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INTERIOR REGULARITY OF THE COMPLEX
MONGE-AMPERE EQUATION IN CONVEX DOMAINS

ZBIGNIEW BLOCKI

0. Introduction. For C2-smooth plurisubharmonic (psh) functions, we consider
the complex Monge-Ampére equation

det(u;7) = v, (0.1)

where 7= 8%u/0z; 0zj,i, j =1,...,n. The main result of this paper is the following
theorem.

THEOREM A. LetQ be a bounded, convex domain@i. Assume that is aC*>
function inQ such thaty > 0 and|DvyY/"| is bounded. Then there existsCa°-psh
solutionu of (0.1) inQ with lim,_ 3qu(z) =0.

The theory of fully nonlinear elliptic operators of second order can be applied to
the operator(det(u;;))"/". It follows in particular that ifu is strictly psh andC>*
for somea € (0,1), then detu;7) € Cc*# impliesu € C¥*28 wherek = 1,2, ...,
andg € (0,1) (see, e.g., [9, Lemma 17.16]). Therefore, to prove Theorem A, it is
enough to show existence of a solution thats® in everyQ' e , wherex € (0, 1)
depends orf2’. We obtain this assuming only th#t'/” is positive and Lipschitz in
Q (see Theorem 4.1).

In a special case of a polydisc, we also allow nonzero boundary values.

THEOREM B. Let P be a polydisc inC". Assume thaty is a C* function in P
such thaty > 0 and|D?y"| is bounded. Lef be ac'! function on the boundary
d P such thatf is subharmonic on every analytic disc embedded M Then (0.1)
has aC*°-psh solution inP such thatim,_,;u(¢) = f(z) forz € aP.

In Section 5, we explain what we precisely mean by saying that a functiéhis
on a (nonsmooth) setP. In particular, all functions that are extendable t@a!
function in an open neighborhood &P are allowed.

Usually, the Dirichlet problem for the complex Monge-Ampére operator is con-
sidered on smooth, strictly pseudoconvex domain&’in For these, the existence
of (weak) continuous solutions was proved in [1], whereas smooth solutions were
obtained, for example, in [5], [10], and [11]. Here, however, we do not assume any

Received 2 June 1999. Revision received 2 February 2000.

2000Mathematics Subject ClassificatidArimary 32W20; Secondary 35J60.

Author's work supported in part by the Committee for Scientific Research grant number
2P0O3A00313.

167



168 ZBIGNIEW BLOCKI

regularity of the boundary. In case of the real Monge-Ampére operator, a result cor-
responding to Theorem A is due to Pogorelov, and a proof without gaps can be found
in [6, Theorem 7] (see also [7]).

To prove Theorem A, we need interi6t, C2, andC?* a priori estimates for the
solutions of (0.1). One of the main problems in the complex case was to derive a
Cl-estimate, whereas in the real case it is trivial (because for any convex function
on 2, vanishing o2, we havel Du(x)| < —u(x)/dist(x, 92)). We do it in Section
2 (Theorem 2.1), and this is the only point when we need the assumptiof tisat
convex. We suspect that Theorem A should hold in a broader class of hyperconvex
domains.

An interior C2-estimate for the complex Monge-Ampére equation is proved in [14].
However, it gives arl.*°-bound only forAu and not for| D2u|; therefore, we cannot
use theC%*-estimate from [15]. In Section 3, we adapt the methods of [16] for the
real Monge-Ampére equation and get an intetidr*-estimate of solutions of (0.1)
using only the upper bounds afiu and| Dy/"|. To show Theorem A, we could have
used a result from [13] instead of Theorem 3.1, but this would not give Theorem 4.1
in its full generality.

In the proofs of the above theorems, we use a notion of a generalized solution of
(0.1) introduced in [1]. The solutions obtained in Theorems A and B are unique, even
among continuous psh functions.

AcknowledgmentsParts of this paper were written both during my stay at the
Mid Sweden University in Sundsvall and at the Mathematical Institute of the Polish
Academy of Sciences while on leave from the Jagiellonian University. | would like to
thank all three institutions. | am also grateful to S. Kotodziej for helpful discussions
on the subject.

1. Preliminaries. If u is a continuous psh function, then we can uniquely define
a nonnegative Borel measubéx in such a way that
(i) if u; — u locally uniformly, thenMu ; — Mu weakly;
(i) Mu=detw;;)dif uis C? (see, e.g., [1]).
Bedford and Taylor [1] solved the Dirichlet problem for the operatbiin strictly
pseudoconvex domains. This result was generalized in [2] (see also [3]) for the class
of hyperconvex domains.

THEOREM 1.1 Let{2 be a bounded, hyperconvex domair{it. Assume thai is
nonnegative, continuous, and bounde@®irL_et f be continuous 042 and such that
it can be continuously extended to a psh functiorfoiThen there exists a solution
of the following Dirichlet problem:

u psh ong, continuous org2,
Mu =1 on €, (1.1)
u= fonaQ.
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We recall that a domain is called hyperconvex if it admits a bounded psh exhaustion
function. In particular, all bounded convex domains are hyperconvex.

In [1] Bedford and Taylor also proved the following comparison principle, which
implies in particular the uniqueness of (1.1) in an arbitrary bounded dom&if.in

ProposiTION 1.2 Let§2 be a bounded domain i6”. If u, v are psh inQ, contin-
uous ong2, and such that: < v ondQ and Mu > Mv in , thenu <v in Q.

The following regularity result can be also found in [1].

TueoREM 1.3 LetQ = B be a Euclidean ball irC". Assume thaf is -1 ond B
andyY"isctton B (i.e., itisC! inside B and the second derivative is bounded
there). Then a solution of (1.1) &%1 in B. Moreover, for anyB’ € B, we have

| D%u]

B/Sca

whereC depends only on, | D2f |55, | D2y Y/"|| 5, dist(B’, d B), and the radius o8.

In Section 5, we prove a similar result for a polydisdGfh.
The following theorem was proved in [5].

THEOREM 1.4 Assume thaf2 is strictly pseudoconvex with*° boundary,y is
C*®onQ, ¥ > 0,and f is C*® ondQ. Thenu, the solution of (1.1), i€ on Q.

It is well known that
(M(u1+uz)) " = (Mug)"" + (Muz)"",  u1,uz pshandc?. (1.2

The above inequality does not make sensg iindu> are just continuous, since then
Muy and Mu» are only measures. However, we can generalize it as follows (see [3,
Theorem 3.11]).

ProposiTiON 1.5 Letu; anduz be psh and continuous withfug > 1, Muo >
Y2, Whereyr1 and ¢, are continuous and nonnegative. Then

M (u1+u2) > (I/fll/” + I/le/")n~

The following C?-estimate was proved by F. Schulz [14].

TueoreM 1.6, LetQ be a bounded, hyperconvex domair{ih and letu be aC3-
psh function inQ2 with lim,_, 3o u(z) = 0. Assume, moreover, that for some positive
constantsKg, K1, b, Bg, and B1, we have

lu| < Ko, |Du| < K1

and
b < < By, IDy| < By
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in Q, whereyr = det(ul.;). Then for anys > 0, there exists a constaxt, depending
only onn, ¢, b, Bg, B1, Ko, K1 and on the upper bound for the volumeguch that

Au(—u)>te <C

in Q.

In the proof of Theorem B, instead of applying Theorems 1.4 and 1.6, we use the
following proposition.

ProposiTioN 1.7. Let Q@ be a bounded domain if". Assume that is a psh
function in a neighborhood aof2 and such that, for a positive constakt and 4
sufficiently small, it satisfies the estimate

u(z+h)+u(z—h)—2u(z) < K|hj%, zeQ.

Thenu is ¢11in Q and|D%u| < K.

This result was essentially proved in [1, pp. 34-35]. The arguments from [1] were
simplified in [8], and we present Demailly’s proof for the convenience of the reader.

Proof of Proposition 1.7. Letu, = u* p, denote the standard regularizations of
Then forz € Q. :={z € Q : dist(z, Q) > ¢} andh sufficiently small, we have

ue(z+h) +ue(z—h) —2uc(z) < K |h|?.
This implies that
D?u..h? < K |h|%. (1.3)
Sinceu, is psh, we have

0 9%u
D?uc.h®+ D?u, (i) =4 ) Eh;
-l 0707k -

Therefore, by (1.3),
D?u;.h? > —D?u,.(ih)? > —K|h|?.
This implies that D%u,| < K on €2, and the proposition follows. O
2. A Cl-estimate in convex domains. In this section we prove the following

interior a priori gradient estimate for the complex Monge-Ampere operator in convex
domains.
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THeEOREM 2.1 Letu be psh and continuous in a bounded, convex dorfain
C" with lim._, 3q u(z) = 0. Assume, moreover, thau = v is continuous andy1/"
is Lipschitz inQ2 with a constantk1. Then for anyQ2’ € €2, u is Lipschitz inQ2" with

the constant
~ 2Ky D
K=D?—+kKi(1+=)),
(53t (+7))

whereD = diamQ, d = dist(’, 82), and Ko = sup, /",
In the proof of Theorem 2.1, we use the following elementary lemma.
LemMma 2.2 Assume thaf2 is a bounded convex domain R" containing the
origin. Then, if0 < « < 1, we have
dist(x€2,02) = (1—a) dist(0, 32).
Proof. The inequality ‘<” is clear. To prove the reverse, we takey € Q2. We

have to show thgtt —ay| > (1—«)d, whered := dist(0, 992). Let!/ be a line passing
throughx andy. If 0, x, andy form an acute-angled triangle, then

X —ayl =[x —ax| = 1-a)d.

Otherwise, from the convexity @2, it follows thatd < dist(0, ) and, consequently,
|x —ay| > (1—a)dist(0,]) > (1—a)d. O
Proof of Theorem 2.1.We may assume tha®’ is convex. Fixa,b € Q' with

la—b| < d. Itis enough to show that
ub)—u(a) < Kla—b|. (2.1)

Forz € ©, put
la—Db|

T :=(1-
(2) ( 7

)(z—a)+b.

ThenT (a) = b and, by Lemma 2.2,

dist((l— Ia;b|> (Q—a), Q—a> _

and it follows thatT' (2) C 2. Moreover, simple calculation shows that

—b| .
la y | dist(a. 92 > |a—b.

IT(2)—z| < <l+§)|a—b|, 7€,
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and, sincey /" is Lipschitz,

'(//1/"(T(Z)) > wl/"(z) — K1<1+§>|a —b|. (22)

Forz € @, put
Ez
v(2) ::u(T(z))+ﬁ(lz—alz—D2)|a—b|.

(Itis well defined becausE($2) c €2.) The functiorw is psh, continuous, and negative
on . From Proposition 1.5 and (2.2), we infer that

n

2 =2
la—b| . K
Mv > ((1—T> yl (T(z))+ﬁ|a—b|)
_2a=bl\ LS
> ((1 y )w (T@)+ 5zl —bl
n K2 2Ky "
= (v (re)+ (e -3 a—)
. K% 2Kg D "
> <1//1/ (2)+ (ﬁ —7—K1<1+ g>)|a_b|)
=¥ ().
The comparison principle now implies thak u; thus
u(a) = v(a) =u(b) = Kla—bl,
and we get (2.2). O

3. A C2%*-estimate and local regularity. The aim of this section is to show the
following result.
TueoreM 3.1 Letu be aC*-psh function in an opef c C". Assume that for
some positivKp, K1, K2, b, Bo, and B1, we have
lul < Ko, |Du| < K1, Au < K>

and
b<y <Bo, |DyY"|<B:

in Q, wherey = det(ul.y). Let Q' € Q. Then there exist € (0,1) depending only
onn, Ko, K1, K2, b, Bg, B1 and a positive constanf depending, besides those
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guantities, ordist(2’, 8€2) such that

0%] ooy = €

()
We use similar methods, as in other papers on nonlinear elliptic operators, especially

the methods in [16]. Note that if we knew th&t%x| < K>, then Theorem 3.1 would be

a consequence of [15]. On the other hand, if we additionally assumedxthat/”| <

B2, then from [13, Theorem 1] we would get the estimate

[Daw]q <c.

and Theorem 3.1 would follow from the Schauder estimates.

It is interesting to generalize Theorem 3.1 to arbitrary, continuous psh funetions
(sinceAu e L™, u would have to be at least iw?? for everyp < 00).

In the proof of Theorem 3.1, we need the following fact from the matrix theory.

LeEmMMA 3.2 Letd and A be such thaD < A < A < 4+o00. By S[A, A] we denote
the set of positive Hermitian matrices @'*" with eigenvalues iix, A]. Then we
can find unit vectorss, ..., yx in C" and A*, A* depending only om, A, and A
such thatd < A* < A* < 4-00. For everyA = (a;;) € S[A, A], we can write

N N
A=) Bn®y,  thatisaj =) BuvkiVi,
k=1 k=1

whereps, ..., By € [A*, A*]. The sef{y1, ..., yn} can be chosen so that it contains
a given finite subset of the unit sphere(f, for example, the set of the coordinate
unit vectors.

The proof of Lemma 3.2 for real symmetric matrices can be found, for example,
in [9, Lemma 17.13], and it readily extends to the case of Hermitian matrices.

Proof of Theorem 3.1.If we consider constants depending only on the quantities
used in the assumption, we say that those constants are under control, and we usually

denote them by, C2, etc. Leta!/ denote the, j-cominor of the matrix(ul.j), S0

thata! = 9 detu,7)/duq. If we setul/ := aiJ /yr, then we haveu'/)T = (uﬁ)_l.
If we differentiate both sides of the equation

iy, —s.
uuz =34
with respect taz,, and solve a suitable system of linear equations, we obtain
ijy _ il kj.o o
(M )p =—u u uklp.

- — Ky -
Sincey, =au;;,, we get

(a"j)p =1 (uﬁukz — u"iukj)ukip.
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Therefore,
ijo\ — (4i00)_ —
(a'/0); = (a )j_o (3.1)

for everyip, jo=1,...,n. Takey € C", |y| = 1, and for arbitrary functiom denote
vy = Zp vpYp- The operatoF'(A) := (detd)/" is concave on the set of nonnegative
Hermitian matrices. If we differentiate the equatiEn(ul.j)) = /" with respect to

y andy, we obtain

1
Fugz gy gy + Fusuig,= (W /")W-
SinceF, . = (1/m)y~++*"a'J and sincer is concave, by (3.1) we have

: = 1
alu, 55 = ("U”Wi)j =yt (Wl/n)yy =Yyy— <1_ ;)Wlm

2

’

and we arrive at the estimate

- 2 o fs
(aVuypi)7= —C14 Y =, (3.2)

where|| f*|| =) < C2.

From the assumptions of the theorem, it follows that the eigenvalues of the matrix
(ul?) are in[A, A], wherex, A > 0 are under control. By Lemma 3.2, there are unit
vectorsys, ..., yy such forz, w € Q we write

_ N
'l (W) (5 (w) —u;52) = Y Be(w) (tty,p, (W) — ity (),
k=1
where 8 (w) € [A*, A*] and A*, A* > 0 are under control. It is a consequence of

the inequality between geometric and arithmetic means that for any nonnegative
Hermitian matricesA, B € C"*" we have

1
~trace(AB”) > (detd)¥" (detB)*".
n

Therefore,

l—l/n( 1/n

aij(w)uij(z) = n(lﬂ(w)) v@)""

We conclude that
N
D Bew) 1y, (W) =y, 7, (2)) < Calz—w| (3.3)
k=1

since| Dy < K.
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Fix zg € Q and denoteBg = B(zg, R) for R < 1 such that O< 4R < dist(zg, 92).
Set My r = Supg, uy,y, andmy g = infg, uy, 7 . By (3.2) and the weak Harnack
inequality (see [9, Theorem 8.18]), it follows that

R~ / (Mk,4R — ”Vk?k) dir < C4(Mk,4R — My r+ R). (3.4)
Br
Summing (3.4) ovek # ko, wWhereky is fixed, we obtain
R™2 [ 3" (My.ar —uyy,)dr < Ca(w(4R) —o(R)+R), (3.5)
BR ko

wherew(R) = YN (My. g —my g). By (3.3) forz € Bag, w € Bg, we have

Bro() ity 7, (0) —tty, 7, () < Calz—wl+ Y Be(w) (7, () — 7, (w))
ketko

< CsR+A* Y (Myag —uyz, ().
kko

Thus,

1
UykoVig (W) —mpg,ar < g (C5R+A* Z (Mkw4R Uy (w))) ’
k+#ko

and (3.5) gives
R~ /; (U374, = Mko.4k) d2 < Co(w(4R) = (R) + R).
R

This, coupled with (3.4), easily implies that
w(R) < C7(a)(4R) —w(R)+ R);

hence
w(R) <dw(4R)+R,

wheresd € (0,1) is under control. In an elementary way (see [9, Lemma 8.23]), we
deduce that for any € (0, 1),

R\ (1-w)(~logs)/log4 1 .
) w(Rg) + nR“Ro‘",

(R) = L
@ ~ 5\ Ro
where 0< R < Rgp < min{1,dist(zg, 02)}. Therefore, if we choose. so that
(1—w)(—logd)/logd < u, we obtainw(R) < CR*, wherea € (0,1) is under
control andC depends additionally on digb, 92).
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Sinceys,...,yn can be chosen so that they contain the coordinate vectors, we
deduce that|Aul|ceqy < C for somea € (0,1) under control. The conclusion of
the theorem follows from the Schauder estimates. O

We now prove the following local regularity of the Monge-Ampere operator.

THEOREM 3.3 Assume that is a C11-psh function such thadu is C* and
Mu > 0. Thenu is C*.

Proof. We may assume thatis defined in a neighborhood of a Euclidean [l
There is a sequencg € C*°(dB) decreasing ta ond B and such thanszj lap <
C1. Theorem 1.4 gives:; € C*®(B), u; psh in B such thatMu; = Mu, and
uj = f; on dB. By the comparison principle;; is decreasing ta in B. From
Theorem 1.3 it follows that for everg’ € B there isC» such that”Dzlxtj”B/ < Co.
Thus, by Theorem 3.1, for everly” € B’ we can finda € (0,1) and C3 such that
|D?u ;|| ce(pry < Cs. It follows thatu € C%*(B"), which finishes the proof. O

4., Proof of Theorem A. As mentioned in the introduction, Theorem A is an
immediate consequence of the following result.

THEOREM 4.1 Let 2 be a bounded, convex domain @¥. Assume that/ is a
positive function in§2 such thaty/” is (globally) Lipschitz inQ, and letu be the
(unique) solution of (1.1) witlf = 0. Then for eveng2’ € 2 there exists < (0, 1)
such thatu € C%%(Q').

Proof. Let Q” be a convex domain such th& € Q" € @, and letQ; be a
sequence of smooth strictly convex domains such gtfate Q; € Q11 € 2 and
U721, = €. Then one can find functiong;, which are positiveC* in a neigh-
borhood ofQ; and such that lim_,  [|v; —Vlg, =0, and||Dw}/"||§j < C1. (The
functionsy,; can be chosen ag * o, the standard regularizations ¢f wheree is
sufficiently small.) o

Theorem 1.4 provide§™ functionsu ; on 2, pshing2; with u; =0 0onoQ;, and
Mu; = ;. We claim that the sequeneg tends locally uniformly ta: in Q. The
following two inequalities can be easily deduced from superadditivity of the complex
Monge-Ampere operator and from the comparison principle:

1
u(z)+(|Z—Zo|2—D2)H1ﬂj —W”ﬁ/j" <uj(), 7€,
and
1
uj@+ (=20l = D)y, ¥ [g" <u@+lulse;, z€9;.

Here,zg is a fixed point of2 and D = diam<. This implies that

= s, < lulase, + D v =¥ |3

and the right-hand side converges to Qjas oc.
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We claim that the sequendceu ; is uniformly bounded ir2”. Choosez andb so
that max,u < a < b < 0. Forj big enough, we have

Q" cluj<alc{u<a)c{uj<b} cl{u<b}cCQ;.
By Theorem 2.1, applied to convex domais, there isC such that for every,
H Du; || u<by = C2-

By Theorem 1.6, applied to domaifs; < b} and functions:; — b for everye > 0,
there exist€’3 such that

Auj(b—uj)2+€ <Csz oOn {uj <b}.

Therefore,
C3

|| Al/l/ | Q S (b —(,l)2+g )

which proves the claim. Now, from Theorem 3.1, it follows that there exigtg0, 1)
such tha| D¥||ce(ey < Ca; henceu € C2o (). O

We conjecture that Theorem 4.1 (as well as Theorem A) holfsisf only hyper-
convex. It would be sufficient if we knew that the sequeig;| is locally bounded
in ©, whereu is the sequence constructed in the proof of Theorem 4.1. This would
require a counterpart of Theorem 2.1 for nonconvex domains.

Theorem A implies the following analogue of the local regularity of the real
Monge-Ampere operator.

THeEOREM 4.2 Letu be a convex function defined on an open subsét'o$uch
that its graph contains no line segment. Suppose Mhatis positive andC*°. Then
uis C®.

Proof. By © denote a domain wheteis defined. Fix;g € Q. Let T be an affine
function such that” < u and T (z0) = u(zo). Since the graph af contains no line
segment, one can easily show that for same0 a convex domaifu — T +¢ < 0} is
relatively compact irf2. Now we apply Theorem A to this domain. By the uniqueness
of the Dirichlet problem, we conclude thatmust be smooth in some neighborhood
of zo. O

5. Interior regularity in a polydisc. Throughout this section? denotes the unit
polydisc inC"; thatis,P = A" ={z e C":|z;| <1, j=1,...,n}.

Similarly as before, our starting point in proving Theorem B is Theorem 1.1. In
order to use it, we need the following proposition.

ProrosiTION 5.1 Let f be a continuous function omP. Then the following are
equivalent:
(i) f is subharmonic on every disc embedded i
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(ii) f can be continuously extended to a psh functiorPon
Proof. (ii)=(i) is clear. To show the converse, define
u:=sup{v:v pshonP, v* < fondP}.

Here v* denotes the upper regularization ofwhich is defined onP; the lower
regularization is denoted hy,. By a result from [17] (see also [3, Theorem 1.5]),
it is enough to show that* = u, = f on d P. By the classical potential theory, we
can find a harmonic functioh on P, continuous onP and such thak = f on 9 P.
Thereforeu < h, and it remains to show that. > f ondP.

Take anys > 0 andw € 3 P. We assume thab = (1,0,...,0). Forz € P andA
positive, we can define

v(2):= f(Lz2.....2x) + A(Rez1 — 1) —e.

Thenv is continuous orP, psh onP, and we claim that fod big enoughp < f on
d P. We can find positive such thatf(1,z2,...,z,) —¢ < f(z) if |z1—1] <r and
z € dP. Therefore, it is enough to take, which is not smaller than

f(]-’ZZ,-..,Zn)_f(Z)—g

sup
z€AP,|z1—1|>r 1-Rez
Eventually,u, (w) > v(w) > f(w) — &, which completes the proof. O

In case of a bidisc, Theorem 1.1 was earlier proved in [12] with probabilistic
methods. In fact, similarly as in [12], & = P, then the assumption in Theorem 1.1
thatv is bounded can be relaxed. One can allow nonnegative, continovith

C
(1= lzal)” -+ (1= lzal)”
for some positivelC andp < 2. This arises from the subsolution
(@) =—(1=1z2P%)" - (1= 1za?)",
where O< ¢ < 1/n; then
Mu(z) =" (1—1z1%) "2 - (1= 12.1D) " 72 (1—£l2?).

Before stating the main result of this section, we explain the notation. We say that a
functionisCt1on P ifitis €11 on P and its second derivative is (globally) bounded.
By saying that a function i€ %1 on 8 P, we mean that it is continuous &P, C11
on the(2n — 1)-real-dimensional manifold

z€eP,

Y(z) <

n
R := U AL A x A
j=1

and the second derivative is boundedn
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In order to prove Theorem B, we show the following counterpart of Theorem 1.3
for a polydisc.

THEOREM 5.2 Assume thaty > 0is such thaty /" e C11(P). Let f beCct! on
d P and subharmonic on every disc embeddedl Then a solution of (1.1) i€*!
onP.

Note that, contrary to Theorem 3.1, we do not assume here/thad. We conjec-
ture that for arbitrary bounded, hyperconvex dom@im C", if f =0 andy > 0,
v/ e cH1(Q), then a solution of (1.1) belongs @-1(R2). The analogous problem
can be stated for the real Monge-Ampeére operator and bounded, convex domains
in R”. By [11], the answer in both the complex and real case is positigeisf C31
strictly pseudoconvex (resp., convex); we then get a solutic®lif($2). However,
we cannot expect global boundedness of the second derivatives in general because
if, for example,y» = 1, then all eigenvalues of the complex (resp., real) Hessian of
would be bounded away from zero. This would imply in particular that there are no
analytic discs (resp., line segments)if?, but this is allowed in general.

Proof of Theorem 5.2.The proof is similar to the proof of [1, Proposition 6.6].
Let D be open and relatively compact i Define

Tun(z) =T(a,h,z)
,_<h1+(1—|a1|2—51h1)u hn+(1—|an|2—anh1)zn>

1- |al|2 —611711 +E121 T - |an|2 _anzn +Enzn

ThenT is C*-smooth in a neighborhood of the $€t, ,z) :a € D, |h| <d/2, z €
P}, whered = dist(D, 3 P). Moreover,T,  is a holomorphic automorphism dt
mappinga to a +h and such that, o(z) = z.

Fora e D, |h| <d/2, andz € P, put

u(Ta,h(Z)) +M(Ta,—h(2))
2
We claim that ifK1 and K2 are big enough, then for ail #, andz we havev < u. By
the comparison principle, it is enough to show that « ond P andMv > Mu on P.
SinceT, , mapsRk onto R, it is easy to see that if we take

v(z) = — K|k + K2(|z|*—n).

1] 92
Kl = E HW]C(T(G,]’I, Z))

s

{aeD, |h|<d/2,z€R}
thenv < u on R. Since both functions are continuous, the inequality hold8 ®&n
From Proposition 1.5, we infer

2/n 2/n n

+ 1/)’! Ta— T/
;/f ( ,h(Z))| ,—h(Z)| +Ka 2| .

YV (T ()| T, )]

Mv >
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where byT’ we mean the Jacobian @f. Therefore, we havéfv > Mu = v if
82

1 n
Ko= 5| 2 (" (s @) 710 ")

{aeD, |h|<d/2,ze P}

Eventually,v < u and

h —h d
u(a) = v(a) > ulat )Z”(a ) — (K1+nKk2)|h|?, aeD, |k < >
The theorem follows from Proposition 1.7. O

It is clear from the proof that, similarly as in Theorem 1.3, we have an interior a
priori estimate forD?y in Theorem 5.2.

Theorem B can be deduced from Theorems 5.2 and 3.3.

The assumption that > 0 in Theorem B is essential, as the following example
shows.

Example. Let P = A? be the unit bidisc. The functiofi(z, w) = (Rez)?(Rew)?
is separately subharmonic; thus, by Proposition 5.1 and Theorem 1.1, the function

u:=sup{v:vpshinA? v* < f ond(A?)}
is pshinA2, continuous O, u = fond(A?), andMu = 0in A2. By Theorem 5.2,
uis Cllin A2,
Note that for any;, w € C, we have
4RezRew — (1—|z?) (1—lwf?) = [z + w[? — [1—zw|*.

Thus,{|lz+w| = |1—zw|}N3(A2) C {RezRew = 0}. It is easy to check that the set
{lz+w|= |1—zw|}ﬂZ2 can be foliated by analytic discs with boundaries {n?)
and thatu =0 on{|z+w| < |1—zw|}mZ2. Fore € (0, 1), set

&2 4w |2
wew=5(525] 1)
2 4RezRew — (1—z[?) (1— |w|?) — 26 (1— Re(zw)) — &2
4 le+1—zw|? '

Thenwv, is psh iNA2, continuous on_xz, andv, (z, w) < Rez Rew there. Therefore, we
have(max0, v, })2 < u andv, < Ju. Fort € (+/2—1,1), an elementary calculation
gives

2 2
Jutnz sup — (% —1> = (@ (1)),

ec0) 4 \(e4+1—12

since the supremum is attained fowith (¢ +1—12)% = (2r)?(1—?). Fort € (0, 1),
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we thus have

.0 =0 ift <v/2-1,
ult, .
> 2742023 - (1—t2)2/3)6 if 1 >+/2-1,

and we conclude that is not C®. We conjecture that, in fact, is not evenC?.
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