu

|∇u|2
+ ψ′(up + vp) = 0; (3.4.9)

Gpp̄ =
(∇p̄∇p∇iu)uī + ui∇p̄∇p∇īu+ |∇p∇iu|2 + |∇p̄∇iu|2

|∇u|2

− 1

|∇u|4
|ui∇p∇īu+ uī∇p∇iu|

2

+ ψ′′|up + vp|2 + ψ′(upp̄ + vpp̄).

(3.4.10)

Next, we have

∇p̄∇p∇iu = upp̄i − (∂p̄Γ
q
pi)uq − Γqpiuqp̄

= gpp̄i − χpp̄i − (∂p̄Γ
q
pi)uq − Γppiλp + Γqpiχqp̄,

(3.4.11)
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where we used that gij̄ is diagonal. Similarly,

∇p̄∇p∇īu = upp̄ī − Γqpiupq̄

= gpp̄ī − χpp̄ī − Γppiλp + Γqpiχpq̄.

Moreover, by applying the covariant derivatives to the equation we get

F pp∇igpp̄ = hi.

As ∇igpp̄ = gpp̄i−Γmipgmp̄, we have F ppgpp̄i = hi +F ppΓpipλp. Combining with (3.4.11) we get that

F pp(∇p̄∇p∇iu)uī = hiuī + F pp(Γpip − Γppi)λpuī − F
ppχpp̄iuī

− F pp(∂p̄Γqpi)uquī + F ppΓqpiχqp̄uī.

(3.4.12)

Similarly,

F pp(∇p̄∇p∇īu)ui = hīui + F pp(Γpip − Γppi)λpui

− F ppχpp̄īui − F ppΓ
q
piχpq̄ui

(3.4.13)

Let’s denote

R := sup
p,q,i
|∂p̄Γqpi|, T := sup

i,p
|Γpip − Γppi|,

which are bounds for the curvature and torsion of metric α on B̄(0, 1).

It follows from (3.4.12) and (3.4.13) that, for K := |∇u|2 large enough,

1

K
F pp[(∇p̄∇p∇iu)uī + (∇p̄∇p∇īu)ui]

≥ −C/K1/2 − F pp|λp|T/K1/2 − CF/K1/2 −RF

≥ −C − 1

2K
F ppλ2

p − (R+ T 2 + 1)F ,

(3.4.14)

where in the last inequality we used

|λp|T
K1/2

≤ 1

2
(
λ2
p

K
+ T 2).

By the equation (3.4.9)

− 1

K2
|ui∇p∇īu+ uī∇p∇iu|

2
= −ψ′2|up + vp|2. (3.4.15)
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By
∑n
p=1 fpλp = h and χpp̄ ≥ 1 we have

ψ′F pp(upp̄ + vpp̄) = ψ′F ppλp + |ψ′|F pp[χpp̄ + (−vpp̄)]

≥ −C + |ψ′|[1 +N/2C1]F .
(3.4.16)

We also note that
1

K
F pp|∇p̄∇iu|2 =

1

K
F pp|gip̄ − χip̄|2

≥ 1

2K
F pp|λp|2 −

1

K
F pp|χip̄|2

≥ 1

2K
F pp|λp|2 −

CF
K

.

(3.4.17)

Therefore, combining (3.4.10), (3.4.14), (3.4.15), (3.4.16) and (3.4.17), we get that

0 ≥ F ppGpp̄ ≥ −C −
1

2K
F pp|λp|2 − (R+ T 2 + 1)F

+
1

2K
F pp|λp|2 −

CF
K

+ (ψ′′ − ψ′2)F pp|up + vp|2

+ |ψ′|[1 +N/2C1]F .

We may assume that K > C. As ψ′′ = 2ψ′2, we simplify the inequality:

0 ≥ ψ′2F pp|up + vp|2 + |ψ′|(1 +N/2C1)F − (R+ T 2 + 2)F − C. (3.4.18)

Now we decrease further δ (if necessary) so that 16(R+T 2 +3)C2
1δ

2 < 1. Hence, we can choose

N > 1 satisfying

N

8(LC1 +NC2
1δ

2)
≥ R+ T 2 + 3.

On the interval t ∈ [0, L+NC1δ
2], we have |ψ′| ≥ 1/4(L+NC1δ

2). Hence,

N |ψ′|
2C1

≥ R+ T 2 + 3. (3.4.19)

It follows from (3.4.18) and (3.4.19) that

F pp|up + vp|2 + F ≤ C, (3.4.20)

where C = C(A,C1, L). We shall use (3.4.20) to prove that

F ii =
S
−1+1/m
m (λ)

m
Sm−1;i(λ) ≥ c > 0
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for some uniform c and for every 1 ≤ i ≤ n. Indeed, since

F =
S
−1+1/m
m (λ)

m

n∑
i=1

Sm−1;i(λ) ≤ C,

we have Sm−1;i(λ) ≤ C for every i = 1, ..., n. By the inequality [85, Proposition 2.1 (4)]

n∏
i=1

Sm−1;i(λ) ≥ Cn,m[Sm(λ)]n(m−1)/m,

where Cn,m > 0 depends only on n,m. Thus, the desired lower bound for each Sm−1;i(λ) follows

from the equation (Sm(λ))
1
m = h > 0 and the upper bound for Sm−1;i(λ). We also get the lower

bound for each F ii. Finally, from

F pp|up + vp|2 ≤ C

we easily get the a priori gradient bound, |∇u| ≤ C.

3.4.3 C2−estimate

In this section we prove the following estimate

sup
Ω̄

|
√
−1∂∂̄u| ≤ C, (3.4.21)

where C depends on ‖u‖L∞(Ω̄), ‖∇u‖L∞(Ω̄) and the given data.

If supΩ̄ |∂∂̄u| is attained at an interior point of Ω, then by a result of Székelyhidi [80] (see also

Zhang [88]) we have for some C > 0, which depends on ‖u‖∞ and the given data,

|
√
−1∂∂̄u| ≤ C(1 + sup

Ω̄

|∇u|2).

Therefore, we only need to consider the case when the maximum point P is on the boundary. At

this point, following Boucksom [14], we choose a local half-ball coordinate U such that z(P ) = 0

and r is the defining function for U ∩ ∂Ω. Then, U ∩Ω = {r < 0}∩U . We choose the coordinates

z = (z1, ..., zn), centred at 0, such that the positive xn axis is the interior normal direction, and

near 0 the graph U ∩ ∂Ω is written as

r = −xn +

n∑
j,k=1

ajkzj z̄k +O(|z|3) = 0. (3.4.22)
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We refer the reader to the expository paper of Boucksom [14] for more details on this coordinate.

Recall that λi’s are eigenvalue functions of matrix A, i.e.

λ(A) = (λ1, ..., λn).

We often represent quantities in the orthonormal coordinates (w1, .., wn) in which αij̄ is the identity

and Aij is diagonal. The following equations will help us in computing quantities in the orthonormal

coordinates once we know theirs forms in the fixed coordinates (z1, ..., zn).

Suppose at a given point we change the coordinates, w = Xz, i.e.

wi = xikz
k, xik ∈ C,

and we obtain at that point

αij̄
√
−1dzi ∧ dz̄j =

n∑
a=1

√
−1dwa ∧ dw̄a;

gij̄
√
−1dzi ∧ dz̄j =

n∑
a=1

λa
√
−1dwa ∧ dw̄a.

It follows that

αij̄ = xaixaj , gij̄ = xaiλaxaj .

It is clear that for every 1 ≤ i ≤ n,

n∑
a=1

|xai|2 = αīi < C.

Moreover, the inverse of matrix αij̄ is given by the formula

αj̄i = xjaxia,

where xia is the inverse of X. Hence,

Aij = αp̄igjp̄ = xiaλaxaj .

In Cn×n if we change coordinates B = XAX−1 = (bkl), then at the considered point B is a

diagonal matrix (λ1, ..., λn). Therefore, λa is smooth at the diagonal matrix B (see e.g. [79]) and

∂F

∂bkl
=

∂f

∂λa
· ∂λa
∂bkl

= faδakδal;
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∂F

∂aij
=

∂F

∂bkl

∂bkl
∂aij

=
∑
k,l

n∑
a=1

faδakδalxkix
jl = xjafaxai.

An easy consequence from the above formula is that

Lp̄j := F ijαp̄i = xpafax
ja,

where F ij = ∂F/∂aij at Aij , is a positive definite Hermitian matrix.

To derive the desired a priori estimate we will use the linearised elliptic operator, for a smooth

function w,

Lw := Lp̄j∂j∂p̄w = F ijαp̄i∂j∂p̄w,

It is worth to recall that

F :=
∑

1≤i≤n

fi

where fi = ∂f/∂λi are eigenvalues of F ij with respect to metric α.

Following Guan [39] (c.f. Boucksom [14]) we construct the important barrier function.

Lemma 3.4.1. Set b = u− r − µr2. Then, there exist constants µ > 0 and τ > 0 such that

Lb ≤ −1

2
F

and b ≥ 0 on the half-ball coordinate U of radius |r| < τ .

Proof. By shrinking the radius of the half coordinate ball U , we have r is plurisubharmonic in U .

Then

0 ≤ Lr = Lp̄jrjp̄ ≤ CF . (3.4.23)

As bjp̄ := ∂j∂p̄b is a Hermitian matrix and αij̄ > 0, we can represent

bjp̄ = xajγaxap,

where γa ∈ R are eigenvalues of bij̄ with respect to the matrix αij̄ . Hence,

Lb =

n∑
a=1

faγa
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which does not depend on the choice of coordinates of α. Thus, to verify the desired inequality at a

given point, we compute, at this point, in orthonormal coordinates of α and Aij = αp̄i(χjp̄+ujp̄) =

(λ1, ..., λn) diagonal. So is Lp̄i = (f1, ..., fn).

We now compute, as r ≤ 0,

Lb = Līiuīi − Lr − 2µrLr − 2µLīi|ri|2

= Līigīi − Līiχīi − Lr + 2µ|r|Lr − 2µLīir2
i

=

n∑
i=1

fiλi + (2µ|r| − 1)Lr − Līi(χīi + 2µr2
i ). (3.4.24)

We have
∑n
i=1 fiλi = h and

(2µ|r| − 1)Lr ≤ 2Cµ|r|F . (3.4.25)

Notice that χīi ≥ αīi = 1. The last negative term (3.4.24) will be divided into three parts. First

−Līiχīi/2 ≤ −F/2.

Next, we use −Līiχīi/4 to absorb the right hand side of (3.4.25) (i.e. the second term in (3.4.24)),

provided that

Cµ|r| ≤ 1/8.

We will use the part −Līi(χiī4 + 2µr2
i ) for µ large to absorb the first term in (3.4.24). We claim

that

Līi(
χīi
4

+ 2µr2
i ) ≥ c0µ

1
m (3.4.26)

for some uniform c0 > 0. In fact, we observe that |∇r| > 0 at 0. Decreasing τ if necessary,

|∇r|2 =

n∑
i=1

r2
i > c1 (3.4.27)

for a uniform c1 > 0 on U . By G̊arding inequality with λ′ = (χ11̄/4 + 2µr2
1, ..., χnn̄/4 + 2µr2

n ) and
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Sm−1;i(λ), we have

n∑
i=1

(
χīi
4

+ 2µ|ri|2)Sm−1;i(λ) ≥ m[Sm(χīi/4 + 2µ|ri|2)]
1
m [Sm(λ)]

m−1
m

≥ mµ
1
mhm−1

4
m−1
m

 n∑
i=1

2|ri|2
∏
k 6=i

χkk̄

 1
m

≥ mµ
1
mhm−1

4
m−1
m

(
n∑
i=1

2|ri|2
) 1
m

≥ 2
1
mmµ

1
mhm−1

4
m−1
m

c
1
m
1 ,

where we used χkk̄ ≥ 1 for the third inequality and used (3.4.27) for the last inequality.

To obtain the claim (3.4.26), we only need to notice that

Līi = fi =
[Sm(λ)](1−m)/mSm−1;i(λ)

m
.

Therefore, the uniform constant we get is c0 = C(c1, h,m) > 0. So we can choose µ > 0 large

enough we get our goal. Therefore we get the required inequality for Lb.

It remains to check that b ≥ 0. Since u ≥ 0 it is enough to have that

−r − µr2 = |r|(1− µ|r|) ≥ 0.

This easily follows by further decreasing (if necessary) the radius τ of the half-ball coordinate.

We are ready to prove the second order estimates for u at the boundary point 0 ∈ ∂Ω. Following

Caffarelli, Nirenberg, Kohn, Spruck [17] (c.f [14]) we set

t1 = x1, t2 = y1, ..., t2n−2 = yn−1, t2n−1 = yn, t2n = xn.

Let D1, ..., D2n be the dual basis of dt1, ..., dt2n−1,−dr, then

Dj =
∂

∂tj
−
rtj
rxn

∂

∂xn
for 1 ≤ j < 2n,

and

D2n = − 1

rxn

∂

∂xn
.
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Because u = 0 on ∂Ω, we can write, for some positive function σ,

u = σr.

Then,

∂u/∂xn(0) = −σ(0). (3.4.28)

So, |σ(0)| < C. Moreover, for 1 ≤ j ≤ 2n− 1,

∂2u

∂ti∂tj
(0) = σ(0)

∂2r

∂ti∂tj
(0)

and hence tangential-tangential derivatives |∂ti∂tju| are under control.

Next, we bound normal-tangential derivatives:

Theorem 3.4.1. We have ∣∣∣∣ ∂2u

∂tj∂xn
(0)

∣∣∣∣ ≤ C for j ≤ 2n− 1,

where C depends on u, |∇u| and the given datum.

Proof. Without loss of generality we fix j = 1 and we shall show that

|D2nD1u(0)| ≤ C.

The derivative D1, acting on functions, is equal to

∂1 + ∂1̄ + r̃(∂n + ∂n̄),

where ∂ denotes the usual partial derivatives and r̃ := − rx1

rxn
is a smooth real-valued function near

0. Recall that we use the subindex to denote usual derivatives in direction ∂/∂z1, ..., ∂/∂zn and

their conjugates if there is no other indication. This gives

D1u = u1 + u1̄ + r̃(un + un̄).

Following Caffarelli, Nirenberg, Spruck [18] and Guan [39, 40], our goal is to construct a

function of form

w = D1u−
∑
k<n

|uk|2 − |un − un̄|2 + µ1b+ µ2|z|2,
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satisfying the following:

(i) w(0) = 0;

(ii) w ≥ 0 on ∂U ;

(iii) Lw = Lp̄j∂j∂p̄w ≤ 0 in the interior of U ,

where b is the barrier function constructed in Lemma 3.4.1, constants µ1, µ2 > 0 are to be deter-

mined later.

To see the first property (i) we note that, for i < n,

2ui(0) =
∂u

∂xi
(0)−

√
−1

∂u

∂yi
(0) = 0,

and

un(0)− un̄(0) = −
√
−1

∂u

∂yn
(0) = 0.

Moreover, D1u(0) = b(0) = r̃(0) = 0. Therefore, the first property follows.

Next, we verify the second property (ii). We claim that there exists a constant µ2 > 0 such

that

w ≥ 0 on ∂U.

To see this consider two parts ∂Ω ∩ U and ∂U \ (∂Ω ∩ U) of the boundary ∂U separately.

Part 1: On ∂Ω ∩ U . We know that D1u = b = 0, and near 0

xn =

n∑
j,k=1

ajkzj z̄k +O(|z|3).

By writing xn = ρ(t1, ..., t2n−1) = ρ(t) we deduce that

ρ(t) =
∑
i,j<2n

kijtitj +O(|t|3),

where (kij) =
[
∂2xn
∂ti∂tj

(0)
]

is uniformly bounded. Since u(t, ρ(t)) = 0,

∂u/∂ti + ∂u/∂xn · ∂ρ/∂ti = 0
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for i < 2n. Applying for yn = t2n−1 gives

|∂u/∂yn|2 ≤ C|t|2 ≤ C|z|2.

Similarly, for i < n,

|ui|2 ≤ C|z|2.

Therefore, w ≥ 0 on ∂Ω ∩ U for µ2 > 0 large enough.

Part 2: On ∂U \ (∂Ω ∩ U). On this piece |z|2 = τ2 with τ being the radius of U . Since b ≥ 0

on U , we have w ≥ 0 as soon as

µ2τ
2 ≥ |D1u|+

n∑
i=1

|ui|2.

This is done by choosing µ2 > 0 large as the right hand side is under control by the C1−estimate.

Thus, the second property is satisfied.

To verify the third property (iii), Lp̄jwjp̄ ≤ 0 in the interior of U , we fix an interior point

z0 ∈ U . Below we compute at this fixed point. The estimation will be split into several steps.

(1) Estimate for D1u. We start by computing

Lp̄j(D1u)jp̄ = Lp̄j [u1 + u1̄ + r̃(un + un̄)]jp̄

= Lp̄j [u1jp̄ + u1̄jp̄ + r̃(unip̄ + un̄jp̄)]

+ Lp̄j [r̃j(un + un̄)p̄ + r̃p̄(un + un̄)j ]

+ Lp̄j r̃jp̄(un + un̄)

=: I1 + I2 + I3.

(3.4.29)

Let us denote K := supΩ |∇u|2, which is bounded by the C1−estimate.

Lemma 3.4.2. There exists a constant C depending only on α such that for any fixed j, q,

|Lp̄jgqp̄| ≤ C
n∑
i=1

fi|λi|.

Similarly,

|Lj̄pgpq̄| ≤ C
n∑
i=1

fi|λi|.
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Proof. Recall that we have αij̄ = xaixaj , gij̄ = xaiλaxaj , and Lp̄j = xpafax
ja. Therefore,

Lp̄jgqp̄ = xpafax
jaxbqλbxbp = xjafaλaxaq.

Thus, the conclusion follows. The second inequality is proved in the same way.

(1a) Estimate I2 and I3. We first easily have

|I3| = |Lp̄j r̃jp̄(un + un̄)| ≤ CK 1
2F

≤ CF .
(3.4.30)

Since two terms in I2 are conjugate, so we will estimate one of them. We proceed as follows:

r̃j(un + un̄)p̄ = r̃j [2un − (un − un̄)]p̄

= 2r̃junp̄ − r̃j(un − un̄)p̄

= 2r̃jgnp̄ − 2r̃jχnp̄ − r̃jVp̄,

where we wrote V = un − un̄.

By Lemma 3.4.2, we have for F|λ| :=
∑
i fi|λi|,

|2Lp̄j r̃jgnp̄| ≤ C|Lp̄jgnp̄| ≤ CF|λ|.

A straightforward estimate gives

|2Lp̄j r̃jχnp̄| ≤ CF .

Cauchy-Schwarz’s inequality implies that

|Lp̄j r̃jVp̄| ≤
1

2
Lp̄j r̃j r̃p̄ +

1

2
Lp̄j(V̄ )jVp̄

≤ CF +
1

2
Lp̄j(V̄ )jVp̄.

Thus, the above estimates give

|I2| ≤ C(F + F|λ|) + Lp̄j(V̄ )jVp̄. (3.4.31)

(1b) Estimate I1. We have

u1jp̄ = ujp̄1 = gjp̄1 − χjp̄1.
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Covariant differentiation in direction ∂/∂z1 of the equation F (A) = h gives

F ijαp̄i∇1gjp̄ = Lp̄j
[
gjp̄1 − Γq1jgqp̄

]
= h1. (3.4.32)

It follows that

|Lp̄ju1jp̄| = |Lp̄j(gjp̄1 − χjp̄1)|

= |hk + Lp̄jΓq1jgqp̄ − L
p̄jχjp̄1|

≤ C(1 + F) + |Lp̄jΓq1jgqp̄|

≤ C(1 + F + F|λ|),

(3.4.33)

where we used Lemma 3.4.2 for the last inequality.

The remaining terms in I1 are estimated similarly, when the index 1 is replaced by 1̄, n̄ or n.

Therefore,

|I1| ≤ C(1 + F + F|λ|). (3.4.34)

Combining (3.4.30), (3.4.31) and (3.4.34) yields

|Lp̄j(D1u)jp̄| ≤ C(1 + F + F|λ|) + Lp̄j(V̄ )jVp̄. (3.4.35)

We continue to estimate the other terms in the formula for w.

(2) Estimate for −
∑
k<n |uk|2. By computing

(ukuk̄)jp̄ = ukjp̄uk̄ + ukuk̄jp̄ + ukjuk̄p̄ + ukp̄uk̄j . (3.4.36)

Similarly to the estimation of I1, we have∑
k<n

|Lp̄j(ukjp̄uk̄ + ukuk̄jp̄)| ≤ CK
1
2 (1 + F + F|λ|)

≤ C(1 + F + F|λ|).

For the third term, with k fixed, Lp̄jukjuk̄p̄ ≥ 0. The last term in (3.4.36) will give a good positive

term. By using Lemma 3.4.2,

Lp̄jukp̄uk̄j = Lp̄j(gkp̄ − χkp̄)(gjk̄ − χjk̄)

≥ Lp̄jgkp̄gjk̄ − C(F + F|λ|).
(3.4.37)
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The following result is similar to Guan’s [40, Proposition 2.19] in the real case.

Lemma 3.4.3. There exists an index s such that

∑
k<n

Lp̄jgkp̄gjk̄ ≥
mini τi

2

∑
i 6=s

fiλ
2
i ,

where τi’s are the eigenvalues of the matrix αij̄.

Proof. First at the given point let U be a unitary matrix such that α = U tΛŪ , where Λ =

diag(τ1, . . . , τn). Without loss of generality, we can assume X = Λ
1
2U , so that α = XtX̄ and

xij = τ
1
2
i uij . Again we have formulas αij̄ = xaixaj and αīj = xiaxja. Moreover,

Lp̄j = xpafax
ja, gij̄ = xibλbxbj .

Thus, for a fixed k < n,

Lp̄jgkp̄gjk̄ = xpafax
ja xbkλbxbp xcjλcxck

=

n∑
i=1

fiλ
2
i |xik|2.

As ∑
k<n

|xik|2 =

n∑
k=1

|xik|2 − |xin|2 = τi(1− |uin|2),

we have

S :=
∑
k<n

Lp̄jgkp̄gjk̄ =

n∑
i=1

fiλ
2
i τi(1− |uin|2).

If for every 1 ≤ i ≤ n we have |uin|2 ≤ 1
2 , then

S ≥ mini τi
2

n∑
i=1

fiλ
2
i .

Otherwise, there exists an index s such that |usn|2 > 1
2 . It follows that

∑
i 6=s

|uin|2 ≤
1

2
.

Then,

S =

n∑
i=1

fiλ
2
i τi(1− |uin|2) ≥

∑
i6=s

fiλ
2
i τi(1− |uin|2) ≥ mini τi

2

∑
i 6=s

fiλ
2
i .

Thus, the lemma follows.
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It follows from Lemma 3.4.3 and (3.4.37) that for some index s,

∑
k<n

Lp̄jukp̄uk̄j ≥
mini τi

2

∑
i 6=s

fiλ
2
i − C(F + F|λ|).

Therefore,

L(−
∑
k<n

|uk|2) ≤ −mini τi
2

∑
i 6=s

fiλ
2
i + C(F + F|λ|). (3.4.38)

(3) Estimate for −|V |2 = −|un − un̄|2. We compute

(V V̄ )jp̄ = (unjp̄ − un̄jp̄)V̄ + V (un̄jp̄ − unjp̄)

+ Vj(V̄ )p̄ + (V̄ )jVp̄.

Since Lp̄jVj(V̄ )p̄ ≥ 0, we get, similarly to (3.4.33), the following

Lp̄j(−|V |2)jp̄ ≤ −Lp̄j(V̄ )jVp̄ + C(1 + F + F|λ|). (3.4.39)

Combining (3.4.35), (3.4.38) and (3.4.39) gives us

Lw ≤ −mini τi
2

∑
i 6=r

fiλ
2
i + C(1 + F + F|λ|) + µ1Lb+ µ2L(|z|2).

By this and Lemma 3.4.1 we get that, for some index s,

Lw ≤ −mini τi
2

∑
i6=s

fiλ
2
i + CF|λ|+ (C + µ2 −

µ1

2
)F . (3.4.40)

Recall that µ2 was chosen to have the property (ii) and µ1 > 0 can be chosen freely. To achive

the third property of w we need the following

Lemma 3.4.4. Let ε > 0. There is a constant Cε > 0 such that for any index s,

F|λ| =
n∑
i=1

fi|λi| ≤ ε
∑
i 6=s

fiλ
2
i + CεF .

Proof. Since
∑n
i=1 fiλi = h, we have

F|λ| ≤ 2
∑
i6=s

fi|λi|+ h

≤
∑
i 6=s

fi(ελ
2
i +

1

ε
) + h

≤ ε
∑
i 6=s

fiλ
2
i + CεF ,

where we used the fact that F is uniformly bounded below by a positive constant.
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Using Lemma 3.4.4 we get from (3.4.40) that

Lw ≤ (−mini τi
2

+ Cε)
∑
i 6=s

fiλ
2
i + (µ2 + C + Cε −

µ1

2
)F .

Thus, we choose ε so small that the first term on the right hand side is negative, and then choose

µ1 so large that the second term is also negative. The third property (iii) is proved.

We are ready to conclude the bound for tangential-normal second derivatives. By the maximum

principle we have w ≥ 0 on U . Therefore, as w(0) = 0, D2nw(0) ≥ 0. It follows that

D2nD1u(0) ≥ −C.

The properties (i), (ii) and (iii) also hold, with the same argument, if we replace w by the

function

w̃ = −D1u−
∑
k<n

|uk|2 − |un − un̄|2 + µ1b+ µ2|z|2.

Therefore, D2nD1u(0) ≤ C. Thus, we get the desired bound for |D2nD1u(0)|.

The last estimate we need is the normal-normal derivative bound.

Lemma 3.4.5. We have ∣∣∣∣ ∂2u

∂x2
n

(0)

∣∣∣∣ ≤ C,
where C depends on h,C0, C1, and the bounds of tangential-normal derivatives.

Proof. Since 4unn̄ = ∂2u/∂x2
n + ∂2u/∂y2

n, the normal-normal estimate is equivalent to

|unn̄(0)| ≤ C.

Moreover, as |uij̄ | < C with i+ j < 2n, we get that for j < n,

|Aij | = |αp̄i(χjp̄ + ujp̄)| < C.

Hence, it follows from
n∑
i=1

Aii =

n∑
i=1

λi ≥ 0
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that Ann ≥ −C, so is gnn̄ ≥ −C. It implies that unn̄ ≥ −C. Therefore, it remains to prove that

unn̄ ≤ C. By u = σr, with σ > 0, we have for j, k < n,

ujk̄(0) = σ(0)rjk̄(0).

Let S be a (n− 1)× (n− 1) unitary matrix diagonalising [ujk̄]j,k<n. It means that for j, k < n,

ujk̄(0) =
∑
p

S∗jpdpSpk

Since r is strictly plurisubharmonic in U , we get that dp > 0, p = 1, ..., n − 1. By elementary

matrix computation we have for D = (d1, .., dn−1) a diagonal matrix and the column vector

V = (u1n̄, ..., u(n−1)n̄)t,S 0

0 1

× [uij̄ ]i,j≤n ×

S∗ 0

0 1

 =

 D SV

V ∗S∗ unn̄

 .

By |ujn̄|, |unj̄ | < C for j < n and χij̄ > 0, we may assume that unn̄ is so large (otherwise we are

done) that gij̄ = χij̄ + uij̄(0) > 0, i.e., positive definite. So

λi(A) > 0

for every i = 1, .., n. Hence,

(detA)
1
n ≤ Cm,n[Sm(λ(A))]

1
m = Cm,nh.

By det gij̄ = detαij̄ · detAij we get that det gij̄ ≤ C. Since

[gij̄ ]i,j<n ≥ [χij̄ ]i,j<n > 0

and

det gij̄ = gnn̄ det([gij̄ ]i,j<n) +O(1),

we have gnn̄ ≤ C. Thus, the normal-normal derivative bound at a boundary point is proven.

Altogether, we have proven the C2−estimate (3.4.21) and completed the proof of Theo-

rem 1.0.2.
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3.5 Appendix

The results in this section are classical. It is a natural generalisation of properties of subharmonic

functions (see e.g [52]). However, we could not find the the precise forms that we need in the

literature. Some of them have been pointed out recently by Harvey-Lawson [47]. Our setup here

is simpler than the one in [47], therefore we have several finer properties. We emphasize here the

use of a theorem of Littman [64]. For the readers’ convenience we give results with proofs here.

3.5.1 Littman’s theorem

We briefly recall a simpler version of a result of Littman [63, 64]. Roughly speaking it allows to

approximate a generalised subharmonic function (with respect to a uniformly elliptic operator L)

in a constructive way.

Let D be a smoothly bounded domain in Rn, n ≥ 3. Consider the partial differential operator

L defined by

Lu =
(
biju

)
xixj
−
(
bi(x)u

)
xi

and assumed to be uniformly elliptic there. Its formal adjoint L∗ is given by

L∗v = bij(x)vxixj + bi(x)vxi ,

where coefficients bij(x), bi(x) are smooth function on D.

We say that u ∈ L1
loc(D) satisfies Lu ≥ 0 weakly if

∫
u(x)L∗v(x) ≥ 0 (3.5.1)

for any non-negative function v in C2(D) with compact support in D. The natural question is

to find a sequence of smooth functions uj such that Luj ≥ 0 and uj decreases to u. The usual

convolution with a smooth kernel will not give us the desired sequence.

Before stating Littman’s theorem let us introduce some notations. We denote by g(x, y) the

Green function of the operator Lx with respect to domain D and with singularity at y ∈ D; as
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constructed for example in [71]. The subindex x means that L acts on functions of x. The basic

properties of g are:

L∗xg(x, y) = 0 on D \ {y},

and

g(x, y) = O
(
|x− y|2−n

)
as x→ y.

In particular, g(x, y)→∞ as x→ y. Furthermore, let us denote ∆ = {(x, x) : x ∈ D̄}, then

g ∈ C0(D̄ × D̄ \∆) ∩ C2(D ×D \∆);

also g(x, y) = 0 for x ∈ ∂D and a fixed y ∈ D. If we denote r = |x− y|. Then

g(x, y) = O(r2−n), gxi = O(r1−n), gxixj = O(r−n).

Fix a function p(t) = 1− t2 for t ∈ R. So p(0) = 1 and p(t) ≥ p0 > 0 for |t| < δ0 small enough.

It is easy to see that

L∗xp(|x− y|) < 0 for |x− y| < 2δ0 and x, y ∈ D.

Let Φ(t) ≥ 0 be a smooth function vanishing outside (0, 1) and positive in the interior, such that

Φ(t)→ 0 exponetially, as t→ 0, 1;∫ +∞

−∞
Φ(t)dt = 1.

For δ > 0 we write Dδ = {z ∈ D : dist(z, ∂D) > δ}. For h ≥ 0, x ∈ D, y ∈ D2δ we define a

function Gh(x, y) on D ×D2δ by letting

Gh(x, y) := 0 for |x− y| ≥ 2δ,

and for |x− y| < 2δ,

Gh(x, y) :=

∫ +∞

−∞
Φ(s− h) max{g(x, y)− sp(|x− y|), 0}ds.

Notice that Gh(x, y) = 0 for |x− y| ≥ δ, if we take h ≥ hδ, where

hδ :=
1

p0
max

{
g(x, y) : δ ≤ |x− y| ≤ 2δ, (x, y) ∈ D ×D2δ

}
. (3.5.2)
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Another remark is that

Gh(x, y)− g(x, y) = −g(x, y)

∫ +∞

g/p

Φ(s− h)ds− p
∫ g/p

−∞
Φ(s− h)sds (3.5.3)

is continuous for x ∈ D̄ and y ∈ D2δ and it belongs to C2(D×D2δ) as the rate of g(x, y) growing

to +∞ is polynomially while Φ(t) → 0 exponentially. In particular, Gh(x, y) → +∞ as x → y

with the same order of growth as g(x, y).

By a direct computation we get that

∂Gh
∂h

= −p
∫ g/p

−∞
Φ(s− h)ds ≤ 0. (3.5.4)

The formula also shows that ∂Gh
∂h ∈ C

2(D) and compactly supported as a function of x. Hence,

Jh :=

∫
L∗xGhdx = 1

for every h ≥ hδ. Indeed, by the property [64, 4.f] we have limh→∞ Jh = 1, and for any constant

c we have Lc = 0. Therefore,

∂Jh/∂h =

∫
L∗x
(
∂Gh/∂h

)
dx =

∫
∂Gh/∂h Lx1 = 0.

Since coefficients bij(x), bi(x) are smooth, we have

Gh(x, y)− g(x, y) ∈ C2(D2δ)

as a function of y uniformly with respect to x (c.f [64, 4.e]). Hence, Gh is a Levi function satisfying

L∗xGh(x, y) = O(|x− y|λ−n)

for any 0 < λ ≤ 1 (c.f [71, (8.5) p. 18]). Therefore, for u ∈ L1
loc(D) and h ≥ hδ,

uh(y) =

∫
u(x)L∗xGh(x, y)dx =

∫
|x−y|≤δ

u(x)L∗xGh(x, y)dx (3.5.5)

is well defined. Notice that the support of Gh(x, y), as a function in x, shrinks to y as h→ +∞.

We are ready to state a theorem of Littman [64].
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Theorem 3.5.1 (Littman). Let u ∈ L1
loc(D) be such that Lu ≥ 0 weakly in D in the sense of

(3.5.1). Then, {uh(x)}h≥hδ , defined by (3.5.5), are smooth functions satisfying:

• Luh ≥ 0;

• uh is a nonincreasing sequence as h→ +∞, uh converges to u in L1(D2δ);

• U(x) := limh→∞ uh(x) is upper semicontinuous, and U(x) = u(x) almost everywhere.

3.5.2 Properties of ω−subharmonic functions

Let ω be a Hermitian metric on a bounded open set Ω ⊂ Cn. Let us denote

∆ω := ωj̄i(z)
∂2

∂zi∂z̄j
. (3.5.6)

We first recall

Definition 3.5.2. A function u : Ω→ [−∞,+∞[ is called ω−subharmonic if

(a) u is upper semicontinuous and u ∈ L1
loc(Ω).

(b) for every relatively compact open set D ⊂⊂ Ω and every h ∈ C0(D̄) satisfying ∆ωh = 0 in

D, if h ≥ u on ∂D, then h ≥ u on D̄.

As in the case of subharmonic functions we have the following properties.

Proposition 3.5.1. Let Ω be a bounded open set in Cn.

(a) If u1 ≥ u2 ≥ · · · is a decreasing sequence of ω−subharmonic functions, then u := limj→+∞ uj

is either ω−subharmonic or ≡ −∞.

(b) If u, v belong to SH(ω), then so does max{u, v}.

Proof. (a) is obvious. We shall prove (b). It is rather standard (see [45]), but probably it is not

so well known. We include the proof for the sake of completeness. Observe that

max{u, v} = lim
j→+∞

log(eju + ejv)

j
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By a simple computation we get that

ddc log(eu + ev) =
euddcu+ evddcv

(eu + ev)
+
eu+vd(u− v) ∧ dc(u− v)

(eu + ev)2
.

It follows that 1
j log(eju + ejv) is ω-subharmonic. So is max{u, v}.

The subharmonicity is a local notion meaning that a function is subharmonic in a open set if

and only if at every point there exists a neighbourhood such that the function is subharmonic in

that neighbourhood. The precise statement is

Proposition 3.5.2. The following statements are equivalent for an upper semicontinuous and

locally integrable function u in Ω.

(1) u is an ω−subharmonic function in Ω.

(2) In a neighbourhood U of a given point a, if q ∈ C2(U) such that q − u ≥ 0 and q(a) = u(a),

then

∆ωq(a) ≥ 0.

Proof. (1) ⇒ (2). We argue by contradiction. Suppose that there exist a neighbourhood U of a

point a and q ∈ C2(U) satisfying q ≥ u and q(a) = u(a), but

∆ωq(a) < 0.

By Taylor’s formula we may assume that q is quadratic and there exists ε > 0 such that ∆ωq < −ε

on a small ball B(a, r). Solve

∆ωv(z) = −∆ωq, v = 0 on ∂B(a, r).

Notice that by maximum principle we get that v(a) < 0. Let h = v + q. Then, ∆ωh = 0, and

h ≥ u on B̄(a, r). However, h(a) = u(a) + v(a) < u(a), which is impossible. The first direction

follows.

(2)⇒ (1). We also argue by contradiction. Suppose that there exist an open set D ⊂⊂ Ω and

a function h ∈ C0(D̄) and ∆ωh = 0 in D, which satisfies u ≤ h on ∂D, such that {u > h} is
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non-empty. Without loss of generality we may assume that D is a small ball B and h is continuous

on B̄. Set for ε > 0

vε(z) = h(z)− ε|z|2.

Then, the upper semicontinuous function (u− vε) takes its maximum at a point a ∈ B, so

u(z) ≤ vε(z) + u(a)− vε(a) for z ∈ B.

By Taylor’s formula

h(z) = h(a) + <(P (z)) +
1

2

∂2h

∂zi∂z̄j
(a)(zi − ai)(zj − aj) +O(|z − a|3)

=: H(z) +O(|z − a|3),

where P (z) is a holomorphic polynomial. Therefore, ∆ωH(a) = 0. Consider the function

q(z) = u(a)− vε(a) +H(z)− ε|z|2 +
ε

2
|z − a|2.

Then, it is easy to check that ∆ωq(a) < 0, q(a) = u(a) and q(z) ≥ u(z) in a neighbourhood of a.

This is impossible and the proof is completed.

Since ω−subharmonicity is a local property we easily get the gluing lemma.

Lemma 3.5.1. Let U ⊂ V be two open sets. Let u ∈ SH(ω,U) and v ∈ SH(ω, V ). Assume that

lim sup
z→ζ

u(z) ≤ v(ζ) ∀ζ ∈ ∂U ∩ V. (3.5.7)

Then, ũ ∈ SH(ω, V ), where

ũ =


max{u, v} on U,

v on V \ U.

Proof. Consider

uε =


max{u, v + ε} on U,

v + ε on V \ U.
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If x ∈ U , then there is a small ball B(x, r) ⊂ U . Hence,

uε = max{u, v + ε} (3.5.8)

is ω-subharmonic in B(x, r). Similarly, for x ∈ V \ U by the assumption on ∂U ∩ V , there is

B(x, r) ⊂ V such that uε = v + ε on B(x, r). Thus, uε ∈ SH(ω, V ). Since uε ↘ u we can apply

Proposition 3.5.1 getting the lemma.

The proposition above shows that we only need to check the ω−subharmonicity of a function

on a small ball, but it is not clear whether sum of two subarmonic functions is again subharmonic.

We shall need another criterion.

By linear PDEs potential theory, e.g. see [71], for any ball B(a, r), there exists a Poisson kernel

Pa,r for the operator ∆ω. Namely, for every continuous function ϕ on ∂B(a, r), the function

h(z) =

∫
∂B(a,r)

ϕ(w)Pa,r(z, w)dσr(w),

is the unique continuous solution to the Dirichlet problem

∆ωh(z) = 0 in B(a, r), h = ϕ on ∂B(a, r),

where dσr(z) is the standard surface measure on ∂B(a, r).

Lemma 3.5.2. Let u : Ω→ [−∞,+∞[ be a locally integrable upper semicontinuous function. For

Ωδ = {z ∈ Ω : dist(z, ∂Ω) > δ}, δ > 0, consider the function

M(u, a, r) =

∫
∂B(a,r)

u(z)Pa,r(a, z)dσr(z), a ∈ Ωδ,

where r ∈ [0, δ]. Then, u is an ω−subharmonic function if and only if

u(a) ≤M(u, a, r)

for a ∈ Ωδ, r ∈ [0, δ]. Furthermore, M(u, a, r) decreases to u(a) as r goes to 0.
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Proof. We first prove that it is a necessary condition. Take φ ≥ u to be a continuous function on

∂B(a, r). Then,

h(z) =

∫
∂B(a,r)

φ(w)Pa,r(z, w)dσr(w)

satisfies ∆ωh = 0 and h = φ ≥ u on ∂B(a, r). It follows from definition that h ≥ u on B(a, r). In

particular,

u(a) ≤
∫
∂B(a,r)

φ(w)Pa,r(a,w)dσr(w).

As u is upper semicontinuous, we can let φ ↘ u. By monotone convergence theorem we get the

desired inequality.

Now we prove the other direction by contradiction. Assume that there exist a relatively

compact open set D ⊂ Ω, h ∈ C0(D̄) with ∆ωh = 0 and h ≥ u on ∂D, but

c := sup
D̄

(u− h) > 0.

As v = u−h is upper semicontinuous, c is finite and F := {v = c} is a compact set in D. We choose

a ∈ F such that it is the closest point to the boundary ∂D. Assume that dist(a, ∂D) = 2δ > 0.

Since there exists x ∈ B(a, δ) such that v(x) < c, so there is B(x, ε′) ⊂ {v < c − ε} ∩ B(a, δ) for

some ε, ε′ > 0. It follows from ∆ωh = 0 on D that

v(a) ≤M(v, a, r) ∀z ∈ B(a, r),∀r ≤ δ.

Notice that in our case ∆ω1 = 0 and∫
∂B(a,r)

Pa,r(z, w)dσr(w) = 1.

Integrating from 0 to δ we get that

δv(a) ≤
∫

[0,δ]

∫
∂B(a,r)

v(z)Pr(a, z)dσr(z)dr < δc.

This is impossible. Thus, the sufficient condition is proved.

For the last assertion, let 0 ≤ r < δ. Fix a continuous function φ ≥ u on ∂B(0, δ). As ∆ωh = 0

in B(a, δ) for

h(z) =

∫
∂B(a,δ)

φ(w)Pδ(z, w)dσδ(w),
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we get that u(z) ≤ h(z) on B(a, δ). Therefore,

M(u, a, r) ≤
∫
∂B(a,r)

h(w)Pr(a,w)dσr(w) = h(a). (3.5.9)

Moreover,

h(a) =

∫
∂B(a,δ)

φ(w)Pδ(a,w)dσδ(w).

Letting φ↘ u, we get the monotocity of M(u, a, r) in r ∈ [0, δ]. Moreover, as u is upper semicon-

tinuous,

lim
r→0

M(u, a, r) ≤ u∗(a) = u(a),

where we used the fact above that
∫
∂B(a,r)

Prdσr = 1.

An immediate consequence of the last assertion in the above lemma is

Corollary 3.5.1. If two ω−subharmonic functions are equal almost everywhere, then they are

equal everywhere.

We are ready to state a consequence of Littman’s theorem, which says that we can always find

a smooth approximation for ω−subharmonic functions.

Corollary 3.5.2. Let u ∈ SH(ω,Ω) and Ω′ ⊂⊂ Ω.There exists a sequence of smooth ω−subharmonic

functions [u]ε decreasing to u as ε→ 0 on Ω′.

Proof. We simply choose a smooth domain D ⊂ Ω and δ > 0 small such that Ω′ ⊂ D2δ and let

[u]ε(z) := uh(z) (3.5.10)

where uh(z), h = 1/ε > hδ, is defined in Theorem 3.5.1. As U(z) := limε[u]ε is equal to u(z)

almost everywhere and u is also ω−subharmonic, it follows from Corollary 3.5.1 that U = u

everywhere.

Corollary 3.5.3. Let {uα}α∈I ⊂ SH(ω) be a family that is locally bounded from above. Let

u(z) := supα uα(z). Then, the upper semicontinuous regularisation u∗ is ω−subharmonic.

124



Proof. By Choquet’s lemma one can choose an increasing sequence uj ∈ SH(ω) such that u =

limj uj . Then, by Littman’s theorem and the notation in Corollary 3.5.2, limε[u]ε = U ∈ SH(ω)

and u = U almost everywhere. As uj ∈ SH(ω) we have

uj ≤ [uj ]ε → [u]ε as j → +∞

uniformly on compact subsets of Ω. It follows that u ≤ U . By upper semicontinuous of U we have

u∗ ≤ U . By the formula (3.5.5) and Jh = 1, limε[u]ε ≤ u∗. Thus, u∗ = U .

Lemma 3.5.3. Let u be an ω−subharmonic function in Ω. Then,

∆ωu ≥ 0

in the distributional sense. Conversely, if v ∈ L1
loc(Ω) and ∆ωv ≥ 0 (as a distribution), then there

exists a unique function V ∈ SH(ω) such that V = v in L1
loc(Ω).

Proof. Let [u]ε, ε > 0, be the smooth decreasing approximation of u. As ∆ω[u]ε ≥ 0 and the

family weakly converges to ∆ωu, we get the first statement. Conversely, by Littman’s theorem we

know that V (z) = limε→0[v]ε(z) ∈ SH(ω) and V (z) = v(z) almost everywhere. Therefore, we get

the existence. The uniqueness follows from the fact that two ω−subharmonic functions are equal

almost everywhere.

The following result is rather simple but it is important.

Lemma 3.5.4. Let u ∈ SH(ω). Let K ⊂⊂ D ⊂⊂ Ω be a compact set and an open set. Then,∫
K

ddcu ∧ ωn−1 ≤ C(D,Ω)‖u‖L1(D).

Proof. Let φ be a cut-off function of K and suppφ ⊂ D. Then,∫
K

ddcu ∧ ωn−1 ≤
∫
φddcu ∧ ωn−1

=

∫
uddc(φωn−1)

≤ C(D,Ω)‖u‖L1(D),

where we used that φ is smooth and has compact support in Ω.

125



Lemma 3.5.5. The convex cone SH(ω) is closed in L1
loc(Ω), and it has a property that every

bounded subset is relatively compact.

Proof. Let uj be a sequence in SH(ω). If uj → u in L1
loc(Ω), then ∆ωuj → ∆ωu in weak topology

of distributions, hence ∆ωu ≥ 0, and u can be represented by an ω−subharmonic function thanks

to Lemma 3.5.3.

Now suppose that ‖uj‖L1(K) is uniformly bounded for every compact subset K of Ω. Let

µj = ∆ωuj ≥ 0. Let ψ be a test function such that 0 ≤ ψ ≤ 1 and ψ = 1 on K. Then, by

Lemma 3.5.4

µj(K) ≤
∫

Ω

ψ∆ωuj ≤ C‖uj‖L1(K′),

where K ′ = Supp ψ. By weak compactness µj weakly converges to a positive measure µ. Let

G(x, y) be the Green kernel for the smooth domain D, where K ′ ⊂ D ⊂ Ω. Consider

hj := uj(z)−
∫
G(z, w)ψµj(w).

Notice that since G(x, y) ∈ L1(dλ(z)) and ψ has compact support in D,∫
G(z, w)ψµj(w)→

∫
G(z, w)ψµ(w)

in L1 as j goes to +∞. Therefore, ∆ωhj = 0 in K and ‖hj‖L1 ≤ C. Since

hj(z) =

∫
∂D

hj(w)P (z, w)dσ(w),

it follows that ‖hj‖C1 ≤ C. Then, there exists a subsequene hj converging to h uniformly.

Therefore,

hj +

∫
G(z, w)ψµj(w)→ u = h+

∫
G(z, w)ψµ(w)

in L1(K) as j goes to ∞.

Lemma 3.5.6. Let uj be a sequence of ω−subharmonic functions which are uniformly bounded

above. If u is an ω−subharmonic function and uj → u in D′(Ω), then uj → u in L1
loc(Ω), and

limj→∞uj(z) ≤ u(z), z ∈ Ω,
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(where two sides are equal and finite almost everywhere).

Proof. By Corollary 3.5.2 for ε > 0 small enough,

uj ≤ [uj ]ε → [u]ε (3.5.11)

uniformly on compact sets in Ω as j →∞. If 0 ≤ φ ∈ C∞c then

∫
([u]ε + δ − uj)φdλ(z)→

∫
([u]ε + δ − u)φdλ(z)

as j →∞ and if δ > 0 the integrand is positive for j large. Hence,

limj→∞

∫
|u− uj |φdλ(z) ≤ 2

∫
|[u]ε + δ − u|φdλ(z).

Since ε, δ are arbitrary it follows that uj → u in L1
loc.

By (3.5.11) it is easy to see that limj→∞uj ≤ u in Ω. Furthermore, Fatou’s lemma gives

∫
limujφdλ ≥ lim

∫
ujφdλ =

∫
uφdλ,

so we conclude that limj uj = u almost everywhere.

Lemma 3.5.7 (Hartogs). Let f be a continuous function on Ω and K ⊂⊂ Ω be a compact set.

Suppose that {vj}j≥1 ⊂ SH(ω) decrease point-wise to v ∈ SH(ω). Then, for any δ > 0, there

exists jδ such that

sup
K

(vj − f) ≤ sup
K

(v − f) + δ

for j ≥ jδ.

Proof. Let [vj ]ε and [v]ε be decreasing approximations defined in Corollary 3.5.2 for vj and v,

respectively. As vj converges to v in L1
loc(Ω), for any fixed ε > 0,

[vj ]ε → [v]ε (3.5.12)

uniformly on compact sets of Ω as j goes to +∞. Since vj ≤ [vj ]ε, we have

sup
K

(vj − f) ≤ sup
K

([vj ]ε − f)
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Let M := supK(v − f). By Dini’s theorem max{M, [v]ε(z) − f(z)} decreases uniformly to M on

Ω as ε goes to 0. Hence, for ε > 0 small enough,

sup
K

([v]ε − f) ≤M + δ/2.

Let us fix such a small ε. By uniform convergence (3.5.12), for j ≥ j1

sup
K

([vj ]ε − f) ≤ sup
K

([v]ε − f) + δ/2.

Thus, altogether we get the desired inequality.

A direct consequence of this lemma is

Corollary 3.5.4. Let γ be a real (1, 1)−form in Ω. Let v ∈ SHγ,1(ω) ∩ L∞(Ω). Let {vj}j≥1 ⊂

SHγ,1(ω) ∩ L∞(Ω) be such that

lim
j→+∞

vj(z) = v(z) ∀z ∈ Ω.

Let K ⊂ Ω be a compact set and δ > 0. Then, there exists jδ such that for j ≥ jδ,

vj(z) ≤ sup
K
v + δ.

Proof. We can find a smooth function w in Ω such that

ddcw ∧ ωn−1 = γ ∧ ωn−1.

As uj = vj + w and u = v + w satisfy assumptions of Lemma 3.5.7, we can apply it for f = w to

get the statement of the corollary.

Corollary 3.5.5. Let {uj}j≥1 ⊂ SH(ω) be a sequence that is locally uniformly bounded above.

Define u(z) = lim supj→+∞ uj(z). Then, the upper semicontinuous regularisation u∗ is either

ω−subharmonic or ≡ −∞.

Proof. Let vk = supj≥k uj . Thanks to Corollary 3.5.3, v∗k ∈ SH(ω) and v∗k decreases to v ∈ SH(ω)

or ≡ −∞. Clearly, v ≥ u, and thus v ≥ u∗ ≥ u. Since vk = v∗k almost everywhere, so v = u almost
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everywhere. Furthermore, it is easy to see that ∆ωu ≥ 0. By Lemma 3.5.6

v = lim
ε

[v]ε ≤ lim sup
ε

[u]ε ≤ u∗. (3.5.13)

Therefore, v = u∗ everywhere.

We now prove that our definition is indeed equivalent to the definition given by Lu-Nguyen

[68, Definition 2.3], (see also Dinew-Lu [31]).

Lemma 3.5.8. A function u : Ω → [−∞,+∞[ is ω−subharmonic if and only if it satisfies the

following two conditions:

(i) upper semicontinuous, locally integrable and ∆ωu ≥ 0 in Ω.

(ii) if v satisfies the condition (i) and v ≥ u almost everywhere, then v ≥ u everywhere.

Proof. We first show that it is a necessary conditions. The only thing that remains to be checked is

the condition (ii). Pick v satisfying (i) and v ≥ u almost everywehre, we wish to show that v ≥ u

everywhere. As Jh = 1, it follows from the formulas (3.5.5), (3.5.10), and the upper semicontinuity

of v that

lim
ε→0

[v]ε(z) ≤ v(z).

Since [v]ε ≥ [u]ε for ε > 0, letting ε→ 0, we get that v ≥ u everywhere.

Suppose that u satisfies (i) and (ii) above. By Littman’s theorem U(z) = limε[u]ε = u(z)

almost everywhere, where U(z) is an ω−subharmonic function, which also satisfies (i). Hence,

u(z) ≤ U(z) everywhere in Ω. Moreover, using the upper semicontinuity of u as above, we have

u(z) ≥ U(z) in Ω.

We define the capacity for Borel sets E ⊂ Ω,

c1(E) = sup

{∫
E

ddcv ∧ ωn−1 : 0 ≤ v ≤ 1, v ∈ SH(ω)

}
.

According to Lemma 3.5.4 c1(E) is finite as long as E is relatively compact in Ω.
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The quasi-continuity of ω−subharmonic functions was used in [60]. We give here the details

of the proof. First, the decreasing convergence implies the convergence in capacity.

Lemma 3.5.9. Suppose that uj ∈ SH(ω)∩L∞(Ω) and uj ↘ u ∈ SH(ω)∩L∞(Ω). Then, for any

compact K ⊂ Ω and δ > 0,

lim
j→+∞

c1({uj > u+ δ} ∩K) = 0.

Proof. Applying the localisation principle [57, p. 7], we assume that Ω is a ball and uj = u = h

outside a neighbourhood of K. Let 0 ≤ v ≤ 1 be ω− subharmonic in Ω. We have

∫
{u+δ<uj}∩K

ddcv ∧ ωn−1 ≤ 1

δ

∫
(uj − u)ddcv ∧ ωn−1.

By Stokes’s theorem, ∫
(uj − u)ddcv ∧ ωn−1 = −

∫
d(uj − u) ∧ dcv ∧ ωn−1

+

∫
(uj − u)dcv ∧ dωn−1.

(3.5.14)

We shall show that both integrals on the right hand side tend to 0 as j goes to +∞. Hence,

we get the lemma. The second one is easier. Indeed, by Schwarz’s inequality [73],∣∣∣∣∫ (uj − u)dcv ∧ dωn−1

∣∣∣∣ ≤ C (∫ (uj − u)dv ∧ dcv ∧ ωn−1

) 1
2

×

×
(∫

(uj − u)ωn
) 1

2

.

Therefore the second integral of the right hand side in (3.5.14) goes to 0 as j → +∞.

Similarly, we use the Schwarz inequality for the first integral in (3.5.14). Let K ⊂ D ⊂⊂ Ω

such that uj = u on Ω \D.∣∣∣∣∫ d(uj − u) ∧ dcv ∧ ωn−1

∣∣∣∣ ≤ C (∫ d(uj − u) ∧ dc(uj − u) ∧ ωn−1

) 1
2

×

×
(∫

D

dv ∧ dcv ∧ ωn−1

) 1
2

.
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Again by Stokes’s theorem∫
d(uj − u) ∧ dc(uj − u) ∧ ωn−1

= −
∫

(uj − u)ddc(uj − u) ∧ ωn−1 +

∫
(uj − u)dc(uj − u) ∧ dωn−1

=

∫
(uj − u)ddcu ∧ ωn−1 −

∫
(uj − u)ddcuj ∧ ωn−1

+
1

2

∫
dc(uj − u)2 ∧ dωn−1

≤
∫

(uj − u)ddcu ∧ ωn−1 +
1

2

∫
dc(uj − u)2 ∧ dωn−1.

Thus, the fist integral goes to 0 as j → +∞ by the Lebesgue dominated convergence theorem.

For the second integral we use Stokes’ theorem once more∫
dc(uj − u)2 ∧ dωn−1 = −

∫
(uj − u)2ddcωn−1

≤ C
∫

(uj − u)2ωn.

The right hand side also goes to 0 as j →∞. Thus, we get the lemma.

Lemma 3.5.10. Let u ∈ SH(ω) ∩ L∞(Ω). Then for each ε > 0, there is an open subset O of Ω

such that c1(O,Ω) < ε and u is continuous on Ω \ O.

Proof. We may assume that Ω is a small ball because of the properties of capacity:

• if E ⊂ Ω1 ⊂ Ω2, then c1(E,Ω2) ≤ c1(E,Ω1).

• c1(
⋃
j Ej) ≤

∑
j c1(Ej).

Let SH(ω) ∩ C∞(Ω) 3 uj ↘ u and fix a compact set K ⊂ Ω. By Lemma 3.5.9 there exists an

integer jk and an open set

Ol = {ujl > u+
1

l
} ⊂ Ω, (3.5.15)

such that c1(Ok ∩K,Ω) < 2−k. If Gk = ∪l>kOl. Then, ujk decreases uniformly to u on K \Gk.

Hence, u is continuous on K \Gk.

Applying the argument above for a sequence of compact sets Kj increasing to Ω we get open

sets Gj that c1(Gj ,Ω) < ε2−j . Let O = ∪jGj , the lemma follows.
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[46] A. Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes. J.

Funct. Anal. 137 (1996), 49-75.

[47] F. R. Harvey and H. B. Lawson, Jr., The equivalence of viscosity and distributional subsolu-

tions for convex subequations—a strong Bellman principle, Bull. Braz. Math. Soc. (N.S.) 44

(2013), no. 4, 621–652.

[48] F. R. Harvey and H. B. Lawson, Jr., Dirichlet duality and the nonlinear Dirichlet problem on

Riemannian manifolds, J. Differential Geom. 88 (2011), no. 3, 395–482.

[49] F. R. Harvey and H. B. Lawson, Jr., Existence, uniqueness and removable singularities for

nonlinear partial differential equations in geometry, in Surveys in differential geometry. Ge-

ometry and topology, 103–156, Surv. Differ. Geom., 18, Int. Press, Somerville, MA.

[50] F. R. Harvey, H. B. Lawson Jr., and S. Plís, Smooth approximation of plurisubharmonic

functions on almost complex manifolds, Math. Ann. DOI 10.1007/s00208-015-1348-z.

[51] W. He, On the space of Kähler potentials, Comm. Pure Appl. Math. 2015 (2015), 0332-0343.

136
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[80] G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds. preprint,

arXiv:1501.02762v3.
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