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INTERIOR REGULARITY OF THE COMPLEX
MONGE-AMPÈRE EQUATION IN CONVEX DOMAINS

ZBIGNIEW BŁOCKI

0. Introduction. ForC2-smooth plurisubharmonic (psh) functions, we consider
the complex Monge-Ampère equation

det
(
uij

)= ψ, (0.1)

whereuij = ∂2u/∂zi∂zj , i,j = 1, . . . ,n. Themain result of this paper is the following
theorem.

Theorem A. Let� be a bounded, convex domain inCn. Assume thatψ is aC∞
function in� such thatψ > 0 and |Dψ1/n| is bounded. Then there exists aC∞-psh
solutionu of (0.1) in� with limz→∂� u(z) = 0.

The theory of fully nonlinear elliptic operators of second order can be applied to
the operator(det(uij ))

1/n. It follows in particular that ifu is strictly psh andC2,α

for someα ∈ (0,1), then det(uij ) ∈ Ck,β implies u ∈ Ck+2,β , wherek = 1,2, . . . ,
andβ ∈ (0,1) (see, e.g., [9, Lemma 17.16]). Therefore, to prove Theorem A, it is
enough to show existence of a solution that isC2,α in every�′ � �, whereα ∈ (0,1)
depends on�′. We obtain this assuming only thatψ1/n is positive and Lipschitz in
� (see Theorem 4.1).
In a special case of a polydisc, we also allow nonzero boundary values.

Theorem B. Let P be a polydisc inCn. Assume thatψ is a C∞ function inP
such thatψ > 0 and|D2ψ1/n| is bounded. Letf be aC1,1 function on the boundary
∂P such thatf is subharmonic on every analytic disc embedded in∂P . Then (0.1)
has aC∞-psh solution inP such thatlimζ→z u(ζ ) = f (z) for z ∈ ∂P .

In Section 5, we explain what we precisely mean by saying that a function isC1,1

on a (nonsmooth) set∂P . In particular, all functions that are extendable to aC1,1

function in an open neighborhood of∂P are allowed.
Usually, the Dirichlet problem for the complex Monge-Ampère operator is con-

sidered on smooth, strictly pseudoconvex domains inCn. For these, the existence
of (weak) continuous solutions was proved in [1], whereas smooth solutions were
obtained, for example, in [5], [10], and [11]. Here, however, we do not assume any
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regularity of the boundary. In case of the real Monge-Ampère operator, a result cor-
responding to Theorem A is due to Pogorelov, and a proof without gaps can be found
in [6, Theorem 7] (see also [7]).
To prove Theorem A, we need interiorC1, C2, andC2,α a priori estimates for the

solutions of (0.1). One of the main problems in the complex case was to derive a
C1-estimate, whereas in the real case it is trivial (because for any convex function
on�, vanishing on∂�, we have|Du(x)| ≤ −u(x)/dist(x,∂�)). We do it in Section
2 (Theorem 2.1), and this is the only point when we need the assumption that� is
convex. We suspect that Theorem A should hold in a broader class of hyperconvex
domains.
An interiorC2-estimate for the complex Monge-Ampère equation is proved in [14].

However, it gives anL∞-bound only for�u and not for|D2u|; therefore, we cannot
use theC2,α-estimate from [15]. In Section 3, we adapt the methods of [16] for the
real Monge-Ampère equation and get an interiorC2,α-estimate of solutions of (0.1)
using only the upper bounds of�u and|Dψ1/n|. To show Theorem A, we could have
used a result from [13] instead of Theorem 3.1, but this would not give Theorem 4.1
in its full generality.
In the proofs of the above theorems, we use a notion of a generalized solution of

(0.1) introduced in [1]. The solutions obtained in Theorems A and B are unique, even
among continuous psh functions.

Acknowledgments.Parts of this paper were written both during my stay at the
Mid Sweden University in Sundsvall and at the Mathematical Institute of the Polish
Academy of Sciences while on leave from the Jagiellonian University. I would like to
thank all three institutions. I am also grateful to S. Kołodziej for helpful discussions
on the subject.

1. Preliminaries. If u is a continuous psh function, then we can uniquely define
a nonnegative Borel measureMu in such a way that

(i) if uj → u locally uniformly, thenMuj → Mu weakly;
(ii) Mu = det(uij )dλ if u is C

2 (see, e.g., [1]).
Bedford and Taylor [1] solved the Dirichlet problem for the operatorM in strictly
pseudoconvex domains. This result was generalized in [2] (see also [3]) for the class
of hyperconvex domains.

Theorem 1.1. Let� be a bounded, hyperconvex domain inCn. Assume thatψ is
nonnegative, continuous, and bounded in�. Letf be continuous on∂� and such that
it can be continuously extended to a psh function on�. Then there exists a solution
of the following Dirichlet problem:

u psh on�, continuous on�,

Mu = ψ on�,

u = f on ∂�.

(1.1)
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We recall that a domain is called hyperconvex if it admits a bounded psh exhaustion
function. In particular, all bounded convex domains are hyperconvex.
In [1] Bedford and Taylor also proved the following comparison principle, which

implies in particular the uniqueness of (1.1) in an arbitrary bounded domain inCn.

Proposition 1.2. Let� be a bounded domain inCn. If u, v are psh in�, contin-
uous on�, and such thatu ≤ v on ∂� andMu ≥ Mv in �, thenu ≤ v in �.

The following regularity result can be also found in [1].

Theorem 1.3. Let� = B be a Euclidean ball inCn. Assume thatf isC1,1 on∂B
andψ1/n is C1,1 onB (i.e., it isC1,1 insideB and the second derivative is bounded
there). Then a solution of (1.1) isC1,1 in B. Moreover, for anyB ′ � B, we have∥∥D2u

∥∥
B ′ ≤ C,

whereC depends only onn,‖D2f ‖∂B , ‖D2ψ1/n‖B ,dist(B ′,∂B), and the radius ofB.

In Section 5, we prove a similar result for a polydisc inCn.
The following theorem was proved in [5].

Theorem 1.4. Assume that� is strictly pseudoconvex withC∞ boundary,ψ is
C∞ on�, ψ > 0, andf is C∞ on ∂�. Thenu, the solution of (1.1), isC∞ on�.

It is well known that(
M
(
u1+u2

))1/n ≥ (
Mu1

)1/n+(Mu2
)1/n

, u1,u2 psh andC
2. (1.2)

The above inequality does not make sense ifu1 andu2 are just continuous, since then
Mu1 andMu2 are only measures. However, we can generalize it as follows (see [3,
Theorem 3.11]).

Proposition 1.5. Let u1 andu2 be psh and continuous withMu1 ≥ ψ1,Mu2 ≥
ψ2, whereψ1 andψ2 are continuous and nonnegative. Then

M
(
u1+u2

)≥
(
ψ
1/n
1 +ψ

1/n
2

)n
.

The followingC2-estimate was proved by F. Schulz [14].

Theorem 1.6. Let� be a bounded, hyperconvex domain inCn, and letu be aC3-
psh function in� with limz→∂� u(z) = 0. Assume, moreover, that for some positive
constantsK0, K1, b, B0, andB1, we have

|u| ≤ K0, |Du| ≤ K1

and
b ≤ ψ ≤ B0, |Dψ | ≤ B1
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in �, whereψ = det(uij ). Then for anyε > 0, there exists a constantC, depending
only onn, ε, b, B0, B1,K0,K1 and on the upper bound for the volume of� such that

�u(−u)2+ε ≤ C

in �.

In the proof of Theorem B, instead of applying Theorems 1.4 and 1.6, we use the
following proposition.

Proposition 1.7. Let � be a bounded domain inCn. Assume thatu is a psh
function in a neighborhood of� and such that, for a positive constantK and h
sufficiently small, it satisfies the estimate

u(z+h)+u(z−h)−2u(z) ≤ K|h|2, z ∈ �.

Thenu is C1,1 in � and |D2u| ≤ K.

This result was essentially proved in [1, pp. 34–35]. The arguments from [1] were
simplified in [8], and we present Demailly’s proof for the convenience of the reader.

Proof of Proposition 1.7. Letuε = u∗ρε denote the standard regularizations ofu.
Then forz ∈ �ε := {z ∈ � : dist(z,∂�) > ε} andh sufficiently small, we have

uε(z+h)+uε(z−h)−2uε(z) ≤ K|h|2.

This implies that

D2uε.h
2 ≤ K|h|2. (1.3)

Sinceuε is psh, we have

D2uε.h
2+D2uε.(ih)

2 = 4
∞∑

j,k=1

∂2uε

∂zj ∂zk
hjhk ≥ 0.

Therefore, by (1.3),

D2uε.h
2 ≥ −D2uε.(ih)

2 ≥ −K|h|2.

This implies that|D2uε| ≤ K on�ε, and the proposition follows.

2. A C1-estimate in convex domains. In this section we prove the following
interior a priori gradient estimate for the complex Monge-Ampère operator in convex
domains.
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Theorem 2.1. Let u be psh and continuous in a bounded, convex domain� in
Cn with limz→∂� u(z) = 0. Assume, moreover, thatMu = ψ is continuous andψ1/n

is Lipschitz in� with a constantK1. Then for any�′ � �, u is Lipschitz in�′ with
the constant

K̃ = D2
(
2K0

d
+K1

(
1+ D

d

))
,

whereD = diam�, d = dist(�′,∂�), andK0 = sup�ψ1/n.

In the proof of Theorem 2.1, we use the following elementary lemma.

Lemma 2.2. Assume that� is a bounded convex domain inRn containing the
origin. Then, if0< α < 1, we have

dist
(
α�,∂�

)= (1−α)dist(0,∂�).

Proof. The inequality “≤” is clear. To prove the reverse, we takex,y ∈ ∂�. We
have to show that|x−αy| ≥ (1−α)d, whered := dist(0,∂�). Let l be a line passing
throughx andy. If 0, x, andy form an acute-angled triangle, then

|x−αy| ≥ |x−αx| ≥ (1−α)d.

Otherwise, from the convexity of�, it follows thatd ≤ dist(0, l) and, consequently,

|x−αy| ≥ (1−α)dist(0, l) ≥ (1−α)d.

Proof of Theorem 2.1.We may assume that�′ is convex. Fixa,b ∈ �′ with
|a−b| < d. It is enough to show that

u(b)−u(a) ≤ K̃|a−b|. (2.1)

For z ∈ �, put

T (z) :=
(
1− |a−b|

d

)
(z−a)+b.

ThenT (a) = b and, by Lemma 2.2,

dist

((
1− |a−b|

d

)
(�−a),�−a

)
= |a−b|

d
dist(a,∂�) ≥ |a−b|,

and it follows thatT (�) ⊂ �. Moreover, simple calculation shows that

∣∣T (z)−z
∣∣≤ (

1+ D

d

)
|a−b|, z ∈ �,
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and, sinceψ1/n is Lipschitz,

ψ1/n(T (z))≥ ψ1/n(z)−K1

(
1+ D

d

)
|a−b|. (2.2)

For z ∈ �, put

v(z) := u
(
T (z)

)+ K̃2

D2

(|z−a|2−D2)|a−b|.

(It is well defined becauseT (�) ⊂ �.) The functionv is psh, continuous, and negative
on�. From Proposition 1.5 and (2.2), we infer that

Mv ≥
((

1− |a−b|
d

)2
ψ1/n(T (z))+ K̃2

D2
|a−b|

)n

≥
((

1− 2|a−b|
d

)
ψ1/n(T (z))+ K̃2

D2
|a−b|

)n

≥
(
ψ1/n(T (z))+(K̃2

D2
− 2K0

d

)
|a−b|

)n

≥
(
ψ1/n(z)+

(
K̃2

D2
− 2K0

d
−K1

(
1+ D

d

))
|a−b|

)n

= ψ(z).

The comparison principle now implies thatv ≤ u; thus

u(a) ≥ v(a) = u(b)−K̃|a−b|,

and we get (2.2).

3. A C2,α-estimate and local regularity. The aim of this section is to show the
following result.

Theorem 3.1. Let u be aC4-psh function in an open� ⊂ Cn. Assume that for
some positiveK0, K1, K2, b, B0, andB1, we have

|u| ≤ K0, |Du| ≤ K1, �u ≤ K2

and

b ≤ ψ ≤ B0,
∣∣Dψ1/n

∣∣≤ B1

in �, whereψ = det(uij ). Let�
′ � �. Then there existα ∈ (0,1) depending only

on n, K0, K1, K2, b, B0, B1 and a positive constantC depending, besides those
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quantities, ondist(�′,∂�) such that∥∥D2u
∥∥
Cα(�′) ≤ C.

Weuse similarmethods, as in other papers on nonlinear elliptic operators, especially
themethods in [16]. Note that if we knew that|D2u| ≤ K2, then Theorem3.1would be
a consequence of [15]. On the other hand, if we additionally assumed that|D2ψ1/n| ≤
B2, then from [13, Theorem 1] we would get the estimate∥∥D(�u)

∥∥
�′ ≤ C,

and Theorem 3.1 would follow from the Schauder estimates.
It is interesting to generalize Theorem 3.1 to arbitrary, continuous psh functionsu

(since�u ∈ L∞, u would have to be at least inW2,p for everyp < ∞).
In the proof of Theorem 3.1, we need the following fact from the matrix theory.

Lemma 3.2. Let λ and+ be such that0< λ < + < +∞. By S[λ,+] we denote
the set of positive Hermitian matrices inCn×n with eigenvalues in[λ,+]. Then we
can find unit vectorsγ1, . . . ,γN in Cn and λ∗,+∗ depending only onn, λ, and+
such that0< λ∗ <+∗ < +∞. For everyA = (aij ) ∈ S[λ,+], we can write

A =
N∑
k=1

βkγk ⊗γ k, that is,aij =
N∑
k=1

βkγkiγ kj ,

whereβ1, . . . ,βN ∈ [λ∗,+∗]. The set{γ1, . . . ,γN } can be chosen so that it contains
a given finite subset of the unit sphere inCn, for example, the set of the coordinate
unit vectors.

The proof of Lemma 3.2 for real symmetric matrices can be found, for example,
in [9, Lemma 17.13], and it readily extends to the case of Hermitian matrices.

Proof of Theorem 3.1.If we consider constants depending only on the quantities
used in the assumption, we say that those constants are under control, and we usually
denote them byC1, C2, etc. Letaij denote thei,j -cominor of the matrix(uij ), so

that akl = ∂ det(uij )/∂ukl . If we setu
ij := aij /ψ , then we have(uij )T = (uij )

−1.
If we differentiate both sides of the equation

uijuik = δjk

with respect tozp and solve a suitable system of linear equations, we obtain(
uij
)
p

= −uilukjuklp.

Sinceψp = akluklp, we get(
aij
)
p

= ψ
(
uijukl −uilukj

)
uklp.
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Therefore, (
aij0

)
i
= (

ai0j
)
j

= 0 (3.1)

for everyi0,j0 = 1, . . . ,n. Takeγ ∈ Cn, |γ | = 1, and for arbitrary functionv denote
vγ =∑

p vpγp. The operatorF(A) := (detA)1/n is concave on the set of nonnegative

Hermitian matrices. If we differentiate the equationF((uij )) = ψ1/n with respect to
γ andγ , we obtain

Fuij ,ukl
uijγ uklγ +Fuij

uijγ γ = (
ψ1/n)

γ γ
.

SinceFuij
= (1/n)ψ−1+1/naij and sinceF is concave, by (3.1) we have

aijuγ γ ij = (
aijuγ γ i

)
j

≥ nψ1−1/n(ψ1/n)
γ γ

= ψγγ −
(
1− 1

n

)
ψ−1∣∣ψγ

∣∣2,
and we arrive at the estimate

(
aijuγ γ i

)
j

≥ −C1+
2n∑
s=1

∂f s

∂xs
, (3.2)

where‖f s‖L∞(�) ≤ C2.
From the assumptions of the theorem, it follows that the eigenvalues of the matrix

(uij ) are in[λ,+], whereλ,+ > 0 are under control. By Lemma 3.2, there are unit
vectorsγ1, . . . ,γN such forz,w ∈ � we write

aij (w)
(
uij (w)−uij (z)

)=
N∑
k=1

βk(w)
(
uγkγ k

(w)−uγkγ k
(z)
)
,

whereβk(w) ∈ [λ∗,+∗] andλ∗,+∗ > 0 are under control. It is a consequence of
the inequality between geometric and arithmetic means that for any nonnegative
Hermitian matricesA,B ∈ Cn×n we have

1

n
trace

(
ABT

)≥ (detA)1/n(detB)1/n.

Therefore,
aij (w)uij (z) ≥ n

(
ψ(w)

)1−1/n(
ψ(z)

)1/n
.

We conclude that

N∑
k=1

βk(w)
(
uγkγ k

(w)−uγkγ k
(z)
)≤ C3|z−w| (3.3)

since|Dψ1/n| ≤ K1.
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Fix z0 ∈ � and denoteBR = B(z0,R) for R < 1 such that 0< 4R < dist(z0,∂�).
SetMk,R = supBR

uγkγ k
andmk,R = infBR

uγkγ k
. By (3.2) and the weak Harnack

inequality (see [9, Theorem 8.18]), it follows that

R−2n
∫
BR

(
Mk,4R −uγkγ k

)
dλ ≤ C4

(
Mk,4R −Mk,R +R

)
. (3.4)

Summing (3.4) overk �= k0, wherek0 is fixed, we obtain

R−2n
∫
BR

∑
k �=k0

(
Mk,4R −uγkγ k

)
dλ ≤ C4

(
ω(4R)−ω(R)+R

)
, (3.5)

whereω(R) =∑N
k=1(Mk,R −mk,R). By (3.3) forz ∈ B4R,w ∈ BR, we have

βk0(w)
(
uγk0γ k0

(w)−uγk0γ k0
(z)
)≤ C3|z−w|+

∑
k �=k0

βk(w)
(
uγkγ k

(z)−uγkγ k
(w)

)
≤ C5R++∗ ∑

k �=k0

(
Mk,4R −uγkγ k

(w)
)
.

Thus,

uγk0γ k0
(w)−mk0,4R ≤ 1

λ∗

C5R++∗ ∑
k �=k0

(
Mk,4R −uγkγ k

(w)
) ,

and (3.5) gives

R−2n
∫
BR

(
uγk0γ k0

−mk0,4R
)
dλ ≤ C6

(
ω(4R)−ω(R)+R

)
.

This, coupled with (3.4), easily implies that

ω(R) ≤ C7
(
ω(4R)−ω(R)+R

);
hence

ω(R) ≤ δω(4R)+R,

whereδ ∈ (0,1) is under control. In an elementary way (see [9, Lemma 8.23]), we
deduce that for anyµ ∈ (0,1),

ω(R) ≤ 1

δ

(
R

R0

)(1−µ)(− logδ)/ log4
ω(R0)+ 1

1−δ
RµR

1−µ
0 ,

where 0< R < R0 < min{1,dist(z0,∂�)}. Therefore, if we chooseµ so that
(1− µ)(− logδ)/ log4 ≤ µ, we obtainω(R) ≤ CRα, whereα ∈ (0,1) is under
control andC depends additionally on dist(z0,∂�).
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Sinceγ1, . . . ,γN can be chosen so that they contain the coordinate vectors, we
deduce that‖�u‖Cα(�′) ≤ C for someα ∈ (0,1) under control. The conclusion of
the theorem follows from the Schauder estimates.

We now prove the following local regularity of the Monge-Ampère operator.

Theorem 3.3. Assume thatu is a C1,1-psh function such thatMu is C∞ and
Mu> 0. Thenu is C∞.

Proof. We may assume thatu is defined in a neighborhood of a Euclidean ballB.
There is a sequencefj ∈ C∞(∂B) decreasing tou on∂B and such that‖D2fj‖∂B ≤
C1. Theorem 1.4 givesuj ∈ C∞(B), uj psh in B such thatMuj = Mu, and
uj = fj on ∂B. By the comparison principle,uj is decreasing tou in B. From
Theorem 1.3 it follows that for everyB ′ � B there isC2 such that‖D2uj‖B ′ ≤ C2.
Thus, by Theorem 3.1, for everyB ′′ � B ′ we can findα ∈ (0,1) andC3 such that
‖D2uj‖Cα(B ′′) ≤ C3. It follows thatu ∈ C2,α(B ′′), which finishes the proof.

4. Proof of Theorem A. As mentioned in the introduction, Theorem A is an
immediate consequence of the following result.

Theorem 4.1. Let � be a bounded, convex domain inCn. Assume thatψ is a
positive function in� such thatψ1/n is (globally) Lipschitz in�, and letu be the
(unique) solution of (1.1) withf = 0. Then for every�′ � � there existsα ∈ (0,1)
such thatu ∈ C2,α(�′).

Proof. Let �′′ be a convex domain such that�′ � �′′ � �, and let�j be a
sequence of smooth strictly convex domains such that�′′ � �j � �j+1 � � and⋃∞

j=1�j = �. Then one can find functionsψj , which are positive,C∞ in a neigh-

borhood of�j and such that limj→∞ ‖ψj −ψ‖�j
= 0, and‖Dψ

1/n
j ‖�j

≤ C1. (The
functionsψj can be chosen asψ ∗ρε, the standard regularizations ofψ , whereε is
sufficiently small.)
Theorem 1.4 providesC∞ functionsuj on�j , psh in�j with uj = 0 on∂�j , and

Muj = ψj . We claim that the sequenceuj tends locally uniformly tou in �. The
following two inequalities can be easily deduced from superadditivity of the complex
Monge-Ampère operator and from the comparison principle:

u(z)+(|z−z0|2−D2)∥∥ψj −ψ
∥∥1/n
�j

≤ uj (z), z ∈ �j,

and

uj (z)+
(|z−z0|2−D2)∥∥ψj −ψ

∥∥1/n
�j

≤ u(z)+‖u‖∂�j
, z ∈ �j .

Here,z0 is a fixed point of� andD = diam�. This implies that∥∥u−uj
∥∥
�j

≤ ‖u‖∂�j
+D2

∥∥ψj −ψ
∥∥1/n
�j

,

and the right-hand side converges to 0 asj → ∞.
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We claim that the sequence�uj is uniformly bounded in�′′. Choosea andb so
that max�′′ u < a < b < 0. Forj big enough, we have

�′′ ⊂ {
uj < a

}⊂ {u < a} ⊂ {
uj < b

}⊂ {u < b} ⊂ �j .

By Theorem 2.1, applied to convex domains�j , there isC2 such that for everyj ,∥∥Duj
∥∥{u<b} ≤ C2.

By Theorem 1.6, applied to domains{uj < b} and functionsuj −b for everyε > 0,
there existsC3 such that

�uj
(
b−uj

)2+ε ≤ C3 on
{
uj < b

}
.

Therefore, ∥∥�uj
∥∥
�′′ ≤ C3

(b−a)2+ε
,

which proves the claim. Now, from Theorem 3.1, it follows that there existsα ∈ (0,1)
such that‖Du

j ‖Cα(�′) ≤ C4; hence,u ∈ C2,α(�′).

We conjecture that Theorem 4.1 (as well as Theorem A) holds if� is only hyper-
convex. It would be sufficient if we knew that the sequence|Duj | is locally bounded
in �, whereuj is the sequence constructed in the proof of Theorem 4.1. This would
require a counterpart of Theorem 2.1 for nonconvex domains.
Theorem A implies the following analogue of the local regularity of the real

Monge-Ampère operator.

Theorem 4.2. Let u be a convex function defined on an open subset ofCn such
that its graph contains no line segment. Suppose thatMu is positive andC∞. Then
u is C∞.

Proof. By � denote a domain whereu is defined. Fixz0 ∈ �. Let T be an affine
function such thatT ≤ u andT (z0) = u(z0). Since the graph ofu contains no line
segment, one can easily show that for someε > 0 a convex domain{u−T +ε < 0} is
relatively compact in�. Now we apply Theorem A to this domain. By the uniqueness
of the Dirichlet problem, we conclude thatu must be smooth in some neighborhood
of z0.

5. Interior regularity in a polydisc. Throughout this section,P denotes the unit
polydisc inCn; that is,P = �n = {z ∈ Cn : |zj | < 1, j = 1, . . . ,n}.
Similarly as before, our starting point in proving Theorem B is Theorem 1.1. In

order to use it, we need the following proposition.

Proposition 5.1. Let f be a continuous function on∂P . Then the following are
equivalent:

(i) f is subharmonic on every disc embedded in∂P ;
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(ii) f can be continuously extended to a psh function onP .

Proof. (ii)⇒(i) is clear. To show the converse, define

u := sup
{
v : v psh onP, v∗ ≤ f on ∂P

}
.

Here v∗ denotes the upper regularization ofv which is defined onP ; the lower
regularization is denoted byv∗. By a result from [17] (see also [3, Theorem 1.5]),
it is enough to show thatu∗ = u∗ = f on ∂P . By the classical potential theory, we
can find a harmonic functionh onP , continuous onP and such thath = f on ∂P .
Therefore,u ≤ h, and it remains to show thatu∗ ≥ f on ∂P .
Take anyε > 0 andw ∈ ∂P . We assume thatw = (1,0, . . . ,0). For z ∈ P andA

positive, we can define

v(z) := f
(
1,z2, . . . ,zn

)+A
(
Rez1−1

)−ε.

Thenv is continuous onP , psh onP , and we claim that forA big enough,v ≤ f on
∂P . We can find positiver such thatf (1,z2, . . . ,zn)− ε ≤ f (z) if |z1−1| ≤ r and
z ∈ ∂P . Therefore, it is enough to takeA, which is not smaller than

sup
z∈∂P,|z1−1|≥r

f
(
1,z2, . . . ,zn

)−f (z)−ε

1−Rez1 .

Eventually,u∗(w) ≥ v(w) ≥ f (w)−ε, which completes the proof.

In case of a bidisc, Theorem 1.1 was earlier proved in [12] with probabilistic
methods. In fact, similarly as in [12], if� = P , then the assumption in Theorem 1.1
thatψ is bounded can be relaxed. One can allow nonnegative, continuousψ with

ψ(z) ≤ C(
1−|z1|

)β · · ·(1−|zn|
)β , z ∈ P,

for some positiveC andβ < 2. This arises from the subsolution

u(z) = −(1−|z1|2
)ε · · ·(1−|zn|2

)ε
,

where 0< ε ≤ 1/n; then

Mu(z) = εn
(
1−|z1|2

)(nε−2) · · ·(1−|zn|2
)(nε−2)(1−ε|z|2).

Before stating the main result of this section, we explain the notation. We say that a
function isC1,1 onP if it is C1,1 onP and its second derivative is (globally) bounded.
By saying that a function isC1,1 on ∂P , we mean that it is continuous on∂P , C1,1

on the(2n−1)-real-dimensional manifold

R :=
n⋃

j=1
�j−1×∂�×�n−j ,

and the second derivative is bounded onR.
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In order to prove Theorem B, we show the following counterpart of Theorem 1.3
for a polydisc.

Theorem 5.2. Assume thatψ ≥ 0 is such thatψ1/n ∈ C1,1(P ). Letf beC1,1 on
∂P and subharmonic on every disc embedded in∂P . Then a solution of (1.1) isC1,1

onP .

Note that, contrary to Theorem 3.1, we do not assume here thatψ > 0. We conjec-
ture that for arbitrary bounded, hyperconvex domain� in Cn, if f = 0 andψ ≥ 0,
ψ1/n ∈ C1,1(�), then a solution of (1.1) belongs toC1,1(�). The analogous problem
can be stated for the real Monge-Ampère operator and bounded, convex domains
in Rn. By [11], the answer in both the complex and real case is positive if� is C3,1

strictly pseudoconvex (resp., convex); we then get a solution inC1,1(�). However,
we cannot expect global boundedness of the second derivatives in general because
if, for example,ψ = 1, then all eigenvalues of the complex (resp., real) Hessian ofu

would be bounded away from zero. This would imply in particular that there are no
analytic discs (resp., line segments) in∂�, but this is allowed in general.

Proof of Theorem 5.2.The proof is similar to the proof of [1, Proposition 6.6].
LetD be open and relatively compact inP . Define

Ta,h(z) = T
(
a,h,z

)
:=
(
h1+

(
1−|a1|2−a1h1

)
z1

1−|a1|2−a1h1+h1z1
, . . . ,

hn+(1−|an|2−anh1
)
zn

1−|an|2−anhn+hnzn

)
.

ThenT is C∞-smooth in a neighborhood of the set{(a,h,z) : a ∈ D, |h| ≤ d/2, z ∈
P }, whered = dist(D,∂P ). Moreover,Ta,h is a holomorphic automorphism ofP
mappinga to a+h and such thatTa,0(z) = z.
For a ∈ D, |h| < d/2, andz ∈ P , put

v(z) := u
(
Ta,h(z)

)+u
(
Ta,−h(z)

)
2

−K1|h|2+K2
(|z|2−n

)
.

We claim that ifK1 andK2 are big enough, then for alla, h, andz we havev ≤ u. By
the comparison principle, it is enough to show thatv ≤ u on∂P andMv ≥ Mu onP .
SinceTa,h mapsR ontoR, it is easy to see that if we take

K1 := 1

2

∥∥∥∥ ∂2

∂h2
f
(
T (a,h,z)

)∥∥∥∥{a∈D, |h|≤d/2,z∈R}
,

thenv ≤ u onR. Since both functions are continuous, the inequality holds on∂P .
From Proposition 1.5, we infer

Mv ≥
ψ1/n

(
Ta,h(z)

)∣∣T ′
a,h(z)

∣∣2/n+ψ1/n
(
Ta,−h(z)

)∣∣T ′
a,−h(z)

∣∣2/n
2

+K2|h|2
n

,
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where byT ′ we mean the Jacobian ofT . Therefore, we haveMv ≥ Mu = ψ if

K2 = 1

2

∥∥∥∥ ∂2

∂h2

(
ψ1/n(Ta,h(z))∣∣T ′

a,h(z)
∣∣2/n)∥∥∥∥{a∈D, |h|≤d/2,z∈P }

.

Eventually,v ≤ u and

u(a) ≥ v(a) ≥ u(a+h)+u(a−h)

2
−(K1+nK2

)|h|2, a ∈ D, |h| < d

2
.

The theorem follows from Proposition 1.7.

It is clear from the proof that, similarly as in Theorem 1.3, we have an interior a
priori estimate forD2u in Theorem 5.2.
Theorem B can be deduced from Theorems 5.2 and 3.3.
The assumption thatψ > 0 in Theorem B is essential, as the following example

shows.

Example. Let P = �2 be the unit bidisc. The functionf (z,w) = (Rez)2(Rew)2

is separately subharmonic; thus, by Proposition 5.1 and Theorem 1.1, the function

u := sup
{
v : v psh in�2, v∗ ≤ f on ∂

(
�2)}

is psh in�2, continuous on�
2
, u = f on∂(�2), andMu = 0 in�2. By Theorem 5.2,

u is C1,1 in �2.
Note that for anyz,w ∈ C, we have

4RezRew−(1−|z|2)(1−|w|2)= |z+w|2− ∣∣1−zw
∣∣2.

Thus,{|z+w| = |1−zw|}∩∂(�2) ⊂ {RezRew = 0}. It is easy to check that the set
{|z+w| = |1−zw|}∩�

2
can be foliated by analytic discs with boundaries in∂(�2)

and thatu = 0 on{|z+w| ≤ |1−zw|}∩�
2
. For ε ∈ (0,1), set

vε(z,w) = ε2

4

(∣∣∣∣ z+w

ε+1−zw

∣∣∣∣2−1
)

= ε2

4

4RezRew−(1−|z|2)(1−|w|2)−2ε(1−Re(zw)
)−ε2∣∣ε+1−zw

∣∣2 .

Thenvε is psh in�2, continuous on�
2
, andvε(z,w) ≤ RezRew there. Therefore, we

have(max{0,vε})2 ≤ u andvε ≤ √
u. For t ∈ (

√
2−1,1), an elementary calculation

gives

√
u(t, t) ≥ sup

ε∈(0,1)
ε2

4

(
(2t)2(

ε+1− t2
)2 −1

)
= 1

4

(
(2t)2/3−(1− t2

)2/3)3
,

since the supremum is attained forε with (ε+1− t2)3 = (2t)2(1− t2). For t ∈ (0,1),
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we thus have

u(t, t)

{
= 0 if t ≤ √

2−1,
≥ 2−4((2t)2/3−(1− t2

)2/3)6 if t ≥ √
2−1,

and we conclude thatu is notC6. We conjecture that, in fact,u is not evenC2.
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