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For domains in Rn we construct the Bergman kernel on the diagonal using solutions of
the Dirichlet problem. Starting from this, in a natural way we obtain an algebra An of
dimension n(n − 1)/2 + 1 over R and a class of holomorphic functions valued in An.
Of course A2 is the field of complex numbers, and it turns out that A3 is the algebra
of quaternions, whereas for n ≥ 4, An is non-associative. Holomorphic functions can be
written as f + ω, where f is a (real-valued) function and ω a differential 2-form such
that d∗ω = df and dω = 0. We investigate the main properties of the obtained objects,
especially from the analytic point of view.
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1. Introduction

If Ω is a bounded, smoothly bounded domain in C then the Bergman kernel can
be defined in terms of a solution of the Dirichlet problem: assuming for simplicity
that Ω contains the origin, one has

KΩ(·, 0) =
∂v

∂z
, (1.1)

where v is a complex-valued harmonic function in Ω, smooth on Ω, such that v(z) =
1/(πz) on ∂Ω (see e.g. [1, p. 97]). This may be viewed as another construction of the
Bergman kernel and we first translate it into a purely real setting. For this write
v = a + bi, then

2vz = ax + by + i(bx − ay)

and we get that

Re KΩ(·, 0) = divV ,

1113



November 16, 2007 9:13 WSPC/133-IJM 00444

1114 Z. B�locki

where V = (v1, v2) is the harmonic vector field in Ω, smooth on Ω, such that
v1 = Ex, v2 = Ey on ∂Ω, and

E(z) =
1
2π

log |z|
is the fundamental solution for the Laplacian, that is ∆E = δ0.

The point is that the above construction makes perfect sense in Rn and one can
define in this manner the Bergman kernel, at least on the diagonal of Ω×Ω, where
Ω is a bounded domain in Rn with smooth boundary. Namely, assuming again that
Ω contains the origin, let V : Ω → Rn be the harmonic vector field in Ω, smooth on
Ω, such that V = ∇E on ∂Ω, where

E(x) =


1
2π

log |x|, n = 2,

− 1
(n − 2)sn

|x|2−n, n ≥ 3,

(1.2)

is the fundamental solution for the Laplacian in Rn (sn is the area of the unit sphere
in Rn). We may thus define

KΩ(0, 0) := divV(0). (1.3)

The goal of this paper is to look closer at this construction. In a rather natural
way, we will obtain an algebra An and a class of holomorphic functions Ω → An

such that the expression defined by (1.3) will be equal to the Bergman kernel for
this family on the diagonal of Ω × Ω. It will turn out that holomorphic functions
may be identified with expressions of the form f + ω, where f is a function and ω

is a 2-form satisfying the following Cauchy–Riemann equations{
d∗ω = df,

dω = 0,
(1.4)

where d∗ is the formal adjoint to d in R
n. It is clear that solutions to (1.4) have to

be harmonic and therefore (1.4) is an example of a generalized Cauchy–Riemann
system (see [9, p. 231]). More general Cauchy–Riemann systems of differential forms
than (1.4) have been studied in [4].

The algebra An is equal to R ⊕ ∧2((Rn)∗), that is An is of real dimension
n(n − 1)/2 + 1. The multiplication in An is derived in Sec. 2 and it turns out that
A3 is precisely the algebra of quaternions, in particular the multiplication is then
not commutative. For n ≥ 4, this multiplication is not even associative. We believe
that this multiplication is perhaps the most interesting (and possibly new) element
obtained by our construction.

With the above notions of holomorphic functions and the multiplication in An,
one can define the Bergman kernel in an arbitrary domain Ω ⊂ Rn, so that

F (y) =
∫

Ω

F (x)KΩ(x, y)dλ(x)
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for every y ∈ Ω and for each square-integrable holomorphic function F . One can
then show that this definition coincides with (1.3), one gets in particular

KΩ(y, y) = sup
{

f(y)2

‖f‖2 + ‖ω‖2
: f, ω satisfy (1.4), (f, ω) �≡ 0

}
, y ∈ Ω,

where ‖ · ‖ denotes the L2-norm.
As an application of such a notion of holomorphic functions in Rn, we will show

the following characterization of closed polar sets in Rn (it is of course well-known
for n = 2).

Theorem 1.1. Let P be a closed subset of Rn. Then P is non-polar if and only
if there exist a nonconstant, square-integrable function f and a 2-form ω in the
complement Rn\P satisfying (1.4).

The theory of holomorphic functions in R
n valued in Clifford algebras is well-

developed, see e.g. [2]. It is therefore quite likely that there is an overlap with the
notions and results presented here for n = 3. The author is unaware however of
any literature where a notion of a holomorphic function valued in a non-associative
algebra is considered. The novelty of our approach might be that the considered
objects (especially the multiplicative structure of the algebra An) are obtained in
a natural way, starting from a PDE definition of the classical Bergman kernel.

The paper is organized as follows. In Sec. 2, we recall the proof of (1.1) and then
perform similar integration by parts in higher dimensions. We stress again that the
obtained conditions and assumptions are derived in a very natural way. One of
the important features of these arguments is the formula for multiplication in An.
Mostly algebraic properties of the algebra An are analyzed in Sec. 3. In Sec. 4, the
conditions obtained in Sec. 2 are translated into the language of differential forms,
we get in particular the Cauchy–Riemann equations (1.4). In Sec. 5, we introduce
the definition of the Bergman kernel and show its equivalence with (1.3). We also
prove Theorem 1.1. Finally, in Sec. 6, we show the Cauchy formula and discuss the
problem of producing holomorphic functions from continuous boundary data.

2. Motivation

We first want to recall the proof of (1.1) because we are going to make similar
arguments in higher dimensions. The idea is to show that ∂v/∂z reproduces f(0)
for f holomorphic in Ω, smooth up to the boundary. Then the result will follow
because the space of such functions is dense in H2(Ω) (see e.g. [1]). We have∫

∂Ω

f
1
z

dz = π

∫
∂Ω

fv dz.

By the Green formula, since ∂/∂z(1/z) = πδ0,∫
∂Ω

f
1
z

dz = −
∫

Ω

∂

∂z

(
f

1
z

)
dz ∧ dz = 2πif(0)
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and ∫
∂Ω

fv dz = 2i

∫
Ω

f

(
∂v

∂z

)
dλ,

where dλ is the Lebesgue measure. We thus get (1.1).
We now want to perform similar integration by parts in higher dimensions. Let

Ω be a bounded, smoothly bounded domain in Rn and let V = (v1, . . . , vn) be the
harmonic vector field in Ω such that V = ∇E on ∂Ω. For an arbitrary real-valued
f ∈ C1(Ω) and i, j = 1, . . . , n we have

0 =
∫

∂Ω

f(Ej − vj) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, (2.1)

where we denote Ej = ∂E/∂xj . Therefore, by the Stokes theorem∫
Ω

(fEj)idλ =
∫

Ω

(fvj)idλ,

provided that the left-hand side makes sense. Take a matrix (f ij) of functions from
C1(Ω) and sum over i, j. Then∑

i,j

∫
Ω

(
f ijEij + f ij

i Ej

)
dλ =

∑
i,j

∫
Ω

(
f ijvj

i + f ij
i vj

)
dλ. (2.2)

On one hand, we would like the term
∑

i,j f ijEij to be of the form f∆E (then in
particular the left-hand side always makes sense). This will be the case provided
that

f11 = · · · = fnn = f, f ij + f ji = 0, i �= j. (2.3)

On the other hand, the first order terms will disappear if we assume that

n∑
i=1

f ij
i = 0, j = 1, . . . , n. (2.4)

Then, assuming that (f ij) satisfies (2.3) and (2.4), we will get

f(0) =
∫

Ω

f divV +
∑
i<j

f ij
(
vj

i − vi
j

) dλ. (2.5)

In particular, if in (2.5) we take

(f ij) =


divV

· vj
i − vi

j

·
vi

j − vj
i ·

divV


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then (f ij) satisfies (2.3), (2.4) (the latter we leave as an exercise to the reader) and

divV(0) =
∫

Ω

(divV)2 +
∑
i<j

(
vj

i − vi
j

)2

 dλ. (2.6)

This implies in particular that divV(0) ≥ 0. Note that (2.6) is a counterpart of the
formula

Re KΩ(0, 0) =
∫

Ω

|KΩ(·, 0)|2dλ

for n = 2.
Take another, now arbitrary harmonic vector field U = (u1, . . . , un) : Ω → Rn,

smooth up to the boundary. We want to find integral representations for divU(0)
and uj

i (0) − ui
j(0), i �= j (since precisely terms of this kind appear in (2.6)). If in

(2.5) we take

(f ij) =


divU

· uj
i − ui

j

·
ui

j − uj
i ·

divU

 ,

we will get

divU(0) =
∫

Ω

divU divV +
∑
i<j

(
uj

i − ui
j

)(
vj

i − vi
j

) dλ.

To get a representation for u2
1(0) − u1

2(0), it is convenient to take

(f ij) =



u2
1 − u1

2 −divU u3
2 − u2

3 . . . un
2 − u2

n

divU u2
1 − u1

2 u1
3 − u3

1 . . . u1
n − un

1

u2
3 − u3

2 u3
1 − u1

3 u2
1 − u1

2 0

...
...

. . .

u2
n − un

2 un
1 − u2

n 0 u2
1 − u1

2


.

(Again, we leave it to the reader to check that (f ij) so defined satisfies (2.4).) From
(2.5), we will obtain

u2
1(0) − u1

2(0) =
∫

Ω

[(
u2

1 − u1
2

)
divV − divU (

v2
1 − v1

2

)
+

n∑
i=3

[(
ui

2 − u2
i

) (
vi
1 − v1

i

)− (
ui

1 − u1
i

) (
vi
2 − v2

i

)]]
dλ.
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Similarly, for arbitrary p �= q, we will get

uq
p(0) − up

q(0) =
∫

Ω

(uq
p − up

q

)
divV − divU (

vq
p − vp

q

)

+
n∑

i�=p,q

[(
ui

q − uq
i

) (
vi

p − vp
i

)− (
ui

p − up
i

) (
vi

q − vq
i

)] dλ.

By the way, notice that if we have an arbitrary matrix (f ij) of C1 functions for
which (2.3) and (2.4) hold, then the matrix

f12 −f f23 . . . f2n

f f12 f31 . . . fn1

f32 f13 f12 0
...

...
. . .

fn2 f1n 0 f12


(2.7)

satisfies (2.4) provided that

f12
k + f2k

1 + fk1
2 = 0, k ≥ 3.

Similarly we can argue for arbitrary p �= q and so it is natural to consider an extra
condition

f ij
k + f jk

i + fki
j = 0, if #{i, j, k} = 3. (2.8)

To summarize, we have just proved the following result:

Theorem 2.1. Assume that Ω is a bounded, smoothly bounded domain in Rn con-
taining the origin. Let V = (v1, . . . , vn) be the harmonic vector field in Ω, smooth
on Ω, given by the condition V = ∇E on ∂Ω, where E is the fundamental solution
for the Laplacian defined by (1.2). Set

g := div V , gij := vj
i − vi

j , i, j = 1, . . . , n, i �= j.

Assume that f ij ∈ C1(Ω), i, j = 1, . . . , n, satisfy (2.3), (2.4) and (2.8). Then

f(0) =
∫

Ω

fg +
∑
i<j

f ijgij

 dλ,

fpq(0) =
∫

Ω

fpqg − fgpq +
∑

i�=p,q

(
f qigpi − fpigqi

) dλ, p �= q.

In particular

div V(0) =
∫

Ω

(div V)2 +
∑
i<j

(
vj

i − vi
j

)2

 dλ,

vq
p(0) − vp

q (0) = 0, p �= q.
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It does therefore seem natural to consider matrices of functions satisfying (2.3),
(2.4) and (2.8) as holomorphic functions. We can treat them as functions Ω → An,
where Ω is open in Rn and An is the set of matrices from Rn×n satisfying (2.3).
Note that Theorem 2.1 gives the rule for a product of two elements from An and
we are now going to analyze this.

3. The Algebra An

Let An denote the set of matrices A = (aij) ∈ Rn×n such that

a11 = · · · = ann = a, aij + aji = 0, i �= j. (3.1)

We may write An = R ⊕ ∧2,n, where by
∧p,n we denote the exterior algebra∧p ((Rn)∗). The elements of An we will write in the form

A = a + w,

where a ∈ R, we call the real part and w ∈ ∧2,n the imaginary part of A, and
denote Re A = a, Im A = w. Then

w =
∑
i<j

aijeij ,

where for i �= j eij = e∗i ∧ e∗j (here ei are the standard basis vectors in R
n and e∗i

the dual covectors), that is the matrix (ekl
ij ) ∈ An is such that eij

ij = −eji
ij = 1, and

ekl
ij = 0 otherwise.

Theorem 2.1 provides a formula for the product AB in An. Since of course
we set

A := AT = a − w,

the product in An is defined as followsa +
∑
i<j

aijeij

b +
∑
i<j

bijeij



:= ab −
∑
i<j

aijbij +
∑
p<q

apqb + abpq +
∑

i�=p,q

(
apibqi − aqibpi

) epq.

One can immediately see that An with this product has the structure of an algebra
over R: for A, B, C ∈ An and λ ∈ R, we have

A(B + C) = AB + AC, (A + B)C = AC + BC, λ(AB) = (λA)B = A(λB).
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It is easy to check that the product is determined by the following formulas (remem-
bering that eij = −eji, i �= j)

e2
ij = −1, i �= j,

eijejk = −eik, #{i, j, k} = 3,

eijekl = 0, #{i, j, k, l} = 4.

Note that if we associate a matrix (f ij) satisfying (2.3) with F = f +
∑

i<j f ijeij ∈
An then the matrix (2.7) we can associate with −e12F .

Of course we have A2 � C. For n ≥ 3, the algebra An is not commutative, for
example,

e23 = e12e13 �= e13e12 = −e23.

Since

e2
12 = e2

13 = e2
23 = e12e13e23 = −1,

we see that A3 � H, the algebra of quaternions. For n ≥ 4, the algebra An is not
associative, for example,

0 = (e12e34)e34 �= e12(e34e34) = −e12.

We have however the following weak commutativity and associativity:

Proposition 3.1. For A, B, C ∈ An, we have

Re(AB) = Re(BA), Re((AB)C) = Re(A(BC)).

Proof. The first formula is obvious. To show the second one, it is enough to con-
sider only elements of the form A = eij , B = ekl, C = epq, where i �= j, k �= l,
p �= q. Note that Re ((eijekl)epq) �= 0 only if eijekl = ±epq. Then

Re ((epjejq)epq) = 1 = Re (epj(ejqepq))

and similarly we check the other possibilities.

We endow An with the euclidean norm

|A|2 := a2 +
∑
i<j

(aij)2.

We can easily prove the following formulas

AA = AA = |A|2, AB = B A.

We also have

|AB| ≤ bn|A‖B|, (3.2)

where

bn = max
|A|=|B|=1

|AB| < ∞.
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If n = 2 or n = 3, then in fact |AB| = |A‖B| for any A, B ∈ An, so that b2 = b3 = 1.
However,

(e12 + e34) (e13 − e24) = 2 (e14 + e23)

and we see that bn ≥ √
2 for n ≥ 4.

4. Holomorphic Functions as Differential Forms

Let Ω ⊂ Rn be open. We will say that a C1 function F = (f ij) : Ω → An is
holomorphic if it satisfies (2.4) and (2.8). The set of holomorphic functions will be
denoted by O(Ω). We may write

F = f + ω,

where f ∈ C1(Ω) and

ω =
∑
i<j

f ijdxi ∧ dxj ∈ C1
(2)(Ω),

that is ω is a differential 2-form in Ω. Then (2.8) reads

dω = 0.

Recall that the Hodge ∗ operator

∗ :
∧p,n → ∧n−p,n

is determined by

α ∧ ∗α = |α|2dλ.

Then

∗2 = (−1)p(n−p)

and the scalar product in L2
(p)(Ω) can be written as

〈〈α, β〉〉 =
∫

Ω

α ∧ ∗β.

The formal adjoint of d

d∗ : Ck
(p)(Ω) → C

(k−1)
(p−1) (Ω)

is determined by

〈〈α, dβ〉〉 = 〈〈d∗α, β〉〉, α ∈ C1
(p)(Ω), β ∈ C1

0,(p−1)(Ω)

(that is β is compactly supported). Then

d∗ = −(−1)n(p−1) ∗ d ∗ .

If u =
∑

j ujdxj ∈ Ck
(1)(Ω) and ω =

∑
i<j f ijdxi ∧ dxj ∈ Ck

(2)(Ω) then

d∗u = −
∑

j

uj
j , d∗ω = −

∑
j

∑
i�=j

f ij
i dxj .
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For any form α =
∑

|I|=p αIdxI ∈ C∞
(p)(Ω), we also have

dd∗α + d∗dα = −
∑
|I|=p

∆αIdxI .

The Cauchy–Riemann equations (2.4) are thus equivalent to

d∗ω = df.

Examples of holomorphic functions appeared already in Sec. 2: for a harmonic
vector field U = (u1, . . . , un) the function

F =


divU

· uj
i − ui

j

·
ui

j − uj
i ·

divU


is holomorphic. In other words, F = −d∗u + du, where u is a harmonic 1-form. In
fact, at least locally every holomorphic function must be of this form.

Proposition 4.1. Assume that a domain Ω ⊂ Rn is such that the cohomology
group H2(Ω, R) vanishes. Then

O(Ω) = {−d∗u + du : u ∈ H(1)(Ω)},
where H(p)(Ω) denotes the set of harmonic p-forms in Ω.

Proof. The inclusion ⊃ is clear. On the other hand, take f + ω ∈ O(Ω), that is
d∗ω = df and dω = 0. Since H2(Ω, R) = 0, it follows that there exists v ∈ C∞

(1)(Ω)
with dv = ω. We can also find h ∈ C∞(Ω) such that ∆h = f + d∗v, that is
d∗dh = −f − d∗v. Then u := v + dh is a harmonic 1-form such that −d∗u = f and
du = ω.

Remark. As observed by Ohsawa, one cannot remove the assumption H2(Ω, R) = 0
in Proposition 4.1. For if Ω is bounded, smoothly bounded, and H2(Ω, R) �= 0 then
by the Hodge decomposition theorem (see e.g. [8]), one can find a non d-exact
form ω ∈ C∞

(2)(Ω) with dω = 0, d∗ω = 0, and such that the normal component
of ω vanishes at the boundary. Therefore F = ω is holomorphic but cannot be
written in the form −d∗u + du. In fact, by a more complicated approximation
argument one can show that the assumption H2(Ω, R) = 0 is necessary also for
non-smooth Ω.

For n = 2 the assumption H2(Ω, R) = 0 is always satisfied. Then Proposition 4.1
means that every holomorphic function must be globally of the form ∂u/∂z for some
complex-valued harmonic function u. This follows also for example from the solution
to the inhomogeneous Cauchy–Riemann equation (see e.g. [5, Theorem 1.4.4]).

One can also show that locally any harmonic function is a real part and every
closed harmonic 2-form is an imaginary part of some holomorphic function.
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Proposition 4.2. (i) Assume that Hn−1(Ω, R) = 0 and that f is a harmonic
function in Ω. Then there exists F ∈ O(Ω) such that f = ReF .

(ii) Assume that H1(Ω, R) = 0 and that ω is a harmonic 2-form in Ω. Then there
exists F ∈ O(Ω) such that ω = ImF .

Proof. (i) We can find ω̃ ∈ C∞
(2)(Ω) with d∗ω̃ = df (because Hn−1(Ω, R) = 0

and since f is harmonic) and γ ∈ C∞
(2)(Ω) such that ω̃ = dd∗γ + d∗dγ. Then

F = f + dd∗γ ∈ O(Ω).

(ii) Follows directly from the definition.

On the other hand, for example, the product of two holomorphic functions need
not be holomorphic for n ≥ 3.

Many elementary properties of holomorphic functions follow from the fact that
both their real and imaginary parts have to be harmonic. In particular, we have
the following.

Proposition 4.3. If F is holomorphic then |F |2 is subharmonic.

Remark. Using only the fact that |F |2 is a finite sum of squares of harmonic
functions, one can easily show that |F |p is subharmonic for every p ≥ 1. Using in
addition the fact that F is a solution to a generalized Cauchy–Riemann system,
it follows that there exists p0 < 1 such that |F |p is subharmonic for every p ≥ p0

(see [9, p. 233, Theorem 4.9]). It would perhaps be interesting to determine the best
possible p0 for n ≥ 3. Since

F := (d − d∗)(Edx1) = E1 −
∑
j≥2

Ejdx1 ∧ dxj ∈ O(Rn\{0})

and |F |p is not subharmonic for p < (n − 2)/(n − 1) (see also [9, p. 234]), we see
that p0 ≥ (n − 2)/(n − 1).

5. The Bergman Kernel

In this section, we will define the Bergman kernel in a standard way, that is by the
Hilbert space approach. For bounded, smoothly bounded domains this notion will
coincide with the one obtained in Theorem 2.1. For open Ω ⊂ Rn set

H2(Ω) := O(Ω) ∩ L2(Ω, An).

We have

H2(Ω) = {F = f + ω ∈ L2(Ω, An) : d∗ω = df, dω = 0 (in the weak sense)}
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and it is clear that it is closed in L2(Ω, An) (because convergence in L2 implies
weak convergence). In H2(Ω), we have the generalized scalar product

〈F, G〉 =
∫

Ω

FGdλ ∈ An.

Here we used (3.2), more precisely we have the counterpart of the Schwarz inequality

|〈F, G〉| ≤ bn‖F‖ ‖G‖, F, G ∈ H2(Ω),

where

‖F‖ :=
(∫

Ω

|F |2dλ

)1/2

.

The space H2(Ω) with the product Re 〈·, ·〉 is a Hilbert space over R. We have the
following representation theorem for bounded linear functionals on H2(Ω).

Proposition 5.1. Let F : H2(Ω) → An be a bounded, R-linear functional such
that

Re(F(AF )) = Re(AF(F )), A ∈ An, F ∈ H2(Ω).

Then there exists a unique G ∈ H2(Ω) such that

F(F ) = 〈F, G〉, F ∈ H2(Ω).

Proof. By the classical case there exists a unique G ∈ H2(Ω) with

ReF(F ) = Re 〈F, G〉, F ∈ H2(Ω).

For p �= q, by Proposition 3.1, we have

Re (epqF(F )) = Re (F(epqF )) = Re 〈epqF, G〉 = Re (epq〈F, G〉).
From the definition of multiplication in An, it follows that each component of F(F )
coincides with the corresponding component of 〈F, G〉; i.e. F(F ) = 〈F, G〉.

From Proposition 4.3, we easily deduce that for a fixed y ∈ Ω the functional

H2(Ω) � F �→ F (y) ∈ An

is bounded. Therefore, there is a unique KΩ(·, y) ∈ H2(Ω) such that

F (y) =
∫

Ω

F (x)KΩ(x, y) dλ(x), F ∈ H2(Ω), y ∈ Ω. (5.1)

Substituting F = KΩ(·, x), we will get

KΩ(y, x) =
∫

Ω

KΩ(w, y)KΩ(w, x) dλ(w) = KΩ(x, y).
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It follows that KΩ(x, y) is holomorphic in x and KΩ(x, y) is holomorphic in y. Thus
every coordinate function of KΩ is in particular separately harmonic and by a result
of Lelong [7], we get that it is harmonic in Ω × Ω.

We have

KΩ(y, y) = ‖KΩ(·, y)‖2, y ∈ Ω,

thus

|F (y)| ≤ bn‖F‖
√

KΩ(y, y), F ∈ H2(Ω), y ∈ Ω,

and

|KΩ(x, y)| ≤ bn

√
KΩ(x, x)KΩ(y, y), x, y ∈ Ω.

We also have

|Re F (y)| ≤ ‖F‖
√

KΩ(y, y), F ∈ H2(Ω), y ∈ Ω,

hence

KΩ(y, y) = sup
{ |Re F (y)|2

‖F‖2
: F ∈ H2(Ω)\{0}

}
, y ∈ Ω.

It follows in particular that KΩ(y, y) > 0, y ∈ Ω, for bounded Ω. If Ω′ ⊂ Ω then

KΩ(y, y) ≤ KΩ′(y, y), y ∈ Ω′.

The Bergman kernel coincides with the one obtained in Sec. 2.

Theorem 5.2. Let Ω be a bounded, regular domain in Rn containing the origin
and let v be the harmonic 1-form in Ω, continuous on Ω, such that v = dE on ∂Ω.
Then

KΩ(·, 0) = −d∗v + dv.

Theorem 5.2 will be a consequence of Theorem 2.1 and the proof of the following
approximation theorem which is the same as in the classical case (see, e.g. [6,
p. 180]).

Theorem 5.3. If Ωj is a sequence of domains in Rn increasing to Ω then KΩj

tends to KΩ locally uniformly in Ω × Ω.

Proof. Suppose Ω′ � Ω. Then for j sufficiently big

|KΩj (x, y)| ≤ bn

√
KΩj (x, x)KΩj (y, y) ≤ bn

√
KΩ′(x, x)KΩ′ (y, y), x, y ∈ Ω′,

and thus KΩj is locally bounded in Ω × Ω. Since the coordinate functions of KΩj

are harmonic, we can find a subsequence converging locally uniformly. To finish
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the proof we thus have to show that if KΩj → K locally uniformly in Ω × Ω then
K = KΩ. Note that for y ∈ Ω∫

Ω′
|K(·, y)|2dλ = lim

j→∞

∫
Ω′

|KΩj (·, y)|2dλ

≤ lim inf
j→∞

∫
Ωj

|KΩj (·, y)|2dλ

= lim inf
j→∞

KΩj (y, y)

= K(y, y),

hence K(·, y) ∈ H2(Ω). For F ∈ H2(Ω) and j big enough, we have

F (y) =
∫

Ωj

F (x)KΩj (x, y)dλ(x)

and

F (y) −
∫

Ω

F (x)K(x, y)dλ(x) =
∫

Ω′
F (x)

(
KΩj (x, y) − K(x, y)

)
dλ(x)

+
∫

Ωj\Ω′
F (x)KΩj (x, y)dλ(x)

−
∫

Ω\Ω′
F (x)K(x, y)dλ(x).

We now easily conclude that the norm of each of the three integrals is arbitrarily
small if Ω′ is sufficiently close to Ω and j is big enough. We conclude that K satisfies
(5.1) and thus K = KΩ.

Proof of Theorem 5.2. Let Ωj be a sequence of smoothly bounded domains, rel-
atively compact in Ω, containing the origin, increasing to Ω. Let vj be the harmonic
1-form on Ωj such that vj = dE on ∂Ωj. It follows that vj → v locally uniformly
in Ω and thus also

Kj := −d∗vj + dvj → −d∗v + dv =: K

locally uniformly in Ω. For F ∈ H2(Ω), Theorem 2.1 gives

F (0) =
∫

Ωj

FKj dλ.

Arguing similarly as in the last part of the proof of Theorem 5.3, we will obtain

F (0) =
∫

Ω

FK dλ,

that is KΩ(·, 0) = K.

As in the classical case, the Bergman kernel may be expressed in terms of the
Green function. By the approximation theorem, it will be no loss of generality to
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assume that Ω is bounded and smoothly bounded. It will be convenient to consider
the following definition of the Green function (which will differ from the classical
one by a negative constant): for a given pole y ∈ Ω the function GΩ(·, y) is the
solution of the Dirichlet problem

∆GΩ(·, y) = δy, GΩ(x, y) = 0 if x ∈ ∂Ω.

Or equivalently,

GΩ(x, y) = E(x − y) + Ψ(x, y), x, y ∈ Ω, (5.2)

where Ψ ∈ C∞(Ω × Ω\D∂Ω) (D∂Ω is the diagonal of ∂Ω × ∂Ω) is such that Ψ(·, y)
is harmonic in Ω for y ∈ Ω and Ψ(x, y) = −E(x − y) for x ∈ ∂Ω and y ∈ Ω. For
not necessarily smoothly bounded Ω, we have

GΩ(·, y) = supBy, y ∈ Ω,

where

By = sup{v ∈ SH(Ω) : v < 0, lim sup
x→y

(v(x) − E(x − y)) < ∞}.

Then GΩ(·, y) ∈ By and ∆GΩ(·, y) = δy if either n ≥ 3 or R2\Ω is not polar.
Assume 0 ∈ Ω and that Ω is bounded and smoothly bounded. Let U =

(u1, . . . , un) be the harmonic vector field on Ω defined by

uj(x) =
∂Ψ
∂yj

(x, 0) =
∂GΩ

∂yj
(x, 0) +

∂E

∂xj
(x), x ∈ Ω, j = 1, . . . , n.

We see that U = ∇E on ∂Ω, that is U = V , where V is defined in Theorem 2.1. We
have thus obtained the following result.

Theorem 5.4. In Ω × Ω away from the diagonal we have

KΩ =



∑
k

∂2GΩ

∂xk∂yk

· ∂2GΩ

∂xi∂yj
− ∂2GΩ

∂xj∂yi

·
∂2GΩ

∂xj∂yi
− ∂2GΩ

∂xi∂yj
· ∑

k

∂2GΩ

∂xk∂yk


.

On the diagonal

KΩ(x, x) = ∆ψ(x),

where ψ(x) = Ψ(x, x) is given by (5.2).

Remark. The second part of Theorem 5.4 (for n = 2, it was proved in [10]) follows
from the first one in an elementary way.
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If BR = B(0, R) is the ball centered at the origin with radius R, then

GBR(x, y) = E(x − y) − E

( |y|
R

x − R

|y|y
)

.

We may thus compute KBR , we will get in particular

KBR(y, y) = Rn−2 (n − 2)|y|2 + nR2

sn(R2 − |y|2)n
.

Note that although GRn(x, y) = E(x − y) �= 0 for n ≥ 3, we nevertheless still have
KRn ≡ 0.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. If P is polar then GRn\P = GRn and by Theorem 5.4, we
have KRn\P ≡ 0, that is H2(Rn\P ) = {0}. On the other hand, let P be non-polar.
Then there exists compact, non-polar K ⊂ P . We may of course assume that n ≥ 3
(the proof is then in fact slightly simpler than for the well known case n = 2, see [3,
pp. 73–74]). We can then find a non-constant harmonic function h in Rn\K such
that the gradient ∇h is square integrable (see [3]). Then

F := (d − d∗)(h dx1) = h1 −
∑
j≥2

hje1j

is a non-zero function in H2(Rn\K).

6. The Cauchy Formula

For F = f + ω ∈ C1(Ω, An), we set

∂F := df − d∗ω

which is a 1-form in Ω. In this section it will be convenient to identify (in a natural
way) covectors with vectors in Rn, so that we get the mapping

∂ : C1(Ω, An) → C(Ω, Rn).

We want to prove a counterpart of the Cauchy–Green formula in Rn, that is given
F ∈ C1(Ω, An), where Ω is bounded and smoothly bounded, we would like to
express the values of F in Ω in terms of F on ∂Ω and ∂F in Ω. In order to do that
we will perform a similar integration by parts as in Sec. 2. By Stokes’ theorem

∑
i,j

∫
∂Ω

f ijEj ∗ dxi =
∫

∂Ω

(f ∗ dE + dE ∧ ∗ω) = f(0) + 〈df − d∗ω, dE〉. (6.1)
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To write the left-hand side of (6.1) in a simplified form, it is convenient to
introduce some notation. For u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn set

u · v :=



∑
k

ukvk

· ujvi − uivj

·
uivj − ujvi · ∑

k

ukvk


∈ An.

On ∂Ω we also have

∗dxi = ni
Ωdσ, i = 1, . . . , n,

where nΩ = (n1
Ω, . . . , nn

Ω) denotes the unit outer normal vector to ∂Ω and dσ is the
area measure on ∂Ω.

We have the following Cauchy–Green formula.

Theorem 6.1. Assume that F = f + ω ∈ C1(Ω, An), where Ω is a bounded,

smoothly bounded domain in Rn. Then for y ∈ Ω

ReF (y) = Re
(∫

∂Ω

F (∇E(· − y) · nΩ) dσ −
∫

Ω

∂F · ∇E(· − y) dλ

)
.

If in addition dω = 0, then

F (y) =
∫

∂Ω

F (∇E(· − y) · nΩ) dσ −
∫

Ω

∂F · ∇E(· − y) dλ.

Proof. The first part is precisely (6.1). Note that f ij = −Re (eijF ), i �= j, and the
second part follows from (6.1), Proposition 3.1 and the following result:

Proposition 6.2. For A ∈ An, F = f + ω ∈ C1(Ω, An) with dω = 0, and u ∈ Rn

we have

∂(AF ) · u = A
(
∂F · u) .

Proof of Proposition 6.2. Without loss of generality we may assume that
A = epq. If we write ∂F = (v1, . . . , vn), then ∂(epqF ) = −vqep + vpeq. From
this we will easily get ∂(epqF ) · u = epq(∂F · u).

This completes the proof of Theorem 6.1.

As an immediate consequence of Theorem 6.1, we obtain the Cauchy formula
for holomorphic functions:

Corollary 6.3. Assume that Ω is a bounded, smoothly bounded domain in Rn and
F ∈ C1(Ω, An) ∩ O(Ω). Then

F (y) =
∫

∂Ω

F (∇E(· − y) · nΩ) dσ, y ∈ Ω.
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Since ni
Ωdσ = ∗dxi, we may also write (with some abuse of notation)∫

∂Ω

F (∇E(· − y) · nΩ) dσ =
∫

∂Ω

F (∇E(· − y) · d̂x),

where d̂x = (∗dx1, . . . , ∗dxn). For n = 2, this becomes (as in the standard Cauchy
formula)

1
2πi

∫
∂Ω

F (ζ)
ζ − y

dζ.

On the other hand, given continuous G : ∂Ω → An, one can ask whether the
formula in Corollary 6.3 could be used to produce a holomorphic function in Ω. It
turns out to be the case only for n = 2 and n = 3. The reason is that Part (ii) of
the following proposition does not hold for n ≥ 4.

Proposition 6.4. Let h be a C1 function, A ∈ An and u = (u1, . . . , un) ∈ R
n. Set

F := A(∇h · u) and f := Re F , ω := Im F . Then

(i) If h is harmonic then d∗ω = df.

(ii) If n = 3 and h is harmonic then dω = 0.

(iii) If Im A ∧ (u1dx1 + · · · + undxn) = 0, then dω = 0.

Proof. Write A = (aij), assuming that (3.1) holds. One may compute that

A(∇h · u) =
∑
i,j

aijuihj +
∑
p<q

[∑
i

(
aiquihp − aipuihq

)
+

∑
i�=p,q

(
apqui + aipuq + aqiup

)
hi

]
epq.

If ω =
∑

i<j f ijdxi ∧ dxj then

df − d∗ω =
∑
p,q

fpq
p dxq

and for a fixed q

∑
p

fpq
p =

∑
i

∑
j

aijhjq +
∑
p�=q

(
aiqhpp − aiphpq

)ui

+
∑

i,p: #{i,p,q}=3

(
apqui + aipuq + aqiup

)
hip

=
∑

i

aiqui∆h

= 0.

On the other hand,

dω =
∑

p<q<r

(
fpq

r + f qr
p + f rp

q

)
dxp ∧ dxq ∧ dxr
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and, if #{p, q, r} = 3,

fpq
r + f qr

p + f rp
q = (apqur + arpuq + aqrup) (hpp + hqq + hrr)

+
∑

i�=p,q,r

[
(apqui + aipuq + aqiup)hir

+
(
arpui + airup + apiur

)
hiq

+
(
aqrui + aiqur + ariuq

)
hip

]
,

thus we get (ii) and (iii).

Corollary 6.5. Let M be a smooth, compact, oriented hypersurface in Rn (with
boundary or not) with continuous normal vector field n. For a continuous G : M →
An set

F (y) =
∫

M

G (∇E(· − y) · n) dσ, y ∈ R
n\M,

and f := ReF, ω := IeF . By T denote the n− 1-current supported on M such that
T = dσ on M . Then

(1) d∗ω = df.

(2) If either n ≤ 3 or Im G ∧ ∗T = 0 (that is the tangential component of Im G

vanishes at M), then dω = 0, that is F is holomorphic in Rn\M .

For n ≥ 4, one could obtain a holomorphic function in R
n\M from F = f + ω

given by Corollary 6.5 (for arbitrary M and G) by projecting orthogonally ω in
L2

(2)(R
n\M) into the subspace of closed forms (for n ≥ 3, if F is as in Corollary 6.5,

we will always have F ∈ L2(Rn \ M, An)).
On the other hand, the Cauchy–Green formula allows one to solve the inhomo-

geneous ∂-equation for forms with compact support.

Proposition 6.6. For u ∈ C∞
0 (Rn, Rn) set

F (y) :=
∫

Rn

u · ∇E(· − y) dλ, y ∈ R
n,

and f := Re F, ω := Im F . Then d∗ω − df = u and dω = 0.

Proof. After a change of variables, we get

F (y) =
∫

u(· + y) · ∇E dλ.

For a fixed y ∈ Rn set v := u(· + y). Then for j = 1, . . . , n∑
i

f ij
i (y) =

∑
i

∫
vi

jEidλ +
∑
i�=j

∫
(vj

i Ei − vi
iEj)dλ.
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Integrating by parts

−
∑

i

f ij
i (y) =

∑
i

∫
viEijdλ +

∑
i�=j

∫ (
vjEii − viEij

)
dλ

= vj(0) = uj(y)

and thus d∗ω − df = u. For different p, q, r we similarly have(
fpq

r + f rp
q + f qr

p

)
(y) =

∫ (
vq

rEp − vp
rEq + vp

qEr − vr
qEp + vr

pEq − vq
pEr

)
dλ = 0,

hence dω = 0.
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