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THE BERGMAN METRIC
AND THE PLURICOMPLEX GREEN FUNCTION

ZBIGNIEW B�LOCKI

Abstract. We improve a lower bound for the Bergman distance in smooth
pseudoconvex domains due to Diederich and Ohsawa. As the main tool we
use the pluricomplex Green function and an L2-estimate for the ∂-operator of
Donnelly and Fefferman.

1. Introduction

Diederich and Ohsawa [14] have shown that if Ω is a smooth bounded pseudo-
convex domain in Cn, then the following lower bound for the Bergman distance in
Ω holds: for a fixed w0 ∈ Ω and w ∈ Ω close to the boundary, one has

(1.1) distΩ(w,w0) ≥ 1
C

log log(1/δΩ(w)),

where δΩ(w) denotes the euclidean distance of w to ∂Ω and C is a constant de-
pending only on Ω. They also asked if (1.1) could be improved to

(1.2) distΩ(w,w0) ≥ 1
C

log(1/δΩ(w))

which is known to be the best estimate for strongly pseudoconvex domains.
The main goal of this paper is to show that one can improve (1.1) to

(1.3) distΩ(w,w0) ≥ log(1/δΩ(w))
C log log(1/δΩ(w))

for C2 smooth bounded pseudoconvex Ω in Cn. Our main tool will be the pluri-
complex Green function. We recall that for a bounded domain Ω in Cn and a pole
w ∈ Ω it is defined by

gΩ,w := sup{u ∈ PSH(Ω) : u < 0, lim sup
z→w

(u(z) − log |z − w|) <∞}.

We refer to [10] or [20] for basic properties of gΩ. The direct relation between
the Bergman metric and the Green function has been explored quite extensively
in recent years (see for example [6, 7, 13, 16]). In [14] a certain technical function
similar but different from gΩ was used. Here however, unlike in [14], we are able
to apply the Green function directly. The main relation for us with the Bergman
metric will be the following quite general result (it is a special case of Theorem 4.4
below).
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Theorem 1.1. There exists a positive constant cn, depending only on n, such
that if Ω is a bounded pseudoconvex domain in Cn and w, w̃ ∈ Ω are such that
{gΩ,w ≤ −1} ∩ {gΩ,w̃ < −1} = ∅, then

(1.4) distΩ(w, w̃) ≥ cn.

The main ingredients of the proof of Theorem 1.1 are the Kobayashi lower bound
for the Bergman distance [21] and an L2-estimate for the ∂ operator essentially due
to Donnelly and Fefferman [15]. As shown by Berndtsson [1], [3], it is in fact a
simple consequence of the original Hörmander theory [18]. It should be pointed
out that in many papers (see for example [7], [8], [14]) much more complicated
L2-estimates for the ∂ operator were used.

Therefore, thanks to Theorem 1.1, in order to get a lower bound for the Bergman
distance, it is enough to estimate the pluricomplex Green function from below in
order to study the behavior of its sublevel sets. We do it in Section 5 following two
basic ideas due to Herbort [17] and Diederich-Herbort [13]. The first is to use an
inequality for the complex Monge-Ampère operator from [4] to estimate |gΩ,w(ζ̃)|
from above in terms of |gΩ,ζ(w)| for some ζ̃ close to ζ. Then one estimates the
modulus of continuity of gΩ,w which is known to be continuous precisely when Ω
is hyperconvex, that is, when it admits a bounded plurisubharmonic exhaustion
function (see [10]). As a result, we improve some estimates from [17] and [13],
by the way simplifying the part of Herbort’s argument involving the estimate for
the modulus of continuity of gΩ,w [17, Main Lemma]). In particular, we get the
following result (see Theorem 5.2 below with a = b).

Theorem 1.2. Let Ω be a bounded domain in C
n with diameter R for which there

exists v ∈ PSH(Ω) and positive constants A and a such that in Ω we have

(1.5)
1
A
δaΩ ≤ |v| ≤ AδaΩ.

Then there exist positive constants C1, C2 depending only on n,A, a and R such
that if w ∈ Ω is such that r := δΩ(w) ≤ e−2, then

{gΩ,w ≤ −1} ⊂ {C−1
1 r(log(1/r))−1/a ≤ δΩ ≤ C2r(log(1/r))n/a}.

We will now explain how Theorems 1.1 and 1.2 imply the estimate (1.3) for C2

smooth pseudoconvex domains in C
n. By [11] such domains satisfy the assumption

of Theorem 1.2 and therefore (1.4) holds provided that

(1.6) δΩ(w̃) ≥ δΩ(w)(log(1/δΩ(w)))C ,

where C > 1 depends only on Ω and δΩ(w̃) ≤ e−C . Assume that r := δΩ(w) ≤
min{e−C , δΩ(w0)/2} =: r0. The function γ(ρ) := ρ(log(1/ρ))C is increasing on
the interval (0, r0]. We can find an integer k such that γk−1(r) ≤ r0 ≤ γk(r),
where γk = γ ◦ · · · ◦ γ. Any curve joining w with w0 intersects the level sets
{δΩ = γj(r)}, j = 1, . . . , k − 1, and thus by (1.6) and Theorem 1.1 its Bergman
length can be estimated from below by (k − 1)cn. One can show inductively
that if r(log(1/r))(k−1)C ≤ r0, then γk(r) ≤ r(log(1/r))kC . It follows that r0 ≤
r(log(1/r))kC which easily implies the estimate (1.3).

In [14] the jump in the Bergman distance was obtained for w, w̃ with

δΩ(w̃) ≥ δΩ(w)1/C
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and then (1.1) immediately followed. On the other hand, a slightly weaker condition
than (1.5) was assumed in [14]. To obtain (1.2) one would need to improve (1.6) to

δΩ(w̃) ≥ CδΩ(w).

This we are able to prove in arbitrary bounded convex domains with the constant
C = (e+ 1)2/(e− 1)2 (Theorem 5.4 below). Thus, using the localization principle
for the Bergman metric (see for example [12] or [22]), we obtain the following.

Theorem 1.3. Let Ω be a bounded domain in Cn such that for every z0 ∈ ∂Ω
there exists an open neighborhood U of z0, open V in Cn and a biholomorphism
F : U → V such that F (Ω ∩ U) is convex. Then there exists a positive constant
C depending only on Ω such that (1.2) holds for every w0 ∈ Ω and every w ∈ Ω
sufficiently close to ∂Ω.

Note that again no assumption is made on the regularity of Ω (of course in the
latter case the boundary must always be Lipschitz continuous).

2. The Kobayashi construction

In this section we will briefly sketch the construction of Kobayashi [21] and
discuss some of its consequences. We assume that Ω is a bounded domain in Cn.
By H2(Ω) we denote the Hilbert space of square integrable holomorphic functions
in Ω and KΩ(z, w) is the Bergman kernel of Ω (holomorphic in z, antiholomorphic
in w). We define the immersion of Ω into the (infinitely dimensional) projective
space P(H2(Ω)) as follows:

τ : Ω 
 w �−→ [KΩ(·, w)] ∈ P(H2(Ω)).

One can show that the Bergman metric in Ω is precisely the pull-back of the Fubini-
Study metric in P(H2(Ω)). Therefore

distΩ(w, w̃) ≥ distP(H2(Ω))(τ(w), τ(w̃)), w, w̃ ∈ Ω.

Moreover, P(H2(Ω)) (with the Fubini-Study metric) is complete and

distP(H2(Ω))([f ], [g]) = arccos
|〈f, g〉|
||f || ||g|| , f, g ∈ H2(Ω) \ {0}.

We can now easily deduce the following two results.

Proposition 2.1. For a bounded domain Ω in Cn we have

distΩ(w, w̃) ≥ arccos
|KΩ(w, w̃)|√

KΩ(w,w)KΩ(w̃, w̃)
, w, w̃ ∈ Ω. �

Proposition 2.2. If a bounded domain Ω in Cn satisfies

(2.1) lim sup
w→∂Ω

|f(w)|√
KΩ(w,w)

< ||f ||L2(Ω), f ∈ H2(Ω) \ {0},

then it is Bergman complete.

Proof. Let wj be a Cauchy sequence with respect to distΩ. Then let τ(wj) be a
Cauchy sequence with respect to distP(H2(Ω)). Since P(H2(Ω)) is complete, we can
find f ∈ H2(Ω) \ {0} such that τ(wj) = [KΩ(·, wj)] → [f ]. In particular,

|f(wj)|
||f ||√KΩ(wj , wj)

= |〈 f

||f || ,
KΩ(·, wj)

||KΩ(·, wj)|| 〉| → 1,
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which by assumption means that wj has no accumulation point on ∂Ω. But this
of course means that wj is also a Cauchy sequence with respect to the euclidean
metric. �

Zwonek [24] constructed a bounded, Bergman complete domain in C not satis-
fying

lim sup
w→∂Ω

|f(w)|√
KΩ(w,w)

= 0, f ∈ H2(Ω),

which was the criterion for Bergman completeness formulated in [21]. It remains
an open problem to construct a Bergman complete domain Ω in Cn such that the
(possibly) weaker condition (2.1) does not hold.

Proposition 2.1 shows that in order to estimate distΩ(w, w̃) from below we need
to estimate |KΩ(w, w̃)|/√KΩ(w,w)KΩ(w̃, w̃) from above. Similarly as in [14], we
will see that it is enough to construct a right function from H2(Ω).

Proposition 2.3. Let Ω be a bounded domain in Cn, w, w̃ ∈ Ω. Suppose that
f ∈ H2(Ω) is such that f(w) = KΩ(w, w̃)/

√
KΩ(w̃, w̃) and f(w̃) = 0. Then

|KΩ(w, w̃)|√
KΩ(w,w)KΩ(w̃, w̃)

≤ ||f ||L2(Ω)√
1 + ||f ||2L2(Ω)

and
distΩ(w, w̃) ≥ π

2
− arctan ||f ||L2(Ω).

Proof. We first note that the second estimate is a direct consequence of the first one
and Proposition 2.1. We may assume that f �= 0. Set h := KΩ(·, w̃)/

√
KΩ(w̃, w̃).

Then 〈f, h〉 = f(w̃)/
√
KΩ(w̃, w̃) = 0 and therefore we can find an orthonormal

basis {ϕ0, ϕ1, . . . } of H2(Ω) such that ϕ0 = h and ϕ1 = f/||f ||. Then

KΩ(z, z) =
∞∑
j=0

|ϕj(z)|2 ≥ |h(z)|2 +
|f(z)|2
||f ||2 , z ∈ Ω.

Applying it for z = w we get the desired estimate. �

3. The Hörmander-Donnelly-Fefferman-Berndtsson

L2
-estimate for the ∂ operator

Our main tool in constructing square integrable holomorphic functions will be
the following estimate for the ∂ operator, essentially due to Donnelly and Fefferman
[15].

Theorem 3.1. Let Ω be a pseudoconvex domain in Cn and let ψ be a plurisub-
harmonic function in Ω such that −e−ψ is also plurisubharmonic. Assume that
α ∈ L2

loc,(0,1)(Ω) is such that ∂α = 0 and that

(3.1) iα ∧ α ≤ H i∂∂ψ

for some nonnegative, locally integrable function H in Ω. Then for every plurisub-
harmonic ϕ in Ω there exists u ∈ L2

loc(Ω) with ∂u = α and such that∫
Ω

|u|2e−ϕ ≤ 16
∫

Ω

He−ϕ.
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Theorem 3.1 is a direct consequence of the next result (with r = 1/4 and ϕ, ψ
replaced with ϕ+rψ, rψ, respectively), which is a slight improvement of an estimate
due to Berndtsson [1, Theorem 3.1].

Theorem 3.2. Let Ω be a pseudoconvex domain in Cn and let ψ be a plurisubhar-
monic function in Ω such that for some fixed r ∈ (0, 1), the function −e−ψ/r is also
plurisubharmonic. Then for any α, H and ϕ chosen as in Theorem 3.1 we can find
u ∈ L2

loc(Ω) with ∂u = α and

(3.2)
∫

Ω

|u|2eψ−ϕ ≤ 1
(1 −√

r)2

∫
Ω

Heψ−ϕ.

Proof. We first assume that Ω is smooth and ϕ, ψ are smooth up to the bound-
ary. We now follow the proof of [2, Lemma 2.2]. We have in particular L2(Ω) =
L2(Ω, eaϕ+bψ) for real a, b and −e−ψ/r ∈ PSH(Ω) means precisely that

i∂ψ ∧ ∂ψ ≤ r i∂∂ψ.

Let u be the solution to ∂u = α which is minimal in the L2(Ω, e−ϕ) norm. This
means that ∫

Ω

ufe−ϕ = 0, f ∈ H2(Ω).

Set v := eψu. Then ∫
Ω

vfe−ϕ−ψ = 0, f ∈ H2(Ω),

thus v is the minimal solution in the L2(Ω, e−ϕ−ψ) norm to ∂v = β, where

β = ∂(eψu) = eψ(α+ u∂ψ).

For every t > 0 we have

iβ ∧ β ≤ e2ψ[(1 + t−1)iα ∧ α+ (1 + t)|u|2i∂ψ ∧ ∂ψ]

≤ e2ψ[(1 + t−1)H + (1 + t)r|u|2]i∂∂ψ
≤ e2ψ[(1 + t−1)H + (1 + t)r|u|2]i∂∂(ϕ+ ψ).

Therefore by [18, Lemma 4.4.1] (which is also true with the constant 2 replaced by
1) we get∫

Ω

|u|2eψ−ϕ =
∫

Ω

|v|2e−ϕ−ψ ≤ (1 + t−1)
∫

Ω

Heψ−ϕ + (1 + t)r
∫

Ω

|u|2eψ−ϕ.

For t = r−1/2 − 1 we obtain the required result when ϕ, ψ are smooth.
Now assume that Ω, ϕ are arbitrary and ψ is strongly plurisubharmonic but

otherwise arbitrary (possibly even not locally bounded). By the Radon-Nikodym
theorem there exists β =

∑
j,k βjkidzj ∧dzk ∈ L1

loc,(1,1)(Ω) such that 0 < β ≤ i∂∂ψ

and iα ∧ α ≤ Hβ. For ε > 0 let Ωε ⊂ Ω be a smooth pseudoconvex domain such
that ϕε := ϕ ∗ ρε, ψε := ψ ∗ ρε, the standard regularizations, are defined in a
neighborhood of Ωε. If (ψjkε ) denotes the inverse matrix of (∂2ψε/∂zj∂zk), then
Hε :=

∑
j,k ψ

jk
ε αjαk is the least function satisfying iα ∧ α ≤ Hεi∂∂ψε. One can

easily check that
i∂ψε ∧ ∂ψε ≤ (i∂ψ ∧ ∂ψ) ∗ ρε ≤ ri∂∂ψε
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and thus −e−ψε/r is also plurisubharmonic. By the previous part we can thus find
uε ∈ L2

loc(Ωε) such that ∂uε = α in Ωε and∫
Ωε

|uε|2eψε−ϕε ≤
∫

Ωε

Hεe
ψε−ϕε ≤

∫
Ωε

Hεe
ψε−ϕ.

We have βε := β∗ρε ≤ i∂∂ψε and there is a sequence εl ↓ 0 such that the coefficients
of βεl

converge pointwise almost everywhere to the respective coefficients of β.
Therefore

lim
l→∞

Hεl
≤ lim

l→∞

∑
j,k

βjkεl
αjαk =

∑
j,k

βjkαjαk ≤ H,

where (βjk) and (βjkε ) denote the inverse matrices of (βjk) and (βjk ∗ ρε), respec-
tively. If we now assume that the left-hand side of (3.2) is equal to 1, by the Fatou
lemma we have

lim
l→∞

∫
Ωεl

|uεl
|2eψεl

−ϕεl ≤ 1.

Since ϕεl
is a decreasing sequence and ψ is locally bounded from above, we see that

the L2 norm of uεl
over Ωε is bounded for every fixed ε. Therefore, replacing εl

with its subsequence if necessary, we see that uεl
converges weakly in Ωε for every ε

to u ∈ L2
loc(Ω). We can now show that u satisfies (3.2), which completes the proof

for strongly plurisubharmonic ψ.
If ψ is not necessarily strongly plurisubharmonic, then we may approximate it

by functions of the form ψ + ε|z|2. Note that iα ∧ α ≤ H i∂∂(ψ + ε|z|2) and the
general case easily follows along the same lines as before. �

Note that the assumption on ψ in Theorem 3.1 means precisely that ψ is of the
form

ψ = − log(−v),
where v is a negative plurisubharmonic function in Ω. We shall usually use Theorem
3.1 for α given by

(3.3) α = −f∂(χ(log(−v)),
where f is holomorphic and χ ∈ C0,1(R). If v is locally bounded near ∂Ω, then by
[9] v ∈ W 1,2

loc (Ω), and thus α ∈ L2
(0,1),loc(Ω). The inequality (3.1) is then satisfied

with

H = |fχ′(log(−v))|2.
Theorem 3.1 thus gives the following result.

Theorem 3.3. Let f be a holomorphic function in a pseudoconvex domain Ω in
Cn. Assume that ϕ, v are plurisubharmonic in Ω such that v < 0 and v is locally
bounded near ∂Ω. Let moreover χ ∈ C0,1(R). Then one can find a holomorphic
function F in Ω satisfying the following estimate:∫

Ω

|F − fχ(log(−v))|2e−ϕ ≤ 16
∫

Ω

|fχ′(log(−v))|2e−ϕ.
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4. Applications to the Bergman kernel and metric

Theorems 3.1 and 3.3 seem to be quite universal tools in obtaining various esti-
mates related to the Bergman kernel. First, we get the following estimate due to
Herbort [16] (with a different constant though, depending also on the diameter of
Ω).

Theorem 4.1. Let Ω be a bounded pseudoconvex domain in Cn and f ∈ H2(Ω).
Then

|f(w)|√
KΩ(w,w)

≤
(

1 +
4

η(n)

)
||f ||L2({gΩ,w≤−1}), w ∈ Ω,

where

η(y) :=
∫ ∞

y

dx

xex
.

Proof. We apply Theorem 3.3 with ϕ := 2ngΩ,w, v := gΩ,w and

χ(t) :=

{
0, t ≤ 0,∫ t

0 e
−nes

ds, t > 0.

We can find a holomorphic F in Ω such that

||F ||L2(Ω) ≤ ||fχ(log(−v))||L2(Ω) + ||F − fχ(log(−v))||L2(Ω)

≤ χ(∞)||f ||L2({gΩ,w≤−1}) + ||F − fχ(log(−v))||L2(Ω,e−ϕ)

≤ η(n)||f ||L2({gΩ,w≤−1}) + 4||fχ′(log(−v))||L2(Ω,e−ϕ)

≤ (η(n) + 4)||f ||L2({gΩ,w≤−1}).

Since e−ϕ is not integrable near w, from Theorem 3.3 it also follows that F (w) =
χ(∞)f(w) = η(n)f(w). Hence

|f(w)|√
KΩ(w,w)

=
|F (w)|

η(n)
√
KΩ(w,w)

≤ ||F ||L2(Ω)

η(n)
.

�

Theorem 3.3 together implies in particular, thanks to Proposition 2.2, that if Ω
is bounded pseudoconvex in C

n and

lim
w→∂Ω

vol({gΩ,w ≤ −1}) = 0,

then Ω must be Bergman complete.
Next, we generalize results of Chen [8] to several variables.

Theorem 4.2. Let Ω and U be bounded domains in Cn such that Ω ∪ U is pseu-
doconvex with diameter R. Assume that U ⊂ B(z0, r). Then for every f ∈ H2(Ω)
there exists F ∈ H2(Ω ∪ U) such that for every λ > 1 we have

||F − f ||L2(Ω) ≤
(

1 +
4

logλ

)
||f ||L2(Ω∩B(z0,(r/R)1/λ)).

Proof. We set v(z) := log |z − z0|/R, ϕ := 0 and, for ρ > r,

χ(t) :=


1, t ≤ log log(R/ρ) − logλ,
log log(R/ρ)−t

log λ , log log(R/ρ) − logλ < t ≤ log log(R/ρ),
0, t > log log(R/ρ).
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Note that (3.3) defines ∂-closed α ∈ L2
(0,1),loc(Ω ∪ U). We obtain a holomorphic F

with

||F − f ||L2(Ω) ≤ ||f(1 − χ(log(−v)))||L2(Ω) + 4||fχ′(log(−v))||L2(Ω)

and the desired estimate will follow if we let ρ tend to r. �

Corollary 4.3. Assume that Ω is a bounded domain in Cn satisfying the following
property: for every z0 ∈ ∂Ω there exists a neighborhood basis Uj of z0 such that
Ω ∪ Uj is pseudoconvex for every j. Then, if

lim
w→∂Ω

KΩ(w,w) = ∞,

it follows that Ω is Bergman complete.

Proof. Let Ω 
 wk → z0 ∈ ∂Ω and f ∈ H2(Ω). By Theorem 4.2 there exists a
sequence Fj ∈ H2(Ω ∪ Uj) such that ||Fj − f ||L2(Ω) → 0. We have

|f(wk)|√
KΩ(wk, wk)

≤ |Fj(wk)|√
KΩ(wk, wk)

+ ||Fj − f ||L2(Ω).

For every fixed j, since Fj is holomorphic in a neighborhood of z0, the sequence
|Fj(wk)| is bounded. Thus, if we first let k → ∞ and then j → ∞, the corollary
follows from Proposition 2.2. �

Note that the assumption on Ω in Corollary 4.3 is always true if n = 1 but not if
n > 1: it is not satisfied for the Hartogs triangle Ω = {(z, w) ∈ C2 : |z| < |w| < 1}.
Theorem 4.4. Let Ω be a bounded pseudoconvex domain in C

n. Assume that
w, w̃ ∈ Ω and α, α̃ > 0 are such that {gΩ,w ≤ −α} ∩ {gΩ,w̃ < −α̃} = ∅. Then

distΩ(w, w̃) ≥ π

2
− arctan

(
1 + 4

enα̃

η(nα)

)
,

where η is as in Theorem 4.1.

Proof. Let h := KΩ(·, w̃)/
√
KΩ(w̃, w̃) ∈ H2(Ω) so that ||h||L2(Ω) = 1. Set ϕ :=

2n(gΩ,w + gΩ,w̃), v := gΩ,w and

χ(t) :=


0, t ≤ logα,∫ t

logα

e−ne
s

ds, t > logα.

Then in particular χ(log(−v)) = χ(∞) = η(nα) at w and χ(log(−v)) = 0 at w̃. By
Theorem 3.3 there exists f ∈ H2(Ω) such that

||f ||L2(Ω) ≤ ||hχ(log(−v))||L2(Ω) + ||f − hχ(log(−v))||L2(Ω)

≤ 1 + ||f − hχ(log(−v))||L2(Ω,e−ϕ)

≤ 1 + 4||hχ′(log(−v))||L2(Ω,e−ϕ)

≤ 1 + 4
enα̃

η(nα)
.

Since e−ϕ is not integrable near w and w̃, it also follows that f(w) = h(w) and
f(w̃) = 0. It is now sufficient to apply Proposition 2.3. �
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5. Estimates for the pluricomplex Green function

The following theorem will be the main step in estimating the Green function.
The main idea of the proof comes from [17] (see also [13]).

Theorem 5.1. Assume that Ω is a bounded hyperconvex domain in Cn with the
diameter R. Let ζ, w ∈ Ω and 0 < ε < min{r/2, |ζ − w|/2}, where r := δΩ(w).
Then

|gΩ,w(ζ)| ≤ log(R/ε)
log(r/(2ε))

(
sup

{δΩ=ε}
|gΩ,w| + (n!)1/n(log(R/ε))1−1/n|gΩ,ζ(w)|1/n

)
.

Proof. By [10] (see also [20]) the function gΩ,w is continuous on Ω \ {w} (with
gΩ,w = 0 on ∂Ω). Let α := log(R/ε). By [4] and since (ddcgΩ,w)n = (2π)nδw,∫

Ω

|gΩ,w|n(ddc max{gΩ,ζ ,−α})n ≤ n!(2π)nαn−1|gΩ,ζ(w)|.

The measure (ddc max{gΩ,ζ,−α})n is supported on the set {gΩ,ζ = −α} ⊂ B(ζ, ε)
and its total mass is equal to (2π)n. Therefore, there exists ζ̃ ∈ B(ζ, ε) such that

(5.1) |gΩ,w(ζ̃)|n ≤ n!(log(R/ε))n−1|gΩ,ζ(w)|.
By u denote the relative extremal function of the ball B(w, ε), that is,

u = sup{v ∈ PSH(Ω) : v|Ω < 0, v|B(w,ε) ≤ −1}.
By [23] (see also [5]) the function u is continuous on Ω (with u = 0 on ∂Ω and
u = −1 on B(w, ε)). One can easily check that

(5.2) log(R/ε)u ≤ gΩ,w ≤ log(r/ε)u on Ω \B(w, ε)

(since the functions are maximal in Ω \ B(w, ε) and vanish on ∂Ω, it is enough to
show these inequalities on ∂B(w, ε)). In particular,

|u(z)| ≤
sup

{δΩ=ε}
|gΩ,w|

log(r/ε)
=: δ, if δΩ(z) ≤ ε.

Set Ω̃ := {z ∈ Ω : z + ζ̃ − ζ ∈ Ω} and for δ′ > δ

h(z) :=

{
max{u(z), u(z + ζ̃ − ζ) − δ′}, z ∈ Ω̃,
u(z), z ∈ Ω \ Ω̃.

We claim that h is a negative plurisubharmonic function in Ω. Indeed, for z ∈ Ω∩∂Ω̃
we have δΩ(z) ≤ ε and u(z) ≥ −δ > u(z+ ζ̃−ζ)−δ′, hence h = u in a neighborhood
of Ω ∩ ∂Ω̃ and it follows that h is plurisubharmonic. We have

u(z) ≤ log(|z − w|/r)
log(r/ε)

, z ∈ Ω \B(w, ε)

(because both functions are maximal and the inequality holds on the boundary),
and

z + ζ̃ − ζ ∈ B(w, 2ε) ⊂ B(w, r), z ∈ B(w, ε) ⊂ Ω̃.
Therefore

u(z + ζ̃ − ζ) ≤ −β, z ∈ B(w, ε),
and

h ≤ max{−1,−β − δ′} ≤ −β on B(w, ε),
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where

β :=
log(r/(2ε))
log(r/ε)

.

From the definition of u it thus follows that h(z)/β ≤ u(z) for z ∈ Ω. For z = ζ ∈ Ω̃
letting δ′ tend to δ we get

u(ζ̃) − δ ≤ h(ζ) ≤ βu(ζ),

which together with (5.1) and (5.2) gives the required inequality. �
Remark. For n = 1 the theorem recovers the symmetry of gΩ: it is enough to let
ε→ 0. �
Theorem 5.2. Let Ω be a bounded domain in Cn, where we can find v ∈ PSH(Ω)
and positive constants A,B, a, b such that in Ω the following estimate holds:

(5.3)
1
A
δaΩ ≤ |v| ≤ BδbΩ.

Then there exist positive constants C, C̃ depending only on n,A,B, a, b and R, the
diameter of Ω such that for ζ, w ∈ Ω with r := δΩ(w) ≤ e−2 and ρ := δΩ(ζ) ≤ e−2

we have

(5.4) |gΩ,w(ζ)| ≤


C
ρb

ra
log(1/r), if ρ ≤ r/2,

C̃
rb/n

ρa/n
(log(1/r))1−1/n(log(1/ρ))1/n, if ρ ≥ 2r.

In particular,

{gΩ,w ≤ −1} ⊂ {C−1/bra/b(log(1/r))−1/b ≤ δΩ ≤ C̃n/arb/a(log(1/r))n/a}.
Proof. Assume first that ρ ≤ r/2. We have

gΩ,w(z) ≥ log(|z − w|/R), z ∈ Ω.

Therefore

gΩ,w ≥ log(2R/r)
inf

B(w,r/2)
|v| v in Ω \B(w, r/2)

(because the inequality holds on the boundary) and (5.3) now gives

|gΩ,w(ζ)| ≤ 2aAB
ρb

ra
log(2R/r)

which implies the first inequality in (5.4).
Now assume that ρ ≥ 2r. By C1, C2, . . . we will denote positive constants

depending only on n,A,B, a, b and R. If 0 < ε < r/2, then by the first inequality

sup
{δΩ=ε}

|gΩ,w| ≤ C1
εb

ra
log(1/r)

and

|gΩ,ζ(w)| ≤ C1
rb

ρa
log(1/ρ),

if r is sufficiently small. Therefore, by Theorem 5.1
(5.5)

|gΩ,w(ζ)| ≤ C2
log(1/ε)

log(r/(2ε))

(
εb

ra
log(1/r) +

rb/n

ρa/n
(log(1/ε))1−1/n(log(1/ρ))1/n

)
.
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We set
ε := rα(log(1/r))−

n−1
bn ,

where

α :=
a(n− 1)

bn
+

1
n

+ 1 ≥ 2,

since a ≥ b. Then
εb

ra
log(1/r) ≤ r(b−a)/n(log(1/r))1/n

≤ r(b−a)/n(log(1/ε))1−1/n(log(1/r))1/n

≤ C3
rb/n

ρa/n
(log(1/ε))1−1/n(log(1/ρ))1/n

(5.6)

(recall that ρ ≥ 2r). We also have

(5.7)
log(1/ε)

log(r/(2ε))
≤ C4

and

(5.8) log(1/ε) ≤ C5 log(1/r).

Combining (5.5)-(5.8) we arrive at the second inequality in (5.4). �
Theorem 5.2 immediately gives the following result which slightly generalizes the

main result from [17].

Corollary 5.3. Let Ω be as in Theorem 5.2. Then for every compact subset K of
Ω we have

lim
w→∂Ω

sup
K

|gΩ,w| = 0.

Remark. It remains an open problem if Corollary 5.3 holds for arbitrary bounded
hyperconvex Ω. Note that then we know from [6] that

lim
w→∂Ω

||gΩ,w||Lp(Ω) = 0

for every p <∞. �
Theorem 5.2 can be improved and its proof simplified when Ω is convex.

Theorem 5.4. Let Ω be a bounded convex domain in Cn. For given ζ, w ∈ Ω set
ρ := δΩ(ζ), r := δΩ(w). Then

gΩ,w(ζ) ≥ log
|ρ− r|
ρ+ r

.

In particular,

{gΩ,w ≤ −1} ⊂ {e− 1
e+ 1

r ≤ δΩ ≤ e+ 1
e− 1

r}.

Proof. By the Lempert theorem (see [19]) gΩ,w(ζ) is symmetric in w and ζ and
thus we way assume that ρ > r. Let H be a real hyperplane in Cn with H ∩Ω = ∅
and δΩ(w) = dist(w,H). After an orthonormal change of variables we may assume
that H = {Re z1 = 0}, Ω ⊂ {Re z1 > 0}, w = (r, 0, . . . , 0) and ρ̃ := dist(ζ,H) =
Re ζ1 ≥ ρ. Then

gΩ,w(ζ) ≥ log
|ζ1 − r|
|ζ1 + r| ≥ log

ρ̃− r

ρ̃+ r
≥ log

ρ− r

ρ+ r
. �
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Remark. Actually, one can avoid the use of the Lempert theorem in the proof of
Theorem 5.4. Namely, for ρ < r one has to repeat the same argument but with the
hyperplane H̃ such that H̃ ∩ Ω = ∅ and δΩ(ζ) = dist(ζ, H̃). �

Acknowledgements

This paper was written during the author’s stay at the Max Planck Institute for
Mathematics in the Sciences in Leipzig. He would like to express his gratitude for
hospitality, in particular to Professor J. Jost.

References

[1] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-
Fefferman, Ann. Inst. Fourier 46 (1996), 1083-1094. MR1415958 (97k:32019)

[2] B. Berndtsson, Weighted estimates for the ∂-equation, Complex Analysis and Geometry,
Columbus, Ohio, 1999, Ohio State Univ. Math. Res. Inst. Publ., vol. 9, Walter de Gruyter,
2001, pp. 43-57. MR912730 (2003f:32049)

[3] B. Berndtsson, P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z.
235 (2000), 1-10. MR1785069 (2002a:32039)

[4] Z. B�locki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. 41 (1993),
151-157. MR1414762 (97j:32009)

[5] Z. B�locki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm.
Sup. Pisa 23 (1996), 721-747.

[6] Z. B�locki, P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151 (1998),
221-225. MR1469572 (98j:32009)

[7] B.-Y. Chen, Completeness of the Bergman metric on non-smooth pseudoconvex domains,
Ann. Pol. Math. 71 (1999), 241-251. MR1704301 (2000i:32021)

[8] B.-Y. Chen, A remark on the Bergman completeness, Complex Variables Theory Appl. 42
(2000), 11-15. MR1786123 (2001e:32049)

[9] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algé-
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