
Experimental Mathematics, 25:8–16, 2016
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print / 1944-950X online
DOI: 10.1080/10586458.2014.1002871

On the Suita Conjecture for Some Convex Ellipsoids
in C

2

Zbigniew Błocki and Włodzimierz Zwonek
Uniwersytet Jagiellonski, Instytut Matematyki, Krakow, Poland

CONTENTS

1. Introduction

2. General Formula for Geodesics in Convex Complex Ellipsoids

3. Proof of Theorem 1.1

4. Proof of Theorem 1.2

Funding

References

2000 AMS Subject Classification: 32F45, 32A07, 32A25

Keywords: Suita conjecture, complex ellipsoid, Bergman kernel, Kobayashi
indicatrix
Address correspondence to Zbigniew Błocki, Uniwersytet Jagielloński,
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It was recently shown that for a convex domain � in C
n and w ∈ �, the

function F�(w) :=
(

K�(w)λ(I�(w))
)1/n

, where K� is the Bergman

kernel on the diagonal and I�(w) the Kobayashi indicatrix, satisfies

1 ≤ F� ≤ 4. While the lower bound is optimal, not much more is

known about the upper bound. In general, it is quite difficult to com-

pute F� even numerically, and the largest value of it obtained so far is

1.010182 . . . . In this article, we present precise, although rather com-

plicated, formulas for the ellipsoids � = {|z1|2m + |z2|2 < 1} (with

m ≥ 1/2) and all w, as well as for � = {|z1| + |z2| < 1} and w on

the diagonal. The Bergman kernel for those ellipsoids was already

known; the main point is to compute the volume of the Kobayashi

indicatrix. It turns out that in the second case, the function λ(I�(w))

is not C3,1.

1. INTRODUCTION

For a convex domain � in C
n and w ∈ �, the following esti-

mates were recently established:

1

λ(I�(w))
≤ K�(w) ≤

4n

λ(I�(w))
. ( 1–1)

Here

K�(w) = sup

{

| f (w)|2 : f ∈ O(�),

∫

�

| f |2 dλ ≤ 1

}

is the Bergman kernel on the diagonal, and

I�(w) =
{

ϕ′(0) : ϕ ∈ O(1,�), ϕ(0) = w
}

is the Kobayashi indicatrix, where 1 denotes the unit disk.

The first inequality in (1–1) was proved in [Błocki 15], using

L2-estimates for ∂̄ and Lempert’s theory [Lempert 81]. It is

optimal, for example, if � is balanced with respect to w (that

is, every intersection of � with a complex line containing

w is a disk). Then we have equality. It can be viewed as a

multidimensional version of the Suita conjecture [Suita 72]

proved in [Błocki 13] (see also [Guan and Zhou 15] for the

precise characterization when equality holds).

The second equality in (1–1) was proved in [Blocki and

Zwonek 15] using rather elementary methods. It was also
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shown that the constant 4 can be replaced by 16/π2 =
1.6211 . . . if � is, in addition, symmetric with respect to w.

We can write (1–1) as

1 ≤ F�(w) ≤ 4,

where F�(w) :=
(

K�(w)λ(I�(w))
)1/n

is a biholomorphically

invariant function in �. It is not clear what the optimal up-

per bound should be. It was, in fact, quite difficult to prove

that one can have F� > 1 at all. That was done in [Blocki

and Zwonek 15] for ellipsoids of the form {|z1| + |z2|2m +
· · · + |zn|2m < 1}, where m ≥ 1/2 and w = (b, 0, . . . , 0). The

function F� was also computed numerically for the ellipsoid

� = {|z1|2m + |z2|2 < 1}, m ≥ 1/2, based on an implicit for-

mula for the Kobayashi function from [Blank et al. 92]. Our

first result is the precise formula in this case:

Theorem 1.1. For m ≥ 1/2, define

�m =
{

z ∈ C
2 : |z1|2m + |z2|2 < 1

}

.

Then for m 6= 2/3, m 6= 2, and b with 0 ≤ b < 1, we have

λ(I�m
((b, 0)))

= π2

[

−
m − 1

2m(3m − 2)(3m − 1)
b6m+2

−
3(m − 1)

2m(m − 2)(m + 1)
b2m+2

+
m

2(m − 2)(3m − 2)
b6 +

3m

3m − 1
b4

−
4m − 1

2m
b2 +

m

m + 1

]

.

For m = 2/3 and m = 2, we have

λ(I�2/3
((b, 0))) =

π2

80

(

−65b6 + 40b6 log b + 160b4

−27b10/3 − 100b2 + 32
)

and

λ(I�2
((b, 0))) =

π2

240

(

−3b14 − 25b6 − 120b6 log b

+288b4 − 420b2 + 160
)

.

The general formula for the Kobayashi function for �m is

known, see [Blank et al. 92], but it is implicit in the sense that

it requires solving a nonlinear equation that is polynomial of

degree 2m if 2m is an integer. It turns out, however, that the

volume of the Kobayashi indicatrix for �m , that is, the set on

which the Kobayashi function is at most 1, can be found ex-

plicitly. It would be interesting to check whether Theorem 1.1

also holds in the nonconvex case, that is, when 0 < m < 1/2

(see [Pflug and Zwonek 96] for computations of the Kobayashi

metric in this case).

FIGURE 1. F�m ((b, 0)) for � = {|z1|2m + |z2|2 < 1} and

m = 4, 8, 16, 32, 64, 128.

The formula for the Bergman kernel for this ellipsoid is well

known (see, e.g., [Jarnicki and Pflug 13, Example 6.1.6]),

K�m
(w) =

1

π2

(

1− |w2|2
)1/m−2

×
(1/m + 1)(1− |w2|2)1/m + (1/m − 1)|w1|2

(

(1− |w2|2)1/m − |w1|2
)3

,

so that

K�m
((b, 0)) =

m + 1+ (1− m)b2

π2m(1− b2)3
.

The graphs of F�m
((b, 0)) in Figure 1 are consistent with

the graphs from [Blocki and Zwonek 15] obtained numerically

using the implicit formula from [Blank et al. 92]. Note that for

t ∈ R and a ∈ 1, the mapping

�m ∋ z 7→
(

ei t (1− |a|2)1/2m

(1− āz2)1/m
z1,

z2 − a

1− āz2

)

is a holomorphic automorphism of �m , and therefore

F�m
((b, 0)), where 0 ≤ b < 1, attains all values of F�m

in �m .

One can show numerically that

sup
m≥1/2

sup
�m

F�m
= 1.010182 . . . ,

which was already noticed in [Blocki and Zwonek 15]. This is

the highest value of F� (in arbitrary dimension) obtained so

far.

In [Blocki and Zwonek 15], it was also shown that for

� = {|z1| + |z2| < 1} and b with 0 < b < 1, one has

λ(I�((b, 0)) =
π2

6
(1− b)4

(

(1− b)4 + 8b
)

,

so that in particular, similarly as in Theorem 1.1, it is an

analytic function on this part of �. This raises the question

whether λ(I�(w)) is smooth in general. In [Blocki and Zwonek

15], it was also predicted that the highest value of F� for

convex � in C
2 should be attained for � = {|z1| + |z2| < 1}
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FIGURE 2. λ(I�((b, b))) when 1/4 ≤ b < 1/2.

on the diagonal. The following result will answer both of these

questions in the negative.

Theorem 1.2. Let � = {z ∈ C
2 : |z1| + |z2| < 1}. Then for b

with 0 ≤ b ≤ 1/4, we have

λ(I�((b, b))) =
π2

6

(

30b8 − 64b7 + 80b6 − 80b5 + 76b4

− 16b3 − 8b2 + 1
)

, ( 1–2)

and when 1/4 ≤ b < 1/2, λ(I�((b, b))) is as given in Figure 2

(where it was placed because the columns of this journal are

too small to contain it).

The function

b 7→ λ(I�((b, b)))

is C3 on the interval (0, 1/2) but not C3,1 at 1/4.

Again, the formula for the Bergman metric for this ellipsoid

is known; see [Hahn and Pflug 88] or [Jarnicki and Pflug 13,

FIGURE 3. F�((b, b)) for � = {|z1| + |z2| < 1} and b ∈
(0, 1/4).

Example 6.1.9]:

K�(w)

=
2

π2

3
(

1− |w|2
)2 (

1+ |w|2
)

+ 4|w1|2|w2|2
(

5− 3|w|2
)

(

(

1− |w|2
)2 − 4|w1|2|w2|2

)3
,

so that

K�((b, b)) =
2
(

3− 6b2 + 8b4
)

π2
(

1− 4b2
)3

. ( 1–3)

The first part of Theorem 1.2, formula (1–2) on the interval

(0, 1/4), is easier to prove than the second. Combining it with

(1–3), one can obtain the graph of F�((b, b)) for b ∈ (0, 1/4).

It is shown in Figure 3.

One can show that its analytic continuation to (0, 1/2) at-

tains values below 1, and thus it follows already from (1–1)

that F� cannot be analytic; see Figure 4. To conclude that it is

in fact not C3,1, one has to prove the much harder formula of

Figure 2. One can check that the maximal value of F�((b, b))

for b ∈ (0, 1/2) is 1.008902 . . . .

All pictures and numerical computations in this paper, as

well as many of the symbolic computations used in the proofs

of Theorems 1.1 and 1.2, were done using Mathematica.

FIGURE 4. The continuation of F�((b, b)) from Figure 2 to

(0,1/2) and the actual graph there.
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2. GENERAL FORMULA FOR GEODESICS

IN CONVEX COMPLEX ELLIPSOIDS

The boundary of the Kobayashi indicatrix of a convex domain

� at w consists of the vectors ϕ′(0), where ϕ ∈ O(1,�) is a

geodesic of � satisfying ϕ(0) = w. Theorems 1.1 and 1.2 will

be proved using a general formula for geodesics in convex

complex ellipsoids from [Jarnicki et al. 93] based on Lem-

pert’s theory [Lempert 81] describing geodesics of smooth

strongly convex domains.

For p = (p1, . . . , pn) with p j ≥ 1/2, set

E(p) =
{

z ∈ C
n : |z1|2p1 + · · · + |zn|2pn < 1

}

,

and for A ⊂ {1, . . . , n}, define

ϕ j (ζ ) =



















a j

ζ − α j

1− ᾱ jζ

(

1− ᾱ jζ

1− ᾱ0ζ

)1/p j

, j ∈ A,

a j

(

1− ᾱ jζ

1− ᾱ0ζ

)1/p j

, j /∈ A,

where a j ∈ C∗, α0, α j ∈ 1 for j ∈ A, α j ∈ 1̄ for j /∈ A,

α0 = |a1|2p1α1 + · · · + |an|2pn αn, ( 2–1)

and

1+ |α0|2 ( 2–2)

= |a1|2p1
(

1+ |α1|2
)

+ · · · + |an|2pn
(

1+ |αn|2
)

.

A component ϕ j has a zero in 1 if and only if j ∈ A. We have

ϕ j (0) =
{

−a jα j , j ∈ A,

a j , j /∈ A,
( 2–3)

and

ϕ′j (0) =











a j

(

1+
(

1
p j
− 1

)

∣

∣α j

∣

∣

2 − α j ᾱ0

p j

)

, j ∈ A,

a j
ᾱ0−ᾱ j

p j
, j /∈ A.

( 2–4)

For w ∈ E(p), the set of vectors ϕ′(0) where ϕ(0) = w forms a

subset of ∂ I K
E(p)(w) of full measure. The geodesics in E(p) are

uniquely determined: for a given w ∈ E(p) and X ∈ (Cn)∗,

there exists a unique geodesic ϕ ∈ O(1, E(p)) such that

ϕ(0) = w and ϕ′(0) = X .

3. PROOF OF THEOREM 1.1

First note that the formulas for m = 2/3 and m = 2 follow

easily from the first one by approximation. For �m = E(m, 1)

and w = (b, 0), there are two possibilities for a geodesic ϕ:

either ϕ crosses the axis {z1 = 0} or it does not. Let I12 and I2

denote the respective parts of I�m
(w). In the first case, ϕ must

be of the form

ϕ(ζ ) =
(

a1

ζ − α1

1− ᾱ1ζ

(

1− ᾱ1ζ

1− ᾱ0ζ

)1/m

, a2

ζ − α2

1− ᾱ0ζ

)

,

where a1, a2 ∈ C∗ and α0, α1, α2 ∈ 1 satisfy (2–1) and (2–2).

By (2–3) and since ϕ(0) = (b, 0), we have a1 = −b/α1, α2 =
0, and by (2–1), α0 = b2mα1/|α1|2m . By (2–2), we have

1+ b4m |α1|2−4m = b2m |α1|−2m
(

1+ |α1|2
)

+ |a2|2,

that is,

|a2|2 =
(

1− b2m |α1|−2m
) (

1− b2m |α1|2−2m
)

. ( 3–1)

Since α0, α1 ∈ 1∗, it follows that b < |α1| < 1. Write α1 =
−re−i t , a2 = ρeis . Then by (2–4) and (3–1), with b < r < 1,

we have

ϕ′(0) =
(

(

b

r
+ b

(

1

m
− 1

)

r −
b2m+1r1−2m

m

)

ei t ,

√

(1− b2mr−2m)(1− b2mr2−2m)eis

)

=:
(

γ1(r )ei t , γ2(r )eis
)

.

The mapping

1× [0, 2π )× (b, 1) ∋ (ζ, t, r ) 7→ ζ
(

γ1(r )ei t , γ2(r )
)

( 3–2)

parameterizes I12. We will need a lemma.

Lemma 3.1. Let F(ζ, z) = ζ ( f (z), g(z)) be a function of two

complex variables, where f and g are C1. Then the real Jaco-

bian of F is equal to |ζ |2 H (z), where

H = | f |2(|gz̄|2 − |gz|2)+ |g|2(| f z̄|2 − | fz|2)

+ 2 Re
(

f ḡ( fzgz − f z̄gz̄)
)

.

The proof is left to the reader. For the mapping (3–2), we

can compute that

H = γ1γ2(γ1γ
′
2 − γ ′1γ2)

= −
b2

m2
r−6m−3

[

b2m
(

−mr2 + m − 1
)

+ r2m
]

×
[

r2m
(

(m − 1)r2 + m
)

− (2m − 1)r2b2m
]

×
[

r2b2m + r2m
(

(m − 1)r2 − m
)]

.

Since
∫

1

|ζ |2dλ(ζ ) =
π

2
, ( 3–3)
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12 Experimental Mathematics, Vol. 25 (2016)

we obtain

λ(I12) = π2

∫ 1

b

|H | dr ( 3–4)

= π2

(

(1− 2m)2

m2(3m − 1)(3m − 2)
b6m+2

−
3

m2(m + 1)(m − 2)
b2m+2 −

3

2m2
b4m+2

+
m

2(m − 2)(3m − 2)
b6 +

3m

3m − 1
b4

−
4m2 − m + 1

2m2
b2 +

m

m + 1

)

.

To compute the volume of I2, we consider geodesics of the

form

ϕ(ζ ) =
(

a1

(

1− ᾱ1ζ

1− ᾱ0ζ

)1/m

, a2

ζ − α2

1− ᾱ0ζ

)

,

where a1, a2 ∈ C∗, α0, α2 ∈ 1, α1 ∈ 1̄ satisfy (2–1), (2–2).

By (2–3) and since ϕ(0) = (b, 0), we have a1 = b, α2 = 0,

and by (2–1), we have α0 = b2mα1. By (2–2), we have

1+ b4m |α1|2 = b2m
(

1+ |α1|2
)

+ |a2|2,

that is,

|a2|2 =
(

1− b2m
) (

1− b2m |α1|2
)

.

This means that every α1 ∈ 1 is allowed, and by (2–4),

ϕ′(0) =
(

b(b2m − 1)

m
ᾱ1, a2

)

=
(

b(1− b2m)r

m
ei t ,

√

(1− b2m)(1− b2mr2)eis

)

,

where α1 = −re−i t , a2 = ρeis . Similarly as before, we have

H = −
b2

(

1− b2m
)3

r

m2

and

λ(I2) = π2

∫ 1

0

|H | dr =
π2b2(1− b2m)3

2m2
.

This combined with (3–4) finishes the proof of Theorem 1.1.

4. PROOF OF THEOREM 1.2

For � = E(1/2, 1/2) and w = (b, b), where 0 < b < 1/2, we

have by (2–3),

a j =
{

− b
α j

, j ∈ A,

b, j /∈ A,
( 4–1)

and by (2–4),

ϕ′j (0) =







2bᾱ0 − b
(

ᾱ j + 1
α j

)

, j ∈ A,

2b(ᾱ0 − ᾱ j ), j /∈ A.
( 4–2)

There are four possibilities for the set A: ∅, {1}, {2}, and {1, 2}.
Denote the corresponding parts of I�(w) by I0, I1, I2, and I12,

respectively, so that

λ(I�(w)) = λ(I0)+ λ(I1)+ λ(I2)+ λ(I12) ( 4–3)

= λ(I0)+ 2λ(I1)+ λ(I12).

4.1. The Case A = {1, 2}

By (2–1), (2–2), and (4–1), we have
(

1

b
+ 2b

)

|α1| |α2| + 2b Re(α1ᾱ2) ( 4–4)

=
(

1+ |α1|2
)

|α2| +
(

1+ |α2|2
)

|α1|.

Since the set of α ∈ 12 satisfying (4–4) is S1-invariant, let us

consider only those α with α2 > 0. If we then replace α1 with

ᾱ1, then (4–4) will still be valid, and ϕ′(0) will be replaced by

ϕ′(0). We thus consider

α1 = rei t and α2 = ρ, r, ρ ∈ (0, 1), t ∈ (0, π ).

To get λ(I12), we will have to multiply the volume obtained by

2. The condition (4–4) transforms to

1

b
+ 2b(1+ cos t) = r +

1

r
+ ρ +

1

ρ
. ( 4–5)

It will be convenient to substitute x = r + 1/r , y = t , and

consider the domain

U :=
{

(x, y) ∈
(

2,
1

b
+ 4b − 2

)

× (0, π ) : ( 4–6)

x <
1

b
+ 2b (1+ cos y)− 2

}

.

We have

α0 = b

(

α1

|α1|
+

α2

|α2|

)

= b(ei t + 1),

and thus by (4–2) and (4–5),

ϕ′(0) = b

(

2ᾱ0 − ᾱ1 −
1

α1

, 2ᾱ0 − ᾱ2 −
1

α2

)

( 4–7)

=
(

2b2
(

e−i t + 1
)

− b

(

r +
1

r

)

e−i t ,

2b2
(

e−i t + 1
)

− b

(

ρ +
1

ρ

)

)

=
(

2b2 + b (2b − x) e−iy, bx − 1− 2b2i sin y
)

=: ( f (z), g(z)).
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FIGURE 5. The region U for b = 0.2, b = 0.25, and b = 0.3.

The mapping

1×U ∋ (ζ, z) 7→ ζ ( f (z), g(z))

parameterizes I12. From Lemma 3.1 and (3–3), it follows that

λ(I12) = π

∫∫

U

|H | dλ,

where f, g are given by (4–7), U by (4–6) (recall that again

we had to multiply by 2), and we can compute that

H = b2
[

1− 2b2(cos y + 1)
]

×
[

−bx2 + (1+ 2b2(cos y + 1))(x − 2b)

− 2b(b2 cos(2y)+ 1)
]

.

One can check that H > 0 in U . The region U may look like

that shown in Figure 5.

We set

y0 :=
{

π b ≤ 1/4,

arccos
(

−1+ 4b−1
2b2

)

b > 1/4.

Then

λ(I12) = π

∫ y0

0

∫ 1/b+2b(1+cos y)−2

2

H dx dy.

For b ≤ 1/4, we obtain

λ(I12) =
π2

6

(

1− 32b2 + 80b3 − 12b4 − 112b5 ( 4–8)

+ 176b6 − 192b7 + 110b8
)

,

and for b > 1/4,

λ(I12) =
π

72

(

37− 140b + 270b2 − 528b3 + 530b4

− 712b5 + 660b6
)

(1− 2b)
√

4b − 1

+
π

6

(

1− 32b2 + 80b3 − 12b4 − 112b5

+ 176b6 − 192b7 + 110b8
)

( 4–9)

× arccos

(

−1+
4b − 1

2b2

)

.

4.2. The Case A = {1}

By (4–1), a1 = −b/α1, a2 = b, and by (2–1), α0 =
b(α1/|α1| + α2). From (2–2), we get

1+ b2

(

1+
2 Re(α1ᾱ2)

|α1|
+ |α2|2

)

( 4–10)

=
b

|α1|
(

1+ |α1|2
)

+ b
(

1+ |α2|2
)

.

We may assume that α1 > 0. Then (4–10) has a solution α1 ∈
(0, 1) if and only if T > 2, where

T =
1

b
+ b

(

1+ 2 Re α2 + |α2|2
)

− 1− |α2|2

=
1

b
+ b − 1+ 2bx − (1− b)

(

x2 + y2
)

,

and we write α2 = x + iy. This means that

∣

∣

∣

∣

α2 −
b

1− b

∣

∣

∣

∣

<
1− 2b
√

b(1− b)
, ( 4–11)

and the set U will be the intersection of this disk with 1. By

(4–2) and (4–10), we have

ϕ′(0) = 2b

(

b(1+ ᾱ2)−
T

2
, b − (1− b)ᾱ2

)

,
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and therefore ,

f = 2b2(1+ x)− bT − 2b2 yi,

g = 2b2 − 2b(1− b)x + 2b(1− b)yi.

We can compute that

H = 4(1− b)b2
[

b2(1+ 2x)− (1− b)
(

1+ b(x2 + y2)
)]

×
[

− 1+ 2b + b3 − 2b2(1− b)x + b(1− b)2(x2 + y2)
]

= 4(1− b)b3(b + b2 − (1− b)T )(b2 + 2b − 2+ bT ).

One can check that H > 0 everywhere on U .

If b ≤ 1/4, then U = 1, and using polar coordinates in 1

and Lemma 3.1, we obtain

λ(I1) =
2π2

3
(1− b)b2

(

3− 9b + 2b2 + 6b3 − 6b4 + 10b5
)

.

( 4–12)

For b > 1/4, it is more convenient to use polar coordinates in

the disk (4–11) instead:

x =
b

1− b
+ r cos t, y = r sin t.

Then

H = 4b2(1− 2b)2 − 4b4(1− b)4r4.

For r with

1− 2b

1− b
< r <

1− 2b
√

b(1− b)
,

the circles {|α2 − b/(1− b)| = r} and {|α2| = 1} intersect

when t = ±t(r ), where

t(r ) = arccos
1− 2b − (1− b)2r2

2br (1− b)
. ( 4–13)

Therefore,

λ(I1) = π2

∫ (1−2b)/(1−b)

0

r H dr

+ π

∫ (1−2b)/(
√

b(1−b))

(1−2b)/(1−b)

r (π − t(r ))H dr.

We can compute the second integral using the following in-

definite integrals:

∫

v arccos
(a

v
− v

)

dv =
1

4

√

−a2 + 2av2 − v4 + v2

+
4a + 1

8
arctan

2a − 2v2 + 1

2
√
−a2 + 2av2 − v4 + v2

+
v2

2
arccos

(a

v
− v

)

+ const ( 4–14)

and
∫

v5 arccos
(a

v
− v

)

dv

=
1

288

(

15+ 78a + 80a2 + (10+ 32a)v2 + 8v4
)

×
√

−a2 + 2av2 − v4 + v2 ( 4–15)

+
5+ 36a + 72a2 + 32a3

192

× arctan
2a − 2v2 + 1

2
√
−a2 + 2av2 − v4 + v2

+
v6

6
arccos

(a

v
− v

)

+ const.

We obtain

λ(I1) = −
π2b

3(1− b)2

(

10b9 − 36b8 + 54b7 + 84b6 − 375b5

+ 414b4 − 166b3 − 6b2 + 21b − 4
)

+
πb(1− 2b)

9(1− b)

(

30b6 − 58b5 + 43b4 − 19b3 − 26b2

+ 32b − 8
)
√

4b − 1

+
4π (1− 2b)4b

(

2b2 − 2b − 1
)

3(1− b)2
arccos

3b − 1

2b3/2

+
2

3
π (1− b)b2

(

10b5 − 6b4 + 6b3 + 2b2 − 9b + 3
)

× arctan
2b2 − 4b + 1

(1− 2b)
√

4b − 1
( 4–16)

for b > 1/4.

4.3. The Case A = ∅

We have a1 = a2 = b and α0 = b(α1 + α2). Therefore,

−b(1− b)(|α1|2 + |α2|2)+ 2b2 Re(α1ᾱ2)+ 1− 2b = 0.

( 4–17)

Again, we may assume that α1 > 0. We may also assume that

Re α2 ≥ 0 and then multiply the resulting integral by 2. The

equation (4–17) has a solution α1 if

D := −b(1− b)2|α2|2 + b3(Re α2)2 + (1− b)(1− 2b) ≥ 0.

It satisfies α1 < 1 if

Q :=
b3/2 Re α2 +

√
D

√
b(1− b)

< 1.

This means that
∣

∣

∣

∣

α2 −
b

1− b

∣

∣

∣

∣

>
1− 2b
√

b(1− b)
. ( 4–18)

By U we will denote the set of α2 ∈ 1 satisfying (4–18). For

b ≤ 1/4, we have U = ∅ and thus λ(I0) = 0. This together

with (4–3), (4–8), and (4–12) gives (1–2).
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Assume that b > 1/4. By (4–2), we have

ϕ′(0) = 2b
(

(b − 1)Q + bᾱ2, bQ + (b − 1)ᾱ2

)

,

so that

f = 2b
(

(b − 1)Q + bx
)

− 2b2 yi,

g = 2b
(

bQ + (b − 1)x)+ 2b(1− b)yi.

One can compute that

H =
16b3(1− 2b)3

1− b

(

1+
b3/2x
√

D

)

.

By Lemma 3.1,

λ(I0) = π

∫ −1+(4b−1)/(2b2)

−1

∫

√
1−x2

y2(x)

H dy dx,

where

y2(x) = 0 if − 1 ≤ x ≤
b3/2 + 2b − 1
√

b(1− b)
,

while

y2(x) =

√

(1− 2b)2

b(1− b)2
−

(

x −
b

1− b

)2

if

b3/2 + 2b − 1
√

b(1− b)
≤ x ≤ −1+

4b − 1

2b2
.

It is clear from this formula that λ(I0) is analytic for

b ∈ (1/4, 1/2). We may therefore restrict our attention to the

interval
(

1

4
,

3−
√

5

2

)

.

Then 0 /∈ U , and we will use polar coordinates in 1, that is,

x = r cos t, y = r sin t.

We get

λ(I0) =
16πb3(1− 2b)3

1− b

×
∫ 1

r0

r

(

arccos
1− 3b + b2 − b(1− b)r2

2b2r

− arctan

√

4b4r2 − (1− 3b + b2 − b(1− b)r2)2

1− b − b2 − b(1− b)r2

)

dr,

where

r0 =
1− 2b − b3/2

√
b(1− b)

.

Using (4–14), one can compute that
∫ 1

r0

r arccos
1− 3b + b2 − b(1− b)r2

2b2r
dr

=
π

(

2b3 − 8b2 + 6b − 1
)

4(b − 1)2b
−

1

2
arccos

(

−1+
4b − 1

2b2

)

+
1− 2b

4b(1− b)

√
4b − 1

+
(1− 2b)2

2b(1− b)2
arctan

1− 3b

(1− b)
√

4b − 1
.

On the other hand, since
∫

1

v2
arctan

√

−av2 + v − 1 dv

=
1

2v

√

−av2 + v − 1−
1

v
arctan

√

−av2 + v − 1

−
a

2
arctan

2a
√
−av2 + v − 1

−av − 2a + 1

+
2a − 1

4
arctan

(v − 2)
√
−av2 + v − 1

2av2 − 2v + 2
+ const,

we obtain
∫ 1

r0

r arctan

√

4b4r2 − (1− 3b + b2 − b(1− b)r2)2

1− b − b2 − b(1− b)r2
dx

=
π (1− 2b)(b + 1)

8(1− b)2
+

1− 2b

4b(1− b)

√
4b − 1

−
(b + 2)(1− 2b)

4b(1− b)
arctan

√
4b − 1

−
(1+ b)(1− 2b)

4(1− b)2
arctan

1− 3b

(1− b)
√

4b − 1
.

Therefore,

λ(I0) =
2π2b2(1− 2b)3(−6b2 + 9b − 2)

(1− b)2

−
8πb3(1− 2b)3

1− b
arccos

(

−1+
4b − 1

2b2

)

+
4πb2(1− 2b)4(b + 2)

(1− b)2
arctan

√
4b − 1 ( 4–19)

+
4πb2(1− 2b)4(2− b)

(1− b)2
arctan

1− 3b

(1− b)
√

4b − 1
.

Using the formulas

arccos

(

−1+
4b − 1

2b2

)

= arctan
2b2 − 4b + 1

(1− 2b)
√

4b − 1
+

π

2

( 4–20)

and

arccos
3b − 1

2b3/2

= arctan
√

4b − 1− arctan
2b2 − 4b + 1

(1− 2b)
√

4b − 1
+

π

2
,
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FIGURE 6. The formula of Figure 2 for b ∈ (1/4, 1− 1/
√

2).

and combining (4–3), (4–9), (4–16), and (4–19), we get the

formula of Figure 2 for b > 1/4.

Denoting by χ− and χ+ the functions defined by the right-

hand sides of (1–2) and the formula of Figure 2, respectively,

we can compute that at 1/4,

χ− = χ+ =
15887

196608
π2, χ ′− = χ ′+ = −

3521

6144
π2,

χ ′′− = χ ′′+ = −
215

1536
π2, χ

(3)
− = χ

(3)
+ =

1785

64
π2,

but

χ
(4)
− =

1549

16
π2, χ

(4)
+ = ∞.

This shows that our function is C3 but not C3,1 at 1/4. This

completes the proof.

In fact, using (4–20) and

arctan

(

1

x

)

=
π

2
− arctan x, x > 0,

for b ∈ (1/4, 1− 1/
√

2), the formula of Figure 2 can be writ-

ten as the formula shown in Figure 6.
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