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ON THE DARBOUX EQUATION

by Zbigniew B locki

Abstract. Given a Riemannian surface M with a metric tensor g, we
compute the Gauss curvature of a metric g− du⊗ du, where u is a smooth
function on M .

Introduction. In his celebrated monograph [2], Darboux, among other
things, considered the problem of embedding abstract Riemannian surfaces in
R3. If g is a metric tensor on M then one looks for three functions u, v, w on
M , such that

g = du⊗ du + dv ⊗ dv + dw ⊗ dw.

Locally, two of them, say v and w, must satisfy

g̃ := dv ⊗ dv + dw ⊗ dw > 0.

For the Gauss curvature K̃ of the new metric g̃ we thus have

(0.1) K̃ = 0,

which is in fact an equation just for the first component u, known as the
Darboux equation. Tedious calculations (see e.g. [3]) show that this equation,
is, in modern terms, equivalent to

(0.2) M(u) = K(1− |∇u|2),

where M is the Monge-Ampère operator and K the Gauss curvature (with
respect to the original metric g).

The aim of this note is to give the precise formula for K̃, which will in
particular show that (0.1) and (0.2) are equivalent. Namely we shall prove the
following result.
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Theorem. Suppose that M is a Riemannian manifold with metric tensor
g and dim M = 2. For u ∈ C∞(M) let

g̃ = g − du⊗ du.

Then g̃ > 0 if and only if |∇u| < 1. In such a case the Gauss curvature with
respect to g̃ is given by

(0.3) K̃ =
K(1− |∇u|2)−M(u)

(1− |∇u|2)2
.

1. Preliminaries. Here we collect the basic definitions and some formu-
las, which we will use in the proof of the theorem. For details we refer for
example to [1]. Let M be a Riemannian manifold with the metric tensor
g = 〈·, ·〉. The tensor g induces the unique symmetric, metric connection ∇ on
M . This means that ∇ satisfies

(1.1) ∇XY = ∇Y X + [X, Y ], X, Y ∈ X (M)

and ∇g = 0, that is

(1.2) X〈Y, Z〉 − 〈∇XY, Z〉 − 〈Y,∇XZ〉 = 0, X, Y, Z ∈ X (M).

(1.1) and (1.2) are equivalent to

2〈∇XY, Z〉 =X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉
+〈[X, Y ], Z〉+ 〈[Z,X], Y 〉 − 〈[Y, Z], X〉, X, Y, Z ∈ X (M).

(1.3)

In particular, we may compute

(1.4) 〈∇XX, Y 〉 = 1
2Y |X|2 = 〈∇Y X, X〉, X, Y ∈ X (M).

If u ∈ C∞(M) then ∇u ∈ X (M) is uniquely defined by

〈∇u, X〉 = Xu, X ∈ X (M).

From (1.4) it follows that

(1.5) 〈∇∇u∇u, X〉 = 1
2X|∇u|2 = 1

2X∇u u = 1
2〈X∇u,∇u〉, X ∈ X (M).

Set
∇2u : X (M) 3 X 7−→ ∇X∇u ∈ X (M).

Then ∇2u is a C∞(M)-linear endomorphism of the C∞(M)-module X (M).
The Monge-Ampere operator is defined by

M(u) = det∇2u.

On M , we have the Riemannian curvature tensor

R(X, Y ;W,Z) = 〈∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W 〉, X, Y, W,Z ∈ X (M).
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If dim M = 2, the Gauss curvature of M is defined by

K =
R(X, Y ;X, Y )

|X|2|Y |2 − 〈X, Y 〉2
,

provided that, at a given point, X, Y ∈ X (M) span the tangent space.
2. Proof of the theorem.
We have

g̃(X, Y ) = 〈X, Y 〉̃ = 〈X, Y 〉 −Xu Y u, X, Y ∈ X (M).

Thus

(2.1) g̃(∇u,∇u) = (1− |∇u|2)|∇u|2.

If g̃ > 0 (i.e. g̃(X, X) > 0 for X 6= 0), then it follows that |∇u| < 1. On the
other hand, if |∇u| < 1 then for X 6= 0 we get

g̃(X, X) = |X|2 − 〈∇u, X〉2 > 0

by the Schwartz inequality and (2.1). This proves the first statement.
Now assume that |∇u| < 1. In the interior of the set {∇u = 0}, (0.3) is

clear. Since the result is purely local, and because both sides of (0.3) belong to
C∞(M), we may assume that ∇u 6= 0 everywhere on M . We may also assume
that there is W ∈ X (M) with W 6= 0 and Wu = 0 (in local coordinates we
may choose W = (∂u/∂x2)∂1 − (∂u/∂x1)∂2). This means that

(2.2) 〈∇u, W 〉 = 〈∇u, W 〉̃ = 0.

Since ∇u/|∇u|,W/|W | form an orthonormal basis of the tangent space, we
have

M(u) =
〈∇∇u∇u,∇u〉〈∇W∇u, W 〉 − 〈∇∇u∇u, W 〉〈∇W∇u,∇u〉

|∇u|2|W |2

=
〈∇∇u∇u,∇u〉〈∇W∇u, W 〉 − 〈∇∇u∇u, W 〉2

|∇u|2|W |2
,

(2.3)

where the last equality follows from (1.4).
From (1.3) we obtain

〈∇̃XY, Z 〉̃ = 〈∇XY, Z〉 −XY u Zu, X, Y, Z ∈ X (M).
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This, (2.1) and (2.2) give

∇̃XY −∇XY =

(
〈∇̃XY,∇u〉̃

(1− |∇u|2)|∇u|2
− 〈∇XY,∇u〉

|∇u|2

)
∇u

+

(
〈∇̃XY, W 〉̃

|W |2
− 〈∇XY, W 〉

|W |2

)
W

=
〈∇XY −XY,∇u〉

1− |∇u|2
∇u, X, Y ∈ X (M).

(2.4)

In particular, by (1.5),

∇̃X∇u−∇X∇u = −〈∇∇u∇u, X〉
1− |∇u|2

∇u, X ∈ X (M).

Hence, by (2.4), (2.2) and (2.3),

R̃(W,∇u;W,∇u)−R(W,∇u;W,∇u)

= 〈∇W (∇̃∇u∇u−∇∇u∇u)−∇∇u(∇̃W∇u−∇W∇u),W 〉

− 〈∇∇u∇u,∇u〉
1− |∇u|2

〈∇W∇u, W 〉+
〈∇∇u∇u, W 〉

1− |∇u|2
〈∇∇u∇u, W 〉

= −|∇u|2|W |2M(u)
1− |∇u|2

.

This, together with (2.1), easily gives (0.3).
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