ON THE DARBOUX EQUATION

by Zbigniew BŁocki

Abstract

Given a Riemannian surface M with a metric tensor g, we compute the Gauss curvature of a metric $g-d u \otimes d u$, where u is a smooth function on M.

Introduction. In his celebrated monograph [2], Darboux, among other things, considered the problem of embedding abstract Riemannian surfaces in \mathbb{R}^{3}. If g is a metric tensor on M then one looks for three functions u, v, w on M, such that

$$
g=d u \otimes d u+d v \otimes d v+d w \otimes d w
$$

Locally, two of them, say v and w, must satisfy

$$
\widetilde{g}:=d v \otimes d v+d w \otimes d w>0
$$

For the Gauss curvature \widetilde{K} of the new metric \widetilde{g} we thus have

$$
\begin{equation*}
\widetilde{K}=0 \tag{0.1}
\end{equation*}
$$

which is in fact an equation just for the first component u, known as the Darboux equation. Tedious calculations (see e.g. [3]) show that this equation, is, in modern terms, equivalent to

$$
\begin{equation*}
M(u)=K\left(1-|\nabla u|^{2}\right) \tag{0.2}
\end{equation*}
$$

where M is the Monge-Ampère operator and K the Gauss curvature (with respect to the original metric g).

The aim of this note is to give the precise formula for \widetilde{K}, which will in particular show that (0.1) and 0.2 are equivalent. Namely we shall prove the following result.

[^0]Theorem. Suppose that M is a Riemannian manifold with metric tensor g and $\operatorname{dim} M=2$. For $u \in C^{\infty}(M)$ let

$$
\widetilde{g}=g-d u \otimes d u
$$

Then $\widetilde{g}>0$ if and only if $|\nabla u|<1$. In such a case the Gauss curvature with respect to \widetilde{g} is given by

$$
\begin{equation*}
\widetilde{K}=\frac{K\left(1-|\nabla u|^{2}\right)-M(u)}{\left(1-|\nabla u|^{2}\right)^{2}} . \tag{0.3}
\end{equation*}
$$

1. Preliminaries. Here we collect the basic definitions and some formulas, which we will use in the proof of the theorem. For details we refer for example to [1]. Let M be a Riemannian manifold with the metric tensor $g=\langle\cdot, \cdot\rangle$. The tensor g induces the unique symmetric, metric connection ∇ on M. This means that ∇ satisfies

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{Y} X+[X, Y], \quad X, Y \in \mathcal{X}(M) \tag{1.1}
\end{equation*}
$$

and $\nabla g=0$, that is

$$
\begin{equation*}
X\langle Y, Z\rangle-\left\langle\nabla_{X} Y, Z\right\rangle-\left\langle Y, \nabla_{X} Z\right\rangle=0, \quad X, Y, Z \in \mathcal{X}(M) \tag{1.2}
\end{equation*}
$$

(1.1) and (1.2) are equivalent to

$$
\begin{align*}
2\left\langle\nabla_{X} Y, Z\right\rangle & =X\langle Y, Z\rangle+Y\langle Z, X\rangle-Z\langle X, Y\rangle \\
& +\langle[X, Y], Z\rangle+\langle[Z, X], Y\rangle-\langle[Y, Z], X\rangle, \quad X, Y, Z \in \mathcal{X}(M) . \tag{1.3}
\end{align*}
$$

In particular, we may compute

$$
\begin{equation*}
\left\langle\nabla_{X} X, Y\right\rangle=\frac{1}{2} Y|X|^{2}=\left\langle\nabla_{Y} X, X\right\rangle, \quad X, Y \in \mathcal{X}(M) \tag{1.4}
\end{equation*}
$$

If $u \in C^{\infty}(M)$ then $\nabla u \in \mathcal{X}(M)$ is uniquely defined by

$$
\langle\nabla u, X\rangle=X u, \quad X \in \mathcal{X}(M) .
$$

From (1.4) it follows that

$$
\begin{equation*}
\left\langle\nabla_{\nabla u} \nabla u, X\right\rangle=\frac{1}{2} X|\nabla u|^{2}=\frac{1}{2} X \nabla u u=\frac{1}{2}\langle X \nabla u, \nabla u\rangle, \quad X \in \mathcal{X}(M) . \tag{1.5}
\end{equation*}
$$

Set

$$
\nabla^{2} u: \mathcal{X}(M) \ni X \longmapsto \nabla_{X} \nabla u \in \mathcal{X}(M)
$$

Then $\nabla^{2} u$ is a $C^{\infty}(M)$-linear endomorphism of the $C^{\infty}(M)$-module $\mathcal{X}(M)$. The Monge-Ampere operator is defined by

$$
M(u)=\operatorname{det} \nabla^{2} u .
$$

On M, we have the Riemannian curvature tensor

$$
R(X, Y ; W, Z)=\left\langle\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right\rangle, \quad X, Y, W, Z \in \mathcal{X}(M)
$$

If $\operatorname{dim} M=2$, the Gauss curvature of M is defined by

$$
K=\frac{R(X, Y ; X, Y)}{|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}},
$$

provided that, at a given point, $X, Y \in \mathcal{X}(M)$ span the tangent space.

2. Proof of the theorem.

We have

$$
\widetilde{g}(X, Y)=\langle X, Y\rangle=\langle X, Y\rangle-X u Y u, \quad X, Y \in \mathcal{X}(M)
$$

Thus

$$
\begin{equation*}
\widetilde{g}(\nabla u, \nabla u)=\left(1-|\nabla u|^{2}\right)|\nabla u|^{2} \text {. } \tag{2.1}
\end{equation*}
$$

If $\widetilde{g}>0$ (i.e. $\widetilde{g}(X, X)>0$ for $X \neq 0$), then it follows that $|\nabla u|<1$. On the other hand, if $|\nabla u|<1$ then for $X \neq 0$ we get

$$
\widetilde{g}(X, X)=|X|^{2}-\langle\nabla u, X\rangle^{2}>0
$$

by the Schwartz inequality and (2.1). This proves the first statement.
Now assume that $|\nabla u|<1$. In the interior of the set $\{\nabla u=0\},(0.3)$ is clear. Since the result is purely local, and because both sides of (0.3) belong to $C^{\infty}(M)$, we may assume that $\nabla u \neq 0$ everywhere on M. We may also assume that there is $W \in \mathcal{X}(M)$ with $W \neq 0$ and $W u=0$ (in local coordinates we may choose $\left.W=\left(\partial u / \partial x_{2}\right) \partial_{1}-\left(\partial u / \partial x_{1}\right) \partial_{2}\right)$. This means that

$$
\begin{equation*}
\langle\nabla u, W\rangle=\langle\nabla u, W\rangle=0 \tag{2.2}
\end{equation*}
$$

Since $\nabla u /|\nabla u|, W /|W|$ form an orthonormal basis of the tangent space, we have

$$
\begin{align*}
M(u) & =\frac{\left\langle\nabla_{\nabla u} \nabla u, \nabla u\right\rangle\left\langle\nabla_{W} \nabla u, W\right\rangle-\left\langle\nabla_{\nabla u} \nabla u, W\right\rangle\left\langle\nabla_{W} \nabla u, \nabla u\right\rangle}{|\nabla u|^{2}|W|^{2}} \tag{2.3}\\
& =\frac{\left\langle\nabla_{\nabla u} \nabla u, \nabla u\right\rangle\left\langle\nabla_{W} \nabla u, W\right\rangle-\left\langle\nabla_{\nabla u} \nabla u, W\right\rangle^{2}}{|\nabla u|^{2}|W|^{2}},
\end{align*}
$$

where the last equality follows from (1.4).
From (1.3) we obtain

$$
\left\langle\widetilde{\nabla}_{X} Y, Z\right\rangle=\left\langle\nabla_{X} Y, Z\right\rangle-X Y u Z u, \quad X, Y, Z \in \mathcal{X}(M)
$$

This, (2.1) and (2.2) give

$$
\begin{align*}
\widetilde{\nabla}_{X} Y-\nabla_{X} Y & =\left(\frac{\left\langle\widetilde{\nabla}_{X} Y, \nabla u \zeta\right.}{\left(1-|\nabla u|^{2}\right)|\nabla u|^{2}}-\frac{\left\langle\nabla_{X} Y, \nabla u\right\rangle}{|\nabla u|^{2}}\right) \nabla u \\
& +\left(\frac{\left\langle\widetilde{\nabla}_{X} Y, W\right\rangle}{|W|^{2}}-\frac{\left\langle\nabla_{X} Y, W\right\rangle}{|W|^{2}}\right) W \tag{2.4}\\
& =\frac{\left\langle\nabla_{X} Y-X Y, \nabla u\right\rangle}{1-|\nabla u|^{2}} \nabla u, \quad X, Y \in \mathcal{X}(M) .
\end{align*}
$$

In particular, by (1.5),

$$
\tilde{\nabla}_{X} \nabla u-\nabla_{X} \nabla u=-\frac{\left\langle\nabla_{\nabla u} \nabla u, X\right\rangle}{1-|\nabla u|^{2}} \nabla u, \quad X \in \mathcal{X}(M) .
$$

Hence, by (2.4), (2.2) and (2.3),

$$
\begin{aligned}
\widetilde{R}(W, \nabla u ; & W, \nabla u)-R(W, \nabla u ; W, \nabla u) \\
= & \left\langle\nabla_{W}\left(\widetilde{\nabla}_{\nabla u} \nabla u-\nabla_{\nabla u} \nabla u\right)-\nabla_{\nabla u}\left(\widetilde{\nabla}_{W} \nabla u-\nabla_{W} \nabla u\right), W\right\rangle \\
& -\frac{\left\langle\nabla_{\nabla u} \nabla u, \nabla u\right\rangle}{1-|\nabla u|^{2}}\left\langle\nabla_{W} \nabla u, W\right\rangle+\frac{\left\langle\nabla_{\nabla u} \nabla u, W\right\rangle}{1-|\nabla u|^{2}}\left\langle\nabla_{\nabla u} \nabla u, W\right\rangle \\
= & -\frac{|\nabla u|^{2}|W|^{2} M(u)}{1-|\nabla u|^{2}} .
\end{aligned}
$$

This, together with (2.1), easily gives (0.3).

References

1. do Carmo M., Riemannian Geometry, Birkkäuser, 1992.
2. Darboux G., Leçons sur la theorie générale des surfaces, vol. III, Gauthier-Villars, 1894.
3. Spivak M., A Comprehensive Introduction to Differential Geometry, vol. V, Publish or Perish, 1979.

Received September 5, 2000
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: blocki@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification. 53C42.
 Supported by KBN Grant 7 T07A 00316.

