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ON THE DARBOUX EQUATION

BY ZBIGNIEW BLOCKI

Abstract. Given a Riemannian surface M with a metric tensor g, we
compute the Gauss curvature of a metric g — du ® du, where u is a smooth
function on M.

Introduction. In his celebrated monograph [2], Darboux, among other
things, considered the problem of embedding abstract Riemannian surfaces in
R3. If g is a metric tensor on M then one looks for three functions u,v,w on
M, such that

g=du®du+dv® dv+ dw® dw.

Locally, two of them, say v and w, must satisfy
g:=dv®dv+dw®dw > 0.

For the Gauss curvature K of the new metric g we thus have

(0.1) K =0,

which is in fact an equation just for the first component u, known as the
Darboux equation. Tedious calculations (see e.g. [3]) show that this equation,
is, in modern terms, equivalent to

(0.2) M(u) = K(1—|Vul?),
where M is the Monge-Ampere operator and K the Gauss curvature (with

respect to the original metric g).

The aim of this note is to give the precise formula for K , which will in
particular show that ([0.1)) and (0.2]) are equivalent. Namely we shall prove the
following result.
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THEOREM. Suppose that M is a Riemannian manifold with metric tensor
g and dim M = 2. Foru € C®(M) let

g=g—du® du.

Then g > 0 if and only if |Vu| < 1. In such a case the Gauss curvature with
respect to g is given by

~  K(1—|Vul*) — M(u)
(03) K== vupp

1. Preliminaries. Here we collect the basic definitions and some formu-
las, which we will use in the proof of the theorem. For details we refer for
example to [I]. Let M be a Riemannian manifold with the metric tensor
g = (+,-). The tensor g induces the unique symmetric, metric connection V on
M. This means that V satisfies

(1.1) VxY =Vy X+ [X)Y], X, YeX(M)
and Vg = 0, that is
(1.2) XY, Z)—(VxY,Z)—(Y,VxZ)=0, X, Y.Z e X(M).
(1.1) and are equivalent to
(13) 2AVxY,Z)=X(Y,Z)+Y(Z,X) - Z(X,Y)
+(X,Y],Z2) +([Z,X],Y) —([Y,Z],X), X,Y,ZecX(M).
In particular, we may compute
(1.4) (VxX,Y)=1Y|X]?=(VyX,X), X,YeX(M).

If u e C°(M) then Vu € X (M) is uniquely defined by

(Vu,X) = Xu, X e X(M).

From it follows that
(1.5)  (VvuVu, X) = 3X|Vu? = XVuu = 3(XVu,Vu), X € X(M).

Set
VZu: X(M) > X — VxVu € X(M).

Then V2u is a C°°(M)-linear endomorphism of the C°°(M)-module X (M).
The Monge-Ampere operator is defined by

M (u) = det Vu.
On M, we have the Riemannian curvature tensor

R(X, YW, Z) = <Vvaz —VyVxZ — V[X,y}Z, W>, XYW, Z € X(M)
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If dim M = 2, the Gauss curvature of M is defined by

_ RX)Y;X)Y)
CXPYP - (X Y)

K

provided that, at a given point, X, Y € X (M) span the tangent space.
2. Proof of the theorem.
We have

JX,Y)=(X,Yy=(X,Y) - XuYu, X,YeX(M).
Thus
(2.1) 3(Vu, Vu) = (1 — |Vul?)|Vu|?

If g >0 (ie g(X,X) >0 for X # 0), then it follows that |[Vu| < 1. On the
other hand, if |Vu| < 1 then for X # 0 we get

G(X, X) = |X]>—(Vu, X)*> > 0

by the Schwartz inequality and . This proves the first statement.

Now assume that |Vu| < 1. In the interior of the set {Vu = 0}, is
clear. Since the result is purely local, and because both sides of belong to
C>°(M), we may assume that Vu # 0 everywhere on M. We may also assume
that there is W € X (M) with W # 0 and Wu = 0 (in local coordinates we
may choose W = (0u/0x2)01 — (Ou/0x1)02). This means that

(2.2) (Vu, W) = (Vu, W)= 0.

Since Vu/|Vu|,W/|W| form an orthonormal basis of the tangent space, we
have

(VvuVu, Vu) (Vi Vu, W) — (Vv Vu, W)V Vu, Vu)
M(u) =
[Vul?|W]?
(2.3) )
(Vv Vu, Vu)(ViyVu, W) — (Vy,Vu, W)
- [Vul2|W]? ’

where the last equality follows from ([1.4]).
From (/1.3)) we obtain

(VxY,Zy = (VxY,Z) - XYuZu, X.,Y,Z € X(M).
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This, [2-1) and (Z.2) give

VyY - VyY = (

(VxY,Vu]  (VxY,Vu) o
(1= [Vul?)[Vul? [Vul?

, (VxY, W] (VxY. W)
. *( wE WP )W
(VxY — XY, V)

= oap Vu, X,Y € X(M).

In particular, by (1.5)),
VxVu - VxVu=—

Hence, by , and ,

R(W,Vu; W, Vu) — R(W, Vu; W, Vu)
= (Vi (VvuVu — Veu V) — Voo (Vi Vu — Viy V), W)

(VyuVu, X)

= [V Vu, X eX(M).

<VVuVU7 VU> <VVUVU, W>
1= [Vup? (ViwVu, W) + 1= [Val? (VyuVu, W)
_ VU WP M (u)
B 1—|Vul|?
This, together with (2.1]), easily gives (0.3)). O
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