On a Monge-Ampére Operator
for Plurisubharmonic Functions with
Analytic Singularities

MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH
WULCAN

ABSTRACT. We study continuity properties of generalized Monge-
Ampere operators for plurisubharmonic functions with analytic sin-
gularities. In particular, we prove continuity for a natural class of
decreasing approximating sequences. We also prove a formula for
the total mass of the Monge-Ampére measure of such a function on
a compact Kihler manifold.

1. INTRODUCTION

We say that a plurisubharmonic (psh) function u on a complex manifold X has
analytic singularities if locally it can be written in the form

(1.1) u = clog|F| +b,

where ¢ > 0 is a constant, F = (f1,..., fm) is a tuple of holomorphic functions,
and b is bounded. For instance, if f; are holomorphic functions and a; are posi-
tive rational numbers, then log(| f1|%' + - - - + | fin|%m) has analytic singularities.

By the classical Bedford-Taylor theory [5,6], if u is of the form (1.1), then in

{F + 0}, for any k, one can define a positive closed current (dd°u)¥ recursively
as

(1.2) (ddu)¥ := dd°(u(ddu)k1).

It was shown in [3] that (ddu)¥ has locally finite mass near {F = 0} for any k,
and also that the natural extension 1{r.q;(dd u)*~! across {F = 0} is closed
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1218 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

(cf. [3, equation (4.8)]). Moreover, by [3, Proposition 4.1], ulp.o; (dd u)*!
has locally finite mass as well, and therefore one can define the Monge-Ampére
current

(1.3) (dd°u)* := dd® (ulip.o;(ddu)*') forany k.

Demuailly [17] extended Bedford-Taylor’s definition (1.2) to the case when the
unbounded locus of u is small compared to k in a certain sense; in particular,
if uis as in (1.1), then (dd‘u)¥ is well defined in this way as long as we have
k < codim{F = 0} =: p. Since a positive closed current of bidegree (k, k) with
support on a variety of codimension greater than k vanishes, 1(r.q; (dd‘u)* =
(dd‘u)* for k < p — 1, and it follows that (1.3) coincides with (1.2) for k < p.

Recall that the Monge-Ampeére operators (dd°u)* defined by Bedford-Taylor-
Demailly have the following continuity property: if u; is a decreasing sequence
of psh functions converging pointwise to u, then (dd“u j)k - (dd‘u)k weakly.
Moreover, a general psh function u is said to be in the domain D(X) of the
Monge-Ampere operator if, in all open sets U C X, (dd°uj)"™ converge to the
same Radon measure for all decreasing sequences of smooth psh uj converging to
u in ‘U. The domain D(X) was characterized in [10, 11]; in case X is a hypercon-
vex domain in C", D(X) coincides with the Cegrell class [14].

In this paper, we study continuity properties of the Monge-Ampére operators
(dd°u)¥ defined by (1.3). It is not hard to see that general psh functions with
analytic singularities do not belong to D (X) (cf. Examples 3.2 and 3.4 below), and
therefore we do not have continuity for all decreasing sequences in general. Our
main result, however, states that continuity does hold for a large class of natural
approximating sequences. It thus provides an alternative definition of (ddu)k,
and at the same time further indicates that our notion of the Monge-Ampére
operator is indeed natural.

Theorem 1.1. Let w be a negative psh function with analytic singularities on
a complex manifold of dimension m. Assume that X ;(t) is a sequence of bounded
nondecreasing convex functions defined for t € (—o0,0) decreasing to t as j — oo.
Then, for every k = 1,...,n we have weak convergence of currents

(ddC(x; o u)* — (ddu)* asj - oo.

For instance, we can take X; = max(t,—j) or x; = %log(e” +1/j). Applied
to u = log|F| and X; = %log(eZt +1/j), Theorem 1.1 says that

k
<dd‘3% log <|1r|2 + %)) — (dd€log|F|)¥,
which was in fact proved already in [2, Proposition 4.4].
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On a Monge-Ampére Operator 1219

By a resolution of singularities, the proofs of various local properties of Monge-
Ampere currents for psh functions with analytic singularities can be reduced to the
case of psh functions with divisorial singularities, that is, psh functions that locally
are of the form u = clog|f| + v, where ¢ = 0, f is a holomorphic function and
v is bounded. Since log|f| is pluriharmonic on {f # 0}, in fact, v is psh. In
Section 3 we prove Theorem 1.1 for u of this form; in this case,

(1.4) (dd“u)k = dd€ (u(ddv)*1) = ddu A (dd°v)* L.
Note that, in light of the Poincaré-Lelong formula,
(dd°w)* = [f = 0] A (ddv)*! + (ddv)¥,

where [ f = 0] is the current of integration along {f = 0} counted with multi-
plicities.

Our definition of (ddu)* thus relies on the possibility of reducing it to the
quite special case with divisorial singularities. It seems that an extension to more
general psh u must involve some further ideas (cf. Section 6).

We also study psh functions with analytic singularities on compact Kihler
manifolds. Recall if (X, w) is such a manifold, then a function @: X - RU{—o0}
is called w-plurisubharmonic (w-psh) if locally the function g + @ is psh, where g
is a local potential for w, that is, w = dd“g. Equivalently, one can require that
w + dd°@ = 0. We say that an w-psh function @ has analytic singularities if the
functions g + @ have analytic singularities. Note that such a @ is locally bounded
outside an analytic variety Z C X that we will refer to as the singular set of @. If
@ is an w-psh function with analytic singularities, we can define a global positive
current (w + ddg)k by locally defining it as (dd“(g + @)k (see Lemma 5.1).
We will prove the following formula for the total Monge-Ampére mass.

Theorem 1.2. Let @ be an w-psh function with analytic singularities on a com-
pact Kihler manifold (X, w) of dimension n. Let Z be the singular set of @. Then,

n-1
(1.5) J (w +dd@)" = J w" - > J 17(w +dd @)k A w" k.
X X k=1 X
In particular,

(1.6) JX(w +dd‘p)" < JX w™.

Remark 1.3. Let @ be a general w-psh function such that the Bedford-
Taylor-Demailly Monge-Ampere operator (w + dd°@)" is well defined; if @ has
analytic singularities, this means that the singular set has dimension 0. Then, it
follows from Stokes’s theorem that equality holds in (1.6).
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1220 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

To see that in general there is not equality in (1.6) consider the following
simple example.

Example 1.4. Let X be the projective space P" with the Fubini-Study metric
w and let n = 2. Define

@) ., ze ) {0].

Since (dd€log|z;|)" = 0 in C"! (cf. (1.3)), it follows that (w + dd @)™ = 0
on P™,

In Section 5 we provide a geometric interpretation of Theorem 1.2 which
shows, in particular, that inequality in (1.6) is not an “exceptional case.”

The paper is organized as follows. In Section 2 we prove a continuity result
for currents of the form

uddvi A - -+ Addvyg,

where u is psh and vy, ..., vk are locally bounded psh, defined by Demailly [15]
(cf. (1.4)). In Section 3 we prove Theorem 1.1 for functions with divisorial sin-
gularities, and we also characterize when such functions are maximal. The general
case of Theorem 1.1 is proved in Section 4. In Section 5 we prove Theorem 1.2.
Finally, in Section 6 we make some further remarks.

2. CONTINUITY OF CERTAIN MONGE-AMPERE CURRENTS

In the seminal paper [6], Bedford and Taylor (see [6, Theorem 2.1]) showed that,
for k = 1,...,mn and locally bounded psh functions u, v1,..., vk on a manifold
X of dimension n, the current

2.1 uddviy A -+ Addvg

is well defined and continuous for decreasing sequences. Demailly generalized
their definition to the case when u is merely psh; he proved that the current (2.1)
has locally finite mass (see [15, Theorem 1.8]). Here, we prove the corresponding
continuity result.

Theorem 2.1. Assume that W is a sequence of psh functions decreasing to a psh

function W, and that for £ = 1,...,k, the sequence vz’, of psh functions decreases to a
locally bounded psh vy as j — . Then,

w! ddv] A -+ Addv] — uddv, A - - A ddCvyg

weakly as j — oo.
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On a Monge-Ampére Operator 1221
Proof. By the Bedford-Taylor theorem we have weak convergence
Sii=dd“v] A -+ Addv] — dd°vy A - - AddCvy =: S.
By [15, Theorem 1.8] the sequence u/S7 is locally weakly bounded, and thus it is
enough to show that, if u/SJ — @ weakly, then ® = us.
Take an elementary positive form « of bidegree (1 — k,n — k), and fix jj and
& > 0. Then, for j = jo we have

WA X <uhSI A < uh % peSI A,

where uJo x p; is a standard regularization of u’o by convolution; that is, p; is a
rotation-invariant approximate identity. Letting j — oo, we get

OAX=<U%peS A,

and thus ® < usS.
We will use the following lemma.

Lemma 2.2. Letu, Vo, V1, ..., Uy be psh functions defined in a neighborhood of
Q where Q is a bounded domain in C". Suppose all of these functions except possibly
U are bounded, and set T := ddvy A - - - A AdVy,. Assume that vy < vy in Q and
Vo = V1 in QN U, where U is a neighborhood of 0Q). Then,

J uddvoAT < [ uddvy AT.
Q Q
Proof. We have

J uddcvoAT—J udd‘vi AT
Q Q

= lim u*pgddc(vo—vl)/\T
Q

-0

=limlim | u % pedd®((vg—vy) * ps) AT

e-~006-0JQ

=limlimJ (Vo — V1) * psdd®(uxps) AT <0. O
£-06-0J0

End of proof of Theorem 2.1. We may assume that all functions are defined in
a neighborhood Qf a ball B = B(z,7) and, as in the proof of Bedford-Taylor’s

theorem, that vf, = vy = A(|lz — 29> — 7?) near OB for some A > 0, (cf,
e.g., the proof of [15, Theorem 1.5]). Since ® < usS, it still remains to prove
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1222 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

that J (uS — ®) A w"* < 0, where w = ddc|z|?. By successive application of

Lemma 2.2 we get

J udd®vy A -+ Addvg A ™k < J u/ddv] n--- Addvi A w™ k.
B B
Therefore,

J uS A "k <liminf| w/dd“v{ A -+ Addvi n 0" * < J 0 A w"F,
B Jj—oo B B

and thus the theorem follows. |

Theorem 2.1 generalizes a result of Demailly (see [18], Proposition I11.4.9
on p. 155), who assumed in addition that the complement of the open set where
U, v1,..., Vi are locally bounded has vanishing (2n — 1)-dimensional Hausdorff
measure.

3. THE CASE OF DIVISORIAL SINGULARITIES

In this section we first prove a special case of Theorem 1.1.

Theorem 3.1. Assume that w = log | f| + v is negative, where f is holomorphic
and v is a bounded psh function. Let X ; be as in Theorem 1.1. Then,

(dd€(x; o u)k — ddu A (dd“v)*! as j — oo

Proof. We will use an idea from [8]. Notice that locally on (—c0,0) the se-
quence x;. is bounded and tends to 1 uniformly when j — . For each j,

t
i) = | ks +x, (-1

is bounded, convex, and nondecreasing on (—o0,0), and yj'. = (x;.)k, where the

derivative exists. Moreover, the sequence y; is decreasing and tends to ¢.
Let us first assume that X and hence y;, are smooth. Since log|f] is pluri-
harmonic on {f # 0}, we have that

(ddC(x;ou)® = (X cudu A du+x;ouddu)*
= (kx} e wdu Adu+ X o uddu) A (X' o uddu)k?
= d((x) e wkdw) A (ddw)*!
=dd(yjou) A (ddv)*!
=dd°(y; o u(ddv)*1)
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On a Monge-Ampére Operator 1223

there. Since none of the above currents charges the set { f = 0}, the equality
(3.1) (ddS(x; o u)* = dd(y; o u(ddv)k)

holds everywhere If x. ; is not smooth we make a regularization x; ie = Xj ok Pe.
Then, x j - x in Lloc( 0, 0), and hence the associated y; ¢ tend to y; locally

uniformly. We conclude that (3.1) still holds. The theorem now follows from
(3.1) and Theorem 2.1. 0

The following example shows that (ddu j)¥ does not converge to (ddu)*
for general decreasing sequences of psh functions u; — u.

Example 3.2. We let u(z) = loglzi| + |z212. One can easily check that
(dd°u)? = [z; = 0] Add€|z3|? # 0. Thus, if u; = X; o u, where X is chosen as
in Theorem 1.1, for example,

1
lo |z, |22 ) :
o o

then (ddcuj)2 — (ddu)?. However, V= %log(lzll2 +1/j) + |z2]? are also
smooth psh functions that decrease to u, but

(ddv;)? — 2[z; = 0] A dd€|z,|* = 2(dd u)>.

It follows that u does not belong to the domain of definition of the Monge-
Ampere operator; in fact, this follows directly from [10, Theorem 1.1] since clearly
w ¢ W2 By [10, Theorem 4.1], one can find another approximating sequence
of smooth psh functions decreasing to u whose Monge-Ampeére measures do not
have locally uniformly finite mass near {z; = 0}.

Recall that a psh function u is called maximal in an open set Q in C" if, for
any other psh v in Q satisfying v < u outside a compact set, we have v < u in
Q. We refer to [9,25] for basic properties of maximal psh functions. In particular,
u is maximal if and only if for each Q" € Q and psh v such that v < u on 0CY,
one has v < u in Q'. By Bedford-Taylor’s theory [5, 6], a locally bounded psh u
is maximal if and only if (dd“u)" = 0

The following result due to Rashkovsii (see [23, Theorem 1]) gives a local
characterization of maximal psh functions with divisorial singularities.

Proposition 3.3. Let Q be a domain in C", n = 2, f a holomorphic function
in Q (not vanishing identically), and v a locally bounded psh function in Q. Then,
u = log | f| + v is maximal in Q if and only if v is maximal in Q.

One can rephrase Proposition 3.3 as follows: if a psh function u is globally of
the form log | f| + v, where f is a holomorphic function and v is psh and locally
bounded, then u is maximal if and only if it is maximal outside the singular set. It
would be interesting to verify whether such a characterization is true globally for
psh functions with divisorial singularities.

This content downloaded from
91.123.181.239 on Tue, 19 Dec 2023 08:58:53 +00:00
All use subject to https://about.jstor.org/terms



1224 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

Example 3.4. Proposition 3.3 implies that the psh function u in Example 3.2
is maximal (in any domain in C2). Thus, it is not true in general for psh functions
with analytic singularities u that (dd“u)"™ = 0 is equivalent to u being maximal.

Moreover, in any bounded domain we can find a sequence of continuous
maximal psh functions decreasing to u, or a sequence u; of smooth psh functions
decreasing to u such that (dd°u;)? — 0 weakly (see, e.g., [9, Proposition 1.4.9]).
It follows that (the mass of) limj(dd°u;)? when u; is a decreasing sequence of
bounded psh functions #j — u can be both smaller and larger than (the mass of)
(ddu)? (cf. Example 3.2).

Remark 3.5. In [12] it was shown that the psh function

(3.2) u(z) := —lloglzi|log|z,|

ismaximalin {|z1] < 1, |z2] < 1}\{(0,0)}, but that the Monge-Ampére measure
of max{u, —j}, however, does not converge weakly to 0 as j — .

In view of Theorem 3.1 and Proposition 3.3, the function u in Examples 3.2
and 3.4 is a new example of such a maximal psh function.

Proposition 3.3 implies that for psh functions with divisorial singularities it
suffices to check their maximality outside hypersurfaces. This is not true in gen-
eral, as the following example shows.

Example 3.6. The function given by (3.2) is psh in the unit bidisc, maximal
away from the singular set (i.e., the hypersurface {z;z, = 0}), but not maximal in
the entire bidisc A. In fact, the psh function

v(z) = —\/—loglzll - \/—loglzzl +1

coincides with u on the boundary of the bidisk (A(0,1/e))?, but v > u on the
diagonal inside (A(0, 1/e))?.

4. THE GENERAL CASE OF THEOREM 1.1

We now give a proof of Theorem 1.1. Since the statement is local we may assume
that u = log |F| + b, where F is a tuple of holomorphic functions on an open set
X c C", and b is bounded.

Let Z be the common zero set of F. By Hironaka’s theorem, one can find a
proper map 7: X’ — X that is a biholomorphism X" \ m™1Z ~ X \ Z, where
117 is a hypersurface, such that the ideal sheaf generated by the functions 7T* f;
is principal. Let D be the exceptional divisor and let L — X" be the associated line
bundle that has a global holomorphic section f° whose divisor is precisely D. It
then follows that T*F = fOF’, where F’ is a nonvanishing tuple of sections of
L~!. Given a local frame for L on X’, we can thus write F = f°F’, where f0 is
a holomorphic function and F” a nonvanishing tuple of holomorphic functions.

Then,

m*u = log|m*F| + m*b = loglfol +log |[F'| + T*b =: loglfol + v,
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On a Monge-Ampére Operator 1225

and since TT*u is psh, it follows that v is. Another local frame gives rise to the
same local decomposition up to a pluriharmonic function. Notice that

dd‘log|f°| = [D],

where D is the divisor determined by f°.
In view of Theorem 3.1,

(dd® (x; o m*u))¥ — (dd°m*u)* = [D] A (dd“v)*! + (ddv)*.

Assume that a is psh and bounded. Since neither (dd€a)* nor (dd°m*a)k
charges subvarieties, it follows that

e (ddSTt*a)k = (ddCa)k.
Since T*(x; o u) = x; ° w*u, thus

(dd®(x; o w)* = i (dd® (m* (x,; o )"
= T, (dd® (x o T u))*
— T ([D] A (ddv)* ! + (ddv)).

By [3, Equation (4.5)],
T ([D] A (ddCv)* 1 + (ddv)¥) = (ddu)k,

and thus Theorem 1.1 follows.

Remark 4.1. The definition of (dd°u)k as well as the proof of Theorem 1.1
work just as well if X is a reduced, not necessarily smooth, analytic space (cf.,

e.g., [4]).
5. PROOF AND DISCUSSION OF THEOREM 1.2

We start by showing that the Monge-Ampére operators (w + dd®@)* are well
defined whenever @ is an w-psh function with analytic singularities.

Lemma 5.1. Let @ be an w-psh function with analytic singularities. Then,
(ddC (g + @)X is independent of the local potential g of w.

Proof: We need to prove that

(5.1) (ddS(g +h + @)k = (dd°(g + p)*

if h is pluriharmonic. Clearly, this is true for k = 1.
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1226 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

If T is a positive closed current and u and v are functions such that uT and
vT have locally finite mass, then clearly so has (u + v)T = uT + vT. Assuming
that (5.1) holds for k = £, it follows that

(dd°(g+ h+ (p))”+1 =dd°((g+h+@)lxz(dd(g+h+ (p))g)
=dd®((g + )1x\z(dd(g + p)!)
+dd®(hlx z(dd (g + @)Y,

where Z is the singular set of @ + g. Since h is pluriharmonic, the rightmost
expression equals

(dd(g + @) +ddh A 1x,2(ddC (g + @) = (dd°(g + @)t

Thus, (5.1) follows by induction. O

Proof of Theorem 1.2. Fork = 0,...,n—1, we let Ty := 1x\z(w + ddcp)k;
note that Tj is just the function 1. Locally, we can define

(5.2) QTi:= (g + @) Tk — gTk
(cf. (1.3)). This definition is independent of the local potential g of w, and (cf.
the proof of Lemma 5.1) @ Ty therefore defines a global current on X. Applying
ddec to (5.2), we get
(5.3) dd“(@Ty) = dd (g + @)Tk) —dd (gTx)) = (w + dd @)**! — w A Ty.
Now,
(5.4) J Wk ATy
X
_ J wnfkfl A ((U + ddc(p)kJrl _[ wnfkfl A ddc((ka)
X X
= [ WA 15(w + ddC )kt + J WK1 A Ty,
X X
Here, we have used (5.3) for the second equality; the second term in the middle
expression vanishes by Stokes’s theorem. Applying (5.4) inductively to J w" =
X
[ w"Tp, we get (1.5). O
X

Given an w-psh function @, in [13, 21] was introduced the non-pluripolar
Monge-Ampere operator

( +dd @) = lim 1y ( +dd max(@, =)
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On a Monge-Ampére Operator 1227

the definition is based on the corresponding local construction in [7].

Assume that @ has analytic singularities with singular set Z. Then, clearly
((w + dd°@)k) coincides with the classical Monge-Ampére operator outside Z,
and does not charge Z. Hence,

((w +dd“@)*) = 1x,z(w + dd°@)*.
Following [3] (cf. [4]), we let
MY :=17(dd°@ + w)*, k=1,...,n.

Using this notation we can rephrase Theorem 1.2 as
n
(5.9) J ((w+dd°p)") = J w™ - Z J M,ip A "k,
X X k=1"%

In fact, by applying (5.4) inductively to J w™"Ty as in the proof of Theorem 1.2,
X

but stopping at k = € — 1, we get the following result.

Proposition 5.2. Let © be an w-psh function with analytic singularities on a
compact Kiihler manifold (X, w) of dimension n. Then, for{ = 1,...,n,

¢ ¢ . k
c n—-{ _ n _ P n-—
(5.6) L((w +dd°@)')y A"t = L{w k; L{ My A w"E

From [13, Theorem 1.16], it follows that if @, @’ are w-psh with analytic
singularities, and @ is less singular than @’ (i.e., @ = @" + O(1)), then

(5.7) JX((w +dd @)ty A > JX((w +dd @) A w" ! foreach L.

From (5.7) and Proposition 5.2 we conclude that
¢ ¢ ,
ZJ MP A"k < Z[ MP A"k
k=1"% k=1"%

for each 4. It is not true in general, however, that J M7 A"k < J MY Awn K
X X

for each k, as is illustrated by the following example.

Example 5.3. Let X = P, _ _ , with the Fubini-Study metric w, and let
B (1117 + [2212)1/? . (|21|>
(p—log( B and @' =log B

This content downloaded from
91.123.181.239 on Tue, 19 Dec 2023 08:58:53 +00:00
All use subject to https://about.jstor.org/terms



1228 MATS ANDERSSON, ZBIGNIEW BLOCKI ¢ ELIZABETH WULCAN

(cf. Example 1.4). Then, @ and @’ are w-psh with analytic singularities, and
clearly @ is less singular than @’. Note that My = [z, = z; = 0] and M} =

[z1 = 0], whereas MY and MY vanish. In particular, J My > J MY
X X

Remark 5.4. In general, we cannot have a global continuity result like The-
orem 1.1. Indeed, assume that @ is an w-psh function with analytic singularities
such that

[ (w+dd)! A w" ! < [ w™
X X

(cf. (5.6)); this holds, for example, for @’ in Example 5.3 and £ = 2. Moreover,
assume there is a sequence of locally bounded w-psh, or smooth, functions @ ;
converging to @. By Stokes’s theorem,

J (w + ddccpj)g Awtl = [ w"  forall j,
X X

and thus (w + dd¢ (pj)l) cannot converge to (w + ddcp)?.

Let X be a possibly non-smooth, analytic space (cf. Remark 4.1), and let w
be a smooth positive (1, 1)-form on X that locally has a smooth potential. Then,
we still have the notion of w-psh function on X, and the formulation and proof
of Theorem 1.2, as well as the definitions of M,:p, work as in the smooth case.

There is a close connection between Theorem 1.2 and the currents My and
global (nonproper) intersection theory, which will be studied in a forthcoming
paper by two of the authors. In some sense the currents M}’ can be seen as gen-
eralized intersection cycles (cf. [4, Section 6]). Let us just give a simple example
with a proper intersection here (cf. Example 1.4 above).

Example 5.5. Let i: X — P™ be a projective variety of dimension p, and let
S be an m-homogeneous form in C"*! that does not vanish identically on any
irreducible component of X; that is, Z(f) intersects X properly. If we consider
f as a section of the line bundle @(m) — P", then it has the natural norm
IFIl = 1f(2)]/1z|™. It follows that u = logll f1 is mw-psh on X, where w is
the Fubiny-Study form. Notice that ((mw + dd°@)") = 0. Moreover, My = 0
for k = 2 and M; = dd°log| f|. Thus, the equality (5.5) means that

dedcloglfl APl = mJX wP =degZ - deg X,
and the rightmost expression is equal to
(5.8) J{Pn[Z] ALX] A wPL
Since [Z] A [X] is the Lelong current of the proper intersection Z - X of Z and X,

(5.8) equals deg(Z - X), and thus (5.5) in this case is just an instance of Bezout’s
formula.
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6. SOME FURTHER COMMENTS

The Monge-Ampere operators (1.3) are also closely related to local intersection
theory. Given a psh function of the form (1.1) on a possibly non-smooth analytic
space X, we let

MY :=1z(ddw*, k=1,...,n,

where Z = {F = 0}. In [3,4], it was proved that
6.1) UM} = ex(x),

where £xpt denotes the Lelong number of the positive closed current p at x, and
ex(x) is the kth Segre number at x of the ideal J generated by F. Segre num-
bers were introduced independently by Gaffney-Gassler [20] and Tworzewski [20]
as certain local intersection numbers, and in a purely algebraic way by Achilles-
Manaresi [1]. In fact, if Z is discrete, then the only nonvanishing Segre number
en(x) equals the classical Hilbert-Samuel multiplicity of J at x. Thus, (6.1) is a
generalization of the well-known fact that the Lelong number of (dd® log|F|)™ is
the Hilbert-Samuel multiplicity of 7 if Z is discrete.

Demailly’s approximation theorem [16] asserts that any psh function u on
a bounded pseudoconvex domain Q can be approximated by psh functions with
analytic singularities. Let

uj:= %jlogsup{lflz: feo), L} |f12e 2% dA < 1}.

Then, uj — u pointwise and in L, and there exists a sequence of positive con-
stants &; decreasing to 0 such that the subsequence u,; + ¢€; is decreasing (see
[19]); in view of [22], this cannot be done for the whole sequence u ;. Since u;
are in fact defined by weighted Bergman kernels, it is clear that locally they can be
written in the form (1.1) where b is smooth. If u has an isolated analytic singu-
larity (so that the Demailly definition of the Monge-Ampére operator applies), it
is proved in [24] that there is continuity for the Monge-Ampére masses of the u;.
It would be interesting to investigate possible convergence properties of (ddu j)k
in more general cases: for example, when the initial function u also has analytic
singularities, or for more general psh u as a means to extend (ddcu)¥ to such u.
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