DOI: 10.1007/s00208-003-0491-0

On the definition of the Monge-Ampère operator in \mathbb{C}^2

Zbigniew Błocki

Received: 14 December 2002 / Revised version: 25 June 2003 / Published online: 6 January 2004 – © Springer-Verlag 2004

Abstract. We show that if *u* is a plurisubharmonic function defined on an open subset Ω of \mathbb{C}^2 then the Monge-Ampère measure $(dd^c u)^2$ can be well defined if and only if *u* belongs to the Sobolev space $W_{loc}^{1,2}(\Omega)$.

1. Introduction

The complex Monge-Ampére operator for a smooth plurisubharmonic (shortly psh) function u defined on an open subset of \mathbb{C}^n is given by

$$(dd^{c}u)^{n} = dd^{c}u \wedge \cdots \wedge dd^{c}u = 4^{n}n! \det(\frac{\partial^{2}u}{\partial z_{i}\partial \bar{z}_{k}})d\lambda,$$

where $d = \partial + \overline{\partial}$, $d^c := i(\overline{\partial} - \partial)$ and $d\lambda$ is the volume form. By an example due to Shiffman and Taylor (see Siu [10]) the Monge-Ampère operator cannot be well defined as a nonnegative Radon measure for an arbitrary psh function. A simpler example was given by Kiselman [8]: for *z* near the origin in \mathbb{C}^n he defined

$$u(z) := (-\log |z_1|)^{1/n} (|z_2|^2 + \dots + |z_n|^2 - 1).$$

Then *u* is psh near the origin, smooth if $z_1 \neq 0$ but $(dd^c u)^n$ is not integrable near $\{z_1 = 0\}$.

On the other hand, as shown by Bedford and Taylor [3], $(dd^c u)^n$ can be well defined if u is psh and locally bounded. By Demailly [7] it is enough to assume that the set where u is not locally bounded is relatively compact in the domain of definition. In both cases the operator is continuous under decreasing sequences (with weak* topology of Radon measures). It is therefore natural to define the class $\mathcal{D}(\Omega)$ of psh functions in an open $\Omega \subset \mathbb{C}^n$, for which the complex Monge-Ampère operator can be well defined, as follows: a psh function u belongs to $\mathcal{D}(\Omega)$ if there exists a nonnegative Radon measure μ on Ω such that if $\Omega' \subset \Omega$

Z. Błocki

Partially supported by KBN Grant #2 P03A 028 19

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland (e-mail: blocki@im.uj.edu.pl)

is open and a sequence $u_j \in PSH \cap C^{\infty}(\Omega')$ decreases to u in Ω' then $(dd^c u_j)^n$ tends weakly to μ in Ω' . The Monge-Ampère measure μ we then denote by M(u).

It is clear that the definition is purely local and that if $\Omega' \subset \Omega \subset \mathbb{C}^n$ are open, $u \in \mathcal{D}(\Omega)$, then also $u|_{\Omega'} \in \mathcal{D}(\Omega')$ and $M(u|_{\Omega'}) = M(u)|_{\Omega'}$. It follows in particular that the functions from the Shiffman-Taylor and Kiselman examples do not belong to \mathcal{D} .

Of course, if n = 1 then all subharmonic functions belong to \mathcal{D} . The goal of this paper is to give a complete description of the class \mathcal{D} if n = 2. We namely show the following result.

Theorem 1.1. If Ω is an open subset of \mathbb{C}^2 then $\mathcal{D}(\Omega) = PSH \cap W^{1,2}_{loc}(\Omega)$.

Note that in the Kiselman example one has $u \in W_{loc}^{1,2}$ if and only if $n \ge 3$, so the above characterization does not hold in this case.

The fact that the operator $(dd^c)^2$ can be well defined for $u \in PSH \cap W_{loc}^{1,2}(\Omega)$, Ω open in \mathbb{C}^2 , is in fact very simple: note that integration by parts gives

$$\int_{\Omega} \varphi (dd^c u)^2 = -\int_{\Omega} du \wedge d^c u \wedge dd^c \varphi, \quad \varphi \in C_0^{\infty}(\Omega), \tag{1.1}$$

if *u* is smooth and the right hand-side makes sense if $u \in PSH \cap W_{loc}^{1,2}(\Omega)$. This was done already by Bedford and Taylor [2] who in particular solved a Dirichlet problem related to this class. One of the main difficulties for us was to show the continuity of $(dd^c)^2$ in this class for decreasing sequences.

One of the consequences of Theorem 1.1 and Theorem 3.3 below is the following property.

Theorem 1.2. If Ω is open in \mathbb{C}^2 , $u \in \mathcal{D}(\Omega)$ and $v \in PSH(\Omega)$ is such that $u \leq v$ then $v \in \mathcal{D}(\Omega)$.

We conjecture that this property holds also in \mathbb{C}^n for $n \ge 3$.

In the author's paper [4] it was conjectured that all locally maximal psh functions are maximal. (Recall that $u \in PSH(\Omega)$, Ω open in \mathbb{C}^n , is called maximal in Ω if $v \in PSH(\Omega)$, $\{v > u\} \Subset \Omega$ implies that $\{v > u\} = \emptyset$.) Combining Theorem 1.1 with Proposition 2.2 below gives a partial answer to this problem.

Theorem 1.3. If u is a $W_{loc}^{1,2}$ psh function defined on an open subset of \mathbb{C}^2 then it is maximal if and only if it is locally maximal.

This paper was in part motivated by Cegrell's recent paper [6]. In Section 4 we present consequences of our results for the class \mathcal{E} defined by Cegrell [6].

2. The class \mathcal{D} in \mathbb{C}^n

Proposition 2.1. Let Ω be an open subset of \mathbb{C}^n . If $u_j \in \mathcal{D}(\Omega)$ is a sequence decreasing to $u \in \mathcal{D}(\Omega)$ then $M(u_j)$ tends weakly to M(u).

Proof. Choose a test function $\varphi \in C_0^{\infty}(\Omega)$ with support contained in an open $\Omega' \subseteq \Omega$. We may assume that the regularizations $u_j^k := u_j * \rho_{1/k}$ are defined in Ω' . Since for every fixed *j* the sequence u_j^k is decreasing to u_j and $M(u_j^k)$ tends weakly to $M(u_j)$, we can find an increasing sequence k(j) such that

$$\left| \int_{\Omega} \varphi \, M(u_j^{k(j)}) - \int_{\Omega} \varphi \, M(u_j) \right| \le \frac{1}{j}, \tag{2.1}$$

$$||u_{j}^{k(j)} - u_{j}||_{L^{1}(\Omega')} \le \frac{1}{j},$$
(2.2)

$$u_j^{k(j)} \le u_{j-1}^{k(j-1)} + \frac{1}{j^2}, \quad \text{in } \Omega'.$$
 (2.3)

Set

$$v_j := u_j^{k(j)} + \sum_{l=j+1}^{\infty} \frac{1}{l^2}.$$

By (2.3) v_i is decreasing. From (2.2) we get

$$||v_j - u_j||_{L^1(\Omega')} \le \frac{1}{j} + \lambda(\Omega') \sum_{l=j+1}^{\infty} \frac{1}{l^2} \to 0$$

and thus v_i converges to u in Ω' . From the definition of $\mathcal{D}(\Omega)$ it now follows that

$$\int_{\Omega} \varphi \, M(v_j) = \int_{\Omega} \varphi \, M(u_j^{k(j)}) \to \int_{\Omega} \varphi \, M(u)$$

and from (2.1) we obtain

$$\int_{\Omega} \varphi \, M(u_j) \to \int_{\Omega} \varphi \, M(u).$$

The next result characterizes maximal functions belonging to \mathcal{D} . For locally bounded *u* it follows from the results due to Bedford and Taylor [1], [3].

Proposition 2.2. Let $u \in \mathcal{D}(\Omega)$, Ω open in \mathbb{C}^n . Then u is maximal in Ω if and only if M(u) = 0.

Proof. If M(u) = 0 and $u_j := u * \rho_{1/j}$ then $M(u_j)$ tends weakly to 0, by the definition of \mathcal{D} . By [4, Theorem 4.4] (see also Sadullaev [9] for the case when Ω is pseudoconvex) it follows that u is maximal. On the other hand, assume that u is maximal and that $B \subseteq B' \subseteq \Omega$ are open balls. It follows for example from [4, Proposition 4.1] that the Perron-Bremermann envelopes

$$v_j := \sup\{v \in PSH(B') : v \le u_j \text{ in } B' \setminus B\}$$

satisfy $v_j \in PSH \cap C(B')$ (by Walsh [11]), $v_j = u_j$ in $B' \setminus B$, v_j is maximal in B and v_j is decreasing to u in B'. By Bedford-Taylor's solution of the Dirichlet problem [1] we have $M(v_j) = 0$ in B and by Proposition 2.1 we conclude that M(u) = 0 in B.

3. The Monge-Ampére operator in \mathbb{C}^2

For $u \in PSH \cap W_{loc}^{1,2}$ the measure $(dd^c u)^2$ is well defined by (1.1). This formula also easily gives the following estimate.

Proposition 3.1. Let $u \in PSH \cap W^{1,2}(\Omega)$, Ω open in \mathbb{C}^2 . Then

$$\int_{\Omega'} (dd^c u)^2 \le C(\Omega', \Omega) ||\nabla u||_{L^2(\Omega)}^2, \quad \Omega' \Subset \Omega.$$

It is also easy to prove that the operator $(dd^c)^2$ is continuous under sequences converging in $W_{loc}^{1,2}$.

Proposition 3.2. If u_j is a sequence of $W^{1,2}$ psh functions defined on an open subset Ω of \mathbb{C}^2 converging to a psh u in the $W^{1,2}(\Omega)$ norm then $(dd^c u_j)^2$ tends weakly to $(dd^c u)^2$.

Proof. For $\varphi \in C_0^{\infty}(\Omega)$ we have

$$\left| \int_{\Omega} \varphi(dd^{c}u_{j})^{2} - \int_{\Omega} \varphi(dd^{c}u)^{2} \right| = \left| \int_{\Omega} \varphi dd^{c}(u_{j} - u) \wedge dd^{c}(u_{j} + u) \right|$$
$$= \left| \int_{\Omega} d(u_{j} - u) \wedge d^{c}(u_{j} + u) \wedge dd^{c}\varphi \right| \le C \left(\int_{\Omega} |\nabla(u_{j} - u)|^{2} d\lambda \right)^{1/2},$$

where C is independent of j.

In order to show that $(dd^c)^2$ is continuous also under decreasing sequences we need the following estimate for subharmonic functions.

Theorem 3.3. Let Ω be an open subset of \mathbb{R}^m . Suppose that $u \in W^{1,2}(\Omega)$ is a negative subharmonic function in Ω . Then for every subharmonic function v in Ω satisfying $u \leq v < 0$ we have $v \in W^{1,2}_{loc}(\Omega)$ and

$$||\nabla v||_{L^{2}(\Omega')} \leq C(\Omega', \Omega) \left(||u||_{L^{2}(\Omega)} + ||\nabla u||_{L^{2}(\Omega)} \right), \quad \Omega' \Subset \Omega.$$

Proof. After regularizing u and v we may assume that u, v, Ω, Ω' are C^{∞} smooth, Ω is bounded and that u, v are defined in a neighborhood of $\overline{\Omega}$. Solving the Dirichlet problem in $\Omega \setminus \overline{\Omega'}$ we obtain subharmonic functions $\widetilde{u}, \widetilde{v}$ in Ω , continuous on $\overline{\Omega}$, harmonic in $\Omega \setminus \overline{\Omega'}$ and such that $\widetilde{u} = \widetilde{v} = 0$ on $\partial\Omega, \widetilde{u} = u, \widetilde{v} = v$ on $\overline{\Omega'}$. The functions $\widetilde{u}, \widetilde{v}$ are smooth on $\overline{\Omega} \setminus \partial\Omega'$ and they belong to $C^{0,1}(\overline{\Omega})$. Integration by parts gives

$$\begin{split} \int_{\Omega} |\nabla \widetilde{u}|^2 d\lambda &- \int_{\Omega} |\nabla \widetilde{v}|^2 d\lambda = \int_{\Omega} \langle \nabla (\widetilde{u} - \widetilde{v}), \nabla (\widetilde{u} + \widetilde{v}) \rangle d\lambda \\ &= \int_{\Omega} (\widetilde{v} - \widetilde{u}) \Delta (\widetilde{u} + \widetilde{v}) \geq 0. \end{split}$$

Therefore

$$\int_{\Omega'} |\nabla v|^2 d\lambda \leq \int_{\Omega} |\nabla \widetilde{v}|^2 d\lambda \leq \int_{\Omega} |\nabla \widetilde{u}|^2 d\lambda$$
$$= \int_{\Omega'} |\nabla u|^2 d\lambda + \int_{\Omega \setminus \Omega'} |\nabla \widetilde{u}|^2 d\lambda.$$
(3.1)

Let $\varphi \in C_0^{\infty}(\Omega)$ be such that $0 \le \varphi \le 1$ and $\varphi = 1$ in a neighborhood of $\overline{\Omega'}$. Then

$$\begin{split} \int_{\Omega \setminus \Omega'} |\nabla \widetilde{u}|^2 d\lambda &= \int_{\partial (\Omega \setminus \Omega')} \widetilde{u} \frac{\partial \widetilde{u}}{\partial n} d\sigma = \int_{\partial (\Omega \setminus \Omega')} \varphi u \frac{\partial \widetilde{u}}{\partial n} d\sigma = \int_{\Omega \setminus \Omega'} \langle \nabla(\varphi u), \nabla \widetilde{u} \rangle d\lambda \\ &\leq \left(\int_{\Omega \setminus \Omega'} |\nabla(\varphi u)|^2 d\lambda \right)^{1/2} \left(\int_{\Omega \setminus \Omega'} |\nabla \widetilde{u}|^2 d\lambda \right)^{1/2}. \end{split}$$

Combining this with (3.1) we easily get the required estimate.

We do not know if every sequence of subharmonic functions in open $\Omega \subset \mathbb{R}^m$ decreasing to a $W^{1,2}(\Omega)$ subharmonic function converges also in the $W^{1,2}(\Omega)$ norm. This would immediately imply the next result.

Theorem 3.4. Assume that u_j is a decreasing sequence of psh functions defined in an open subset of \mathbb{C}^2 decreasing to $u \in PSH \cap W_{loc}^{1,2}$. Then $u_j \in W_{loc}^{1,2}$ and $(dd^c u_j)^2$ tends weakly to $(dd^c u)^2$.

Proof. The first part follows from Theorem 3.3. By Proposition 2.1 we may assume that u_j are continuous and negative. Let $B_1 \Subset B_2$ be concentric open balls in \mathbb{C}^2 . We may assume that u_j are defined in a neighborhood of \overline{B}_2 and negative there.

For a negative $v \in PSH(\Omega)$ we set

$$\widetilde{v} := \sup\{w \in PSH(B_2) : w < 0 \text{ in } B_2, w \le v \text{ in } B_1\}.$$

It follows easily that $\tilde{v} \in PSH(B_2)$, $\tilde{v} < 0$ in B_2 , $\tilde{v} = v$ in B_1 , \tilde{v} is maximal in $B_2 \setminus \overline{B}_1$. If v_j is a sequence of negative psh functions in B_2 decreasing to v then \tilde{v}_j is decreasing to \tilde{v} . Moreover, by Walsh [11] if v is continuous on \overline{B}_1 then \tilde{v} is continuous on \overline{B}_2 and $\tilde{v} = 0$ on ∂B_2 .

By Theorem 3.3 and Proposition 3.1 we have

$$\int_{B_2} (dd^c \widetilde{u}_j)^2 = \int_{\overline{B}_1} (dd^c \widetilde{u}_j)^2 \le C, \qquad (3.2)$$

where *C* is independent of *j*. Theorem 3.4 will follow from Cegrell [6, Theorem 4.2] (because $\tilde{u} \in \mathcal{F}(B_2)$ and $\tilde{u}_j = u_j$ in B_1) combined with Proposition 3.2 applied to the regularizations of *u*. We will repeat Cegrell's argument for the

convenience of the reader. Take $\psi \in PSH(B_2) \cap C(\overline{B}_2)$ with $\psi = 0$ on ∂B_2 . Integrating by parts we get

$$\begin{split} \int_{B_2} \psi (dd^c \widetilde{u}_j)^2 &= \int_{B_2} \widetilde{u}_j dd^c \psi \wedge dd^c \widetilde{u}_j \geq \int_{B_2} \widetilde{u}_{j+1} dd^c \psi \wedge dd^c \widetilde{u}_j \\ &= \int_{B_2} \widetilde{u}_j dd^c \psi \wedge dd^c \widetilde{u}_{j+1} \geq \int_{B_2} \widetilde{u}_{j+1} dd^c \psi \wedge dd^c \widetilde{u}_{j+1} \\ &= \int_{B_2} \psi (dd^c \widetilde{u}_{j+1})^2. \end{split}$$

It follows that the sequence $\int_{B_2} \psi (dd^c \widetilde{u}_j)^2$ is decreasing and by (3.2) it converges to some $a \in \mathbb{R}$. If $v_j \in PSH \cap C(B_2)$ is another sequence decreasing to u in B_2 then, by the same argument, $\int_{B_2} \psi (dd^c \widetilde{v}_j)^2$ converges to some $b \in \mathbb{R}$. Fix $\varepsilon > 0$. For every j we can find k(j) such that for every $k \ge k(j)$ one has $u_k \le v_j + \varepsilon$ in B_1 . Then

$$\widetilde{v}_j \ge (\widetilde{u_k - \varepsilon}) \ge \widetilde{u}_k + \widetilde{(-\varepsilon)} = \widetilde{u}_k + \widetilde{\varepsilon(-1)}$$
 in B_3 .

Integrating by parts as before and using the superadditivity of the operator $(dd^c)^2$ we get

$$\int_{B_2} \psi (dd^c \widetilde{v}_j)^2 \ge \int_{B_2} \psi (dd^c (\widetilde{u}_k + \varepsilon \widetilde{(-1)}))^2$$
$$\ge \int_{B_2} \psi (dd^c \widetilde{u}_k)^2 - \varepsilon^2 C(B_1, B_2, \psi)$$

From this it easily follows that $b \ge a$ and in the same way we get the reverse inequality. Choose $v_j := u * \rho_{1/j}$, the classical regularizations of u. For $\varphi \in C_0^{\infty}(B_1)$ we can easily find $\psi_1, \psi_2 \in PSH(B_2) \cap C^{\infty}(\overline{B}_2)$ such that $\varphi = \psi_1 - \psi_2$ in B_2 and $\psi_1 = \psi_2 = 0$ on ∂B_2 . Therefore by Proposition 3.1

$$\begin{split} \int_{B_1} \varphi (dd^c v)^2 &= \lim_{j \to \infty} \int_{B_1} \varphi (dd^c \widetilde{v}_j)^2 \\ &= \lim_{j \to \infty} \int_{B_2} \psi_1 (dd^c \widetilde{v}_j)^2 - \lim_{j \to \infty} \int_{B_2} \psi_2 (dd^c \widetilde{v}_j)^2 \\ &= \lim_{j \to \infty} \int_{B_2} \psi_1 (dd^c \widetilde{u}_j)^2 - \lim_{j \to \infty} \int_{B_2} \psi_2 (dd^c \widetilde{u}_j)^2 \\ &= \lim_{j \to \infty} \int_{B_1} \varphi (dd^c u_j)^2. \end{split}$$

Theorem 3.4 (applied for smooth u_j) implies that $PSH \cap W_{loc}^{1,2} \subset \mathcal{D}$ in Theorem 1.1. The reverse inclusion follows from the next result.

Theorem 3.5. Assume that Ω is an open subset of \mathbb{C}^2 and $u \in PSH(\Omega) \setminus W_{loc}^{1,2}(\Omega)$. Then one can find open balls $B_1 \subseteq B_2 \subseteq \Omega$ and a sequence $u_j \in PSH(B_2) \cap C(\overline{B}_2)$ decreasing to u on \overline{B}_2 such that

$$\lim_{j\to\infty}\int_{\overline{B}_1}(dd^c u_j)^2=\infty.$$

Proof. Let $B_1 \Subset B_2 \Subset B_3 \Subset \Omega$ be open balls such that $u \notin W^{1,2}(B_1)$. Let $v_j \in PSH(B_3) \cap C(\overline{B}_3)$ be a sequence decreasing to u on \overline{B}_3 . We may assume that

$$\sup_{j} \int_{\overline{B}_{2}} (dd^{c}v_{j})^{2} < \infty, \qquad (3.3)$$

since otherwise we are done. For every *j* we can find increasing $k = k(j) \ge j$ such that

$$\int_{B_1} |\nabla(v_j - v_k)|^2 d\lambda \ge j.$$
(3.4)

We then set

$$u_j := \sup\{v \in PSH(B_2) : v \le v_j \text{ in } B_2, v \le v_k \text{ in } B_1\}.$$

By h_j denote the harmonic function in $B_2 \setminus \overline{B}_1$, continuous on $\overline{B}_2 \setminus B_1$ with $h_j = v_k$ on ∂B_1 and $h_j = v_j$ on ∂B_2 . Then, if

$$\widetilde{h}_j := \begin{cases} v_k & \text{on } \overline{B}_1 \\ h_j & \text{on } \overline{B}_2 \setminus \overline{B}_1 \end{cases} \in C(\overline{B}_2),$$

we have

$$u_j = \sup\{v \in PSH(B_2) : v \le h_j\}.$$

By Walsh [11] the function u_j is continuous on B_2 and we easily show that it is continuously extendable to \overline{B}_2 . We thus have $u_j \in PSH(B_2) \cap C(\overline{B}_2)$, $v_k \leq u_j \leq v_j$ on \overline{B}_2 , $u_j = v_k$ on \overline{B}_1 and $u_j = v_j$ on ∂B_2 .

We claim that we also have

$$(dd^{c}u_{j})^{2} \leq (dd^{c}v_{j})^{2} \quad \text{in } B_{2} \setminus \overline{B}_{1}.$$
(3.5)

Indeed, on the set $\{u_j < v_j\} \cap (B_2 \setminus \overline{B}_1)$ the function u_j is maximal and thus (3.5) holds there. Take a compact $K \subset \{u_j = v_j\} \cap (B_2 \setminus \overline{B}_1)$. Then for $\varepsilon > 0$

$$\int_{K} (dd^{c}u_{j})^{2} = \int_{K} (dd^{c} \max\{u_{j} + \varepsilon, v_{j}\})^{2}$$

and (3.5) follows from the weak convergence $(dd^c \max\{u_j + \varepsilon, v_j\})^2 \rightarrow (dd^c v_j)^2$ as $\varepsilon \rightarrow 0$. Set $\psi(z) := |z - z_0|^2 - R^2$, where z_0 is the center of B_2 and R is its radius. By (3.4) and (3.5) we then have

$$\begin{split} 4j &\leq 4 \int_{B_2} |\nabla(v_j - v_k)|^2 d\lambda = \int_{B_2} d(v_j - u_j) \wedge d^c(v_j - u_j) \wedge dd^c \psi \\ &= \int_{B_2} (v_j - u_j) dd^c(u_j - v_j) \wedge dd^c \psi \leq \int_{B_2} (v_j - u_j) dd^c u_j \wedge dd^c \psi \\ &= \int_{B_2} \psi dd^c u_j \wedge dd^c(v_j - u_j) \leq \int_{B_2} |\psi| (dd^c u_j)^2 \\ &\leq R^2 \left(\int_{\overline{B}_1} (dd^c u_j)^2 + \int_{B_2 \setminus \overline{B}_1} (dd^c v_j)^2 \right). \end{split}$$

It is now sufficient to use (3.3).

4. The class \mathcal{E} in \mathbb{C}^2

If Ω is a bounded hyperconvex domain in \mathbb{C}^n (this means that there exists a negative psh u in Ω such that $\lim_{z\to\partial\Omega} u(z) = 0$) then following Cegrell [6] by $\mathcal{E}(\Omega)$ we denote the class of plurisubharmonic functions in Ω such that for every $z_0 \in \Omega$ there exists a neighborhood $U \Subset \Omega$ of z_0 and a decreasing sequence u_j of negative locally bounded psh functions in Ω such that u_j converges to u in U, $\lim_{z\to\partial\Omega} u_j(z) = 0$ and $\sup_j \int_{\Omega} (dd^c u_j)^n < \infty$. The following result shows in particular that in \mathbb{C}^2 this definition is local. One can also apply it to the examples given by Cegrell in [5].

Theorem 4.1. If Ω is a bounded hyperconvex domain in \mathbb{C}^2 then

$$\mathcal{E}(\Omega) = \{ u \in PSH \cap W^{1,2}_{loc}(\Omega) : u < 0 \}.$$

Proof. First take $u \in \mathcal{E}(\Omega)$. By Cegrell [6, Theorem 2.1] the functions u_j in the definition of $\mathcal{E}(\Omega)$ can be chosen to be continuous on $\overline{\Omega}$. Moreover, we may assume that $(dd^c u_j)^2 = 0$ in $\Omega \setminus \overline{U}$. Let $\psi \in PSH(\Omega) \cap C(\overline{\Omega})$ be such that $\psi = 0$ on $\partial\Omega$ and $dd^c \psi \ge dd^c |z|^2$ in U. Then

$$4\int_{B} |\nabla u_{j}|^{2} d\lambda \leq \int_{\Omega} du_{j} \wedge d^{c} u_{j} \wedge dd^{c} \psi = \int_{\Omega} |\psi| (dd^{c} u_{j})^{2} \leq C$$

and thus $u \in W^{1,2}_{loc}(\Omega)$.

On the other hand, let $u \in PSH \cap W_{loc}^{1,2}(\Omega)$ be negative. Again by Cegrell [6, Theorem 2.1] we can find a sequence $v_j \in PSH(\Omega) \cap C(\overline{\Omega})$ decreasing to u in Ω , vanishing on $\partial\Omega$. For a fixed open ball $B \Subset \Omega$ set

$$\widetilde{v}_j := \{ v \in PSH(\Omega) : v < 0 \text{ in } \Omega, v \le v_j \text{ in } B \}.$$

Then \tilde{v}_j decreases to a psh $\tilde{u} \ge u$ in Ω . By the results of Section 3 the sequence of measures $(dd^c \tilde{v}_j)^2$ is weakly convergent in Ω and since they are supported on \overline{B} we get $\sup_j \int_{\Omega} (dd^c \tilde{v}_j)^2 < \infty$. But $\tilde{v}_j = u_j$ decreases to u in B, thus $u \in \mathcal{E}(\Omega)$.

References

- Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1–44 (1976)
- Bedford, E., Taylor, B.A.: Variational properties of the complex Monge-Ampère equation I. Dirichlet principle. Duke. Math. J. 45, 375–403 (1978)
- 3. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. **149**, 1–41 (1982)
- Błocki, Z.: Estimates for the complex Monge-Ampère operator. Bull. Pol. Acad. Sci. 41, 151–157 (1993)
- 5. Cegrell, U.: Explicit calculation of a Monge-Ampère measure. In: Raby G, Symesak F. (eds.) Actes des recontres d'analyse complexe, Atlantique, Universite de Poitiers, 2001
- 6. Cegrell, U.: The general definition of the complex Monge-Ampère operator. To appear in Ann. Inst. Fourier
- Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193
- Kiselman, C.O.: Sur la définition de l'opérateur de Monge-Ampère complexe. Proc. Analyse Complexe, Toulouse 1983, Lect. Notes in Math. 1094, pp. 139–150
- Sadullaev, A.: Plurisubharmonic measures and capacities on complex manifolds. Russian Math. Surv. 36, 61–119 (1981)
- Siu, Y.-T.: Extension of meromorphic maps into K\u00e4hler manifolds. Ann. Math. 102, 421–462 (1975)
- Walsh, J.B.: Continuity of envelopes of plurisubharmonic functions. J. Math. Mech. 18, 143–148 (1968)