
THE DOMAIN OF DEFINITION OF THE
COMPLEX MONGE-AMPÈRE OPERATOR

By ZBIGNIEW B�LOCKI

Abstract. We give a precise characterization of those plurisubharmonic functions for which one can
well define the Monge-Ampère operator as a regular Borel measure.

1. Introduction. For a smooth plurisubharmonic (shortly psh) function u
the complex Monge-Ampère operator is given by

(ddcu)n = ddcu ∧ · · · ∧ ddcu = 4nn! det

(
∂2u
∂zj∂zk

)
dλ,(1.1)

where d = ∂ + ∂, dc = i(∂ − ∂) (so that ddc = 2i∂∂) and dλ denotes the volume
form. It was first shown by Shiffman and Taylor (see [16]) that one cannot well
define (ddcu)n as a regular Borel measure for arbitrary psh u if n ≥ 2. This
example was simplified by Kiselman [15]: the function

u(z) = (− log |z1|)1/n(|z2|2 + . . . + |zn|2 − 1)

is psh near the origin, smooth away from the hyperplane z1 = 0 but the mass of
(ddcu)n is unbounded near z1 = 0.

On the other hand, as shown by Bedford and Taylor [3] (see also [10] and
[1]) one can well define (ddcu)n if u is psh and locally bounded. Moreover,
this definition is continuous under decreasing sequences in PSH ∩ L∞loc (with
weak∗ topology of measures). Demailly [11] (see also [12-14]) extended this
to psh functions locally bounded away from a compact set. One thing which
distinguishes the unbounded case from the bounded one is non-uniqueness of the
Dirichlet problem (see [1, p. 16]).

The choice of monotone sequences for considering continuity of the complex
Monge-Ampère operator is also motivated by the following fact: it follows from
an example due to Cegrell [6] that one can find a sequence uj ∈ PSH ∩ C∞
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converging to u ∈ PSH ∩C∞ in Lp
loc for every p <∞ and such that the Monge-

Ampère measures of uj are weakly divergent. Cegrell [7] considered also the
following example

u(z) = 2 log |z1 . . . zn|,
uj(z) = log (|z1 . . . zn|2 + 1/j),

vj(z) = log (|z1|2 + 1/j) + · · · + log (|zn|2 + 1/j).

One can show that on one hand (ddcuj)n tends weakly to 0, whereas (ddcvj)n

converges to n!4nδ0, where δ0 is the point mass at the origin. We thus have two
decreasing sequences of smooth psh functions converging to u whose Monge-
Ampère measures converge to a different limit.

The main goal of this paper is to prove the following result.

THEOREM 1.1. For a negative u ∈ PSH(Ω), where Ω ⊂ Cn is open, the follow-
ing are equivalent

(i) There exists a measure µ in Ω such that if U ⊂ Ω is open and a sequence
uj ∈ PSH ∩ C∞(U) is decreasing to u in U then (ddcuj)n tends weakly to µ in U;

(ii) For every open U ⊂ Ω and any sequence uj ∈ PSH ∩ C∞(U) decreasing
to u in U the sequence (ddcuj)n is locally weakly bounded in U;

(iii) For every open U ⊂ Ω and any sequence uj ∈ PSH ∩ C∞(U) decreasing
to u in U the sequences

|uj|n−p−2duj ∧ dcuj ∧ (ddcuj)
p ∧ ωn−p−1, p = 0, 1, . . . , n− 2,(1.2)

(ω := ddc|z|2 is the Kähler form in Cn) are locally weakly bounded in U;
(iv) For every z ∈ Ω there exists an open neighborhood U of z in Ω and a

sequence uj ∈ PSH ∩ C∞(U) decreasing to u in U such that the sequences (1.2)
are locally weakly bounded in U.

The equivalence of (iii) and (iv) means that one has to check the local weak
boundedness of sequences (1.2) for arbitrary sequence of smooth psh functions
decreasing to u, for example the standard regularizations of u. The following
example shows that the condition on local weak boundedness of sequences (1.2)
cannot be improved.

Example. For a fixed p0 = 0, 1, . . . , n− 2 set

u(z) := log (|z1|2 + · · · + |zp0+1|2),

uj(z) := log (|z1|2 + · · · + |zp0+1|2 + 1/j).

Then near the origin the sequence (1.2) vanishes if p > p0, is weakly unbounded
for p = p0 and weakly bounded for p < p0.
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Condition (i) in Theorem 1.1 in a natural way provides the domain of defi-
nition D of the operator (ddc)n. One can easily show (see [5, Proposition 2.1])
that D is the biggest subclass of the class of psh functions where the complex
Monge-Ampère operator can be defined as a regular Borel measure in such a
way that (1.1) holds for smooth functions and so that the operator is continuous
for decreasing sequences in D.

We will also show that the class D has the following property, thus answering
in the affirmative a conjecture from [5] for n ≥ 3.

THEOREM 1.2. If Ω is open in Cn, u ∈ D(Ω), v ∈ PSH(Ω) and u ≤ v outside
a compact subset of Ω then v ∈ D(Ω).

This implies in particular that the Monge-Ampère operator can be well defined
for psh functions that are locally bounded outside a compact set (see [11]).

Theorem 1.1 was proved in [5] for n = 2, then of course any of the conditions
(iii) and (iv) means precisely that u ∈ PSH ∩ W1,2

loc . The thing which obviously
distinguishes this case from the general one is the lack of zero-th and second order
terms in (1.2). The fact that (ddcu)2 can be well defined for u ∈ PSH∩W1,2

loc is quite
simple and was already observed in [1, p.3] (see also [2]). In [5] it was shown
that the operator (ddc)2 is continuous under decreasing sequences on PSH∩W1,2

loc .
In the proof the potential theory in R4 was in fact used (see also [9] which was
a follow-up to [5]). In this paper the implication (iii)⇒(i) is proved without the
use of the real potential theory (see Section 4) and thus we also obtain a different
proof of the continuity of (ddc)2 for decreasing sequences.

For a bounded hyperconvex domain Ω in Cn (a ball is an example of a
hyperconvex domain) Cegrell [8] introduced the following class of psh functions.
One says that a negative u ∈ PSH(Ω) belongs to E(Ω) if for every z0 ∈ Ω
one can find an open neighborhood U � Ω of z0 and a decreasing sequence
uj ∈ PSH ∩ L∞(Ω) such that uj converges to u in U, limz→∂Ω uj(z) = 0 and
supj

∫
Ω (ddcuj)n <∞. It was shown in [8] that E(Ω) is the biggest subclass K of

PSH(Ω) satisfying

K � u ≤ v ∈ PSH(Ω)⇒ v ∈ K,(1.3)

where the Monge-Ampère operator can be well defined and is continuous under
decreasing sequences.

The strategy of the proof of Theorem 1.1 is the following. We first show that
the conditions (iii) and (iv) are equivalent. Moreover, if Ω is hyperconvex then u
satisfies (iii) (or (iv)) if and only if u ∈ E(Ω). (It shows by the way that to belong
to the Cegrell class E is a local property—that is, if Ω =

⋃
ι Ωι then u ∈ E(Ω)

if and only if u|Ωι ∈ E(Ωι) for every ι.) Using the Cegrell result we then get
the implication (iii)⇒(i), or in other words, that E ⊂ D. To show that we in fact
have the equality it remains to prove the implication (ii)⇒(iii). We remark that it
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would then be very simple if we already knew that D satisfies (1.3) (or Theorem
1.2), which we do not a priori assume.

Acknowledgments. The author would like to thank Urban Cegrell for inspiring
discussions on the subject.

2. The basic estimates. If n = 2 then it is clear that conditions (iii) and (iv)
in Theorem 1.1 are equivalent, they mean precisely that u belongs to the Sobolev
space W1,2

loc . The goal of this section is to show that they are also equivalent for
n ≥ 3 and that for functions satisfying them one can well define the operator
(ddc)n.

PROPOSITION 2.1. Let Ω′ � Ω be domains in Cn. Assume that 2 ≤ m ≤ n and
that either r ≤ 0 or r ≥ 1. Then for any u ∈ PSH ∩ C(Ω), u < 0, we have∫

Ω′
|u|r(ddcu)m ∧ ωn−m ≤ C

∫
Ω
|u|rdu ∧ dcu ∧ (ddcu)m−2 ∧ ωn−m+1,

where C is a positive constant depending only on Ω′ and Ω.

Proof. Let ϕ ∈ C∞0 (Ω) be equal to 1 in a neighborhood of Ω′ and 0 ≤ ϕ ≤ 1
elsewhere. Set T := (ddcu)m−2 ∧ ωn−m. Integrating by parts we obtain∫

Ω′
|u|r(ddcu)2 ∧ T ≤

∫
Ω
ϕ|u|r(ddcu)2 ∧ T = −

∫
Ω

du ∧ dcu ∧ ddc(ϕ|u|r) ∧ T .

We also have

−du ∧ dcu ∧ ddc(ϕ|u|r) ∧ T = −|u|rdu ∧ dcu ∧ ddcϕ ∧ T

−r(r − 1)|u|r−2du ∧ dcu ∧ ddcu ∧ T

≤ C|u|rdu ∧ dcu ∧ T ∧ ω

which completes the proof.

The crucial step is the following estimate:

THEOREM 2.2. Let Ω′ � Ω be domains in Cn. Assume that 2 ≤ m ≤ n and
r ≥ 0. Then for u, v ∈ PSH ∩ C(Ω) with u ≤ v < 0 one has∫

Ω′
|v|r dv ∧ dcv ∧ (ddcv)m−2 ∧ ωn−m+1

≤ C

∫
Ω
|u|m+rωn +

m−2∑
p=0

∫
Ω
|u|m−p+r−2du ∧ dcu ∧ (ddcu)p ∧ ωn−p−1

 ,

where C is a constant depending only on Ω′, Ω and r.
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Proof. Let S1, S2 be arbitrary currents of the form

S1 = ddcu1 ∧ · · · ∧ ddcum−1 ∧ ωn−m

S2 = ddcu1 ∧ · · · ∧ ddcum−2 ∧ ωn−m,

where u1, . . . , um−1 ∈ PSH ∩ C(Ω). By C we will denote possibly different
constants depending only on Ω′, Ω and r. The desired estimate can be easily
deduced from the following three inequalities∫

Ω′
|v|rdv ∧ dcv ∧ S1 ≤ C

∫
Ω
|u|r
(
u2ω + du ∧ dcu

)
∧ S1,(2.1)

∫
Ω′
|u|r+1ddcv ∧ S1 ≤ C

∫
Ω
|u|r
(
u2ω + du ∧ dcu

)
∧ S1,(2.2)

∫
Ω′
|u|rdu ∧ dcu ∧ ddcv ∧ S2

≤ C
∫

Ω
|u|r
(
|u|3ω2 + |u| du ∧ dcu ∧ ω + du ∧ dcu ∧ ddcu

)
∧ S2.

(2.3)

Let ϕ be as in the proof of Proposition 2.1. We first prove (2.2). Integrating
by parts we get∫

Ω′
|u|r+1ddcv ∧ S1 ≤

∫
Ω
ϕ|u|r+1ddcv ∧ S1 = −

∫
Ω
|v| ddc(ϕ|u|r+1) ∧ S1.(2.4)

For any constant t we have d(u + tϕ) ∧ dc(u + tϕ) ≥ 0 and therefore

±u(du ∧ dcϕ + dϕ ∧ dcu) ≤ du ∧ dcu + u2dϕ ∧ dcϕ.

Using this we get

∓ddcϕ|u|r = ∓|u|rddcϕ± r |u|r−1(du ∧ dcϕ + dϕ ∧ dcu)(2.5)

−r(r − 1)ϕ du ∧ dcu + rϕ |u| ddcu

≤ C|u|r−2(u2ω + du ∧ dcu
)
± rϕ |u|r−1ddcu.

Moreover,∫
Ω
ϕ|u|r+1ddcu ∧ S1 = (r + 2)−1

∫
Ω
ϕ
(
ddc|u|r+2 + (r + 1)−1du ∧ dcu

)
∧ S1

= (r + 2)−1
∫

Ω
|u|r
(
u2ddcϕ + (r + 1)−1ϕ du ∧ dcu

)
∧ S1.

Combining this with (2.4) and (2.5) we get (2.2).
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To show (2.1) we estimate∫
Ω′
|v|rdv ∧ dcv ∧ S1 ≤

∫
Ω
ϕ|u|rdv ∧ dcv ∧ S1

=
∫

Ω
ϕ|u|r

(
1
2

ddcv2 − vddcv
)
∧ S1

≤ 1
2

∫
Ω

v2ddc(ϕ|u|r) ∧ S1 +
∫

Ω
ϕ|u|r+1ddcv ∧ S1

and (2.1) follows from (2.5) and (2.2).
Further∫

Ω′
|u|rdu ∧ dcu ∧ ddcv ∧ S2 ≤

∫
Ω
ϕ|u|rdu ∧ dcu ∧ ddcv ∧ S2

=
∫

Ω
ϕ|u|r

(
1
2

ddcu2 − uddcu
)
∧ ddcv ∧ S2

=
∫

Ω
|v|α ∧ S2,

where

α = −1
2

ddc(ϕ|u|r) ∧ ddcu2 − ddc(ϕ|u|r+1) ∧ ddcu

= −ddc(ϕ|u|r) ∧ du ∧ dcu− ddc(ϕ|u|r+1) ∧ ddcu + |u|ddc(ϕ|u|r) ∧ ddcu

≤ C
[
|u|r−1du ∧ dcu ∧ (|u|ω + ddcu) + |u|r+1ω ∧ ddcu + |u|r(ddcu)2]

on the support of ϕ, by (2.5). Now (2.3) can be deduced from (2.2) applied for
v = u.

Theorem 2.2 implies in particular that conditions (iii) and (iv) in Theorem 1.1
are equivalent. More generally we have the following local result (we consider
the germs of functions).

COROLLARY 2.3. Assume that 2 ≤ m ≤ n and that either r = 0 or r ≥ 1.
Let u be a negative psh function such that there exists a sequence ũj ∈ PSH ∩ C
decreasing to u such that the sequences of measures

|ũj|r+m−p−2dũj ∧ dcũj ∧ (ddcũj)
p ∧ ωn−p−1, p = 0, 1, . . . , m− 2,

are locally weakly bounded. Then for every sequence uj ∈ PSH ∩ C decreasing to
u the sequences of measures

|uj|aduj ∧ dcuj ∧ (ddcuj)
p ∧ωn−p−1, p = 0, 1, . . . , m− 2, 0 ≤ a ≤ r + m− p− 2,

|uj|b(ddcuj)
q ∧ ωn−q, q = 0, 1, . . . , m, 0 ≤ b ≤ r + m− q,

are locally weakly bounded.
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Proof. Since the problem is purely local and on every compact set the function
u is bounded above by a negative constant, we may assume that vj, uj are bounded
above by -1 for every j. It is thus enough to consider the cases a = r + m− p− 2
and b = r + m− q. Since without loss of generality we may add to uj a sequence
of constants decreasing to 0, and also choose a subsequence of ũj if necessary,
we may assume that ũj ≤ uj. It is now enough to use Theorem 2.2 to get the first
assertion and Proposition 2.1 to deduce the second one.

We are now able to characterize the Cegrell class E .

THEOREM 2.4. If Ω is a bounded hyperconvex domain inCn and u is a negative
psh function in Ω then u ∈ E(Ω) if and only if u satisfies condition (iii) in Theorem
1.1.

Proof. If u ∈ PSH(Ω) is negative then by [8] there exists a sequence uj ∈
PSH(Ω)∩C(Ω) decreasing to u in Ω and vanishing on ∂Ω. For a ball B � Ω we
set

ũj := sup{v ∈ PSH(Ω) : v < 0 in Ω, v ≤ uj in B}.

Then ũj ∈ PSH(Ω)∩C(Ω) (by [17]), ũj = 0 on ∂Ω, ũj = uj in B and (ddcũj)n = 0
in Ω \ B. First assume that u satisfies iii) in Theorem 1.1. Let ϕ ∈ C∞0 (Ω) be
equal to 1 on B. Then

∫
Ω

(ddcũj)
n =

∫
B
ϕ(ddcũj)

n = −
∫

Ω
dũj ∧ dcũj ∧ (ddcũj)

n−2 ∧ ddcϕ

and it follows from Theorem 2.2 (applied in Ω′ such that B � Ω′ � Ω) that this
sequence is bounded.

On the other hand, if u ∈ E(Ω) and ψ ∈ PSH(Ω) ∩ C(Ω) is such that ψ = 0
on ∂Ω and ddcψ ≥ ω in B then for p = 0, 1, . . . , n− 2 we get

∫
B
|ũj|n−p−2dũj ∧ dcũj ∧ (ddcũj)

p ∧ ωn−p−1

≤
∫

Ω
|ũj|n−p−2dũj ∧ dcũj ∧ (ddcũj)

p ∧ (ddcψ)n−p−1

= (n− p− 1)−1
∫

Ω
|ũj|n−p−1(ddcũj)

p+1 ∧ (ddcψ)n−p−1

≤ (n− p− 2)! ||ψ||n−p−1
L∞(Ω)

∫
Ω

(ddcũj)
n,

where the last inequality follows by successive integration by parts (as in [4], see
also the proof of Proposition 3.1 below).
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3. Proofs of the main results. In this section we will complete the proofs
of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We have already proven that (iii)⇔(iv) and it is clear
that (i)⇒(ii). By Theorem 2.4 and Cegrell’s theorem [8, Theorem 4.2] it follows
that (iii)⇒(i). For the convenience of the reader we will now provide a direct
proof of this implication not using the class E . The argument will be similar to
those of Cegrell [8]. Let B1 � B2 � B3 be open balls in U. For v ∈ PSH∩C(B3),
v < 0, we set

ṽ := sup{w ∈ PSH(B2) : w < 0 in B2, w < v in B1}.

By well-known facts from pluripotential theory (see [3], [17]) we then have
ṽ ∈ PSH(B2) ∩ C(B2), ṽ = 0 on ∂B2, ṽ = v on B1 and (ddcṽ)n = 0 in B2 \ B1.
If u satisfies iii), from Theorem 2.2 and Proposition 2.1 it follows that for any
sequence uj ∈ PSH ∩ C∞(B3) decreasing to u in B3 one has

sup
j

∫
B2

(ddcũj)
n <∞.(3.1)

To prove that (i) holds it is enough to show that if ϕ ∈ C∞0 (B1) then the sequence∫
B1

ϕ(ddcuj)
n =

∫
B1

ϕ(ddcũj)
n(3.2)

is convergent and its limit is independent of the choice of uj. Suppose this is not
the case. Since we can write ϕ = ψ1−ψ2, where ψ1,ψ2 ∈ PSH(B2)∩C∞(B2) are
such that ψ1 = ψ2 = 0 on ∂B2, from (3.1) it follows that we may replace ϕ by
ψ1 in (3.2). Passing to subsequences and subtracting small constants if necessary,
we can therefore find appropriate sequences uj and vj such that uj ≤ vj and

lim
j→∞

∫
B2

ψ1(ddcũj)
n > lim

j→∞

∫
B2

ψ1(ddcṽj)
n.

However, integration by part easily leads to contradiction:∫
B2

ψ1(ddcũj)
n =

∫
B2

ũjddcψ1 ∧ (ddcũj)n−1

≤
∫

B2
ṽjddcψ1 ∧ (ddcũj)n−1

≤ · · · ≤
∫

B2
ψ1(ddcṽj)n.

This proves the implication (iii)⇒(i)
It now remains to show that (ii)⇒(iv). We will generalize a construction

used in the proof of [5, Theorem 3.5]. Suppose that u does not satisfy (iv) and
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let p0 = 0, 1, . . . , n − 2 be such that the sequences of measures (1.2) are locally
weakly bounded in Ω for p < p0 and that for a ball B � Ω we have

lim
k→∞

∫
B
|vk|n−p0−2dvk ∧ dcvk ∧ (ddcvk)p0 ∧ ωn−p0−1 =∞,(3.3)

where vk = λku∗ρ1/k and u∗ρ1/k are the standard regularizations of u whereas λk

is a sequence of positive numbers (strictly) increasing to 1. We claim that there
exists an increasing sequence k = k( j) ≥ j + 1 such that for every j

∫
B
|vj − vk|n−p0−2d(vj − vk) ∧ dc(vj − vk) ∧ (ddcvk)p0 ∧ ωn−p0−1 ≥ j.(3.4)

For k ≥ j + 1 we have |vj− vk| ≥ (1−λj/λj+1)|vk| and to show (3.4) it is enough
to prove that for every fixed j one has

lim
k→∞

∫
B
|vk|n−p0−2d(vj − vk) ∧ dc(vj − vk) ∧ (ddcvk)p0 ∧ ωn−p0−1 =∞.(3.5)

We have

(∫
B
|vk|n−p0−2d(vj − vk) ∧ dc(vj − vk) ∧ (ddcvk)p0 ∧ ωn−p0−1

)1/2

(3.6)

≥
(∫

B
|vk|n−p0−2dvk ∧ dcvk ∧ (ddcvk)p0 ∧ ωn−p0−1

)1/2

−
(∫

B
|vk|n−p0−2dvj ∧ dcvj ∧ (ddcvk)p0 ∧ ωn−p0−1

)1/2

.

Since the sequences (1.2) are bounded for p < p0, we may use Corollary 2.3 with
m = p0 + 1 and r = n−m. It follows in particular that for b ≤ n−p0 the sequence
of measures |vk|b(ddcvk)p0 ∧ ωn−p0 is locally weakly bounded in Ω. Therefore,
the last term in (3.6) is bounded in k and by (3.3) we obtain (3.5). Hence (3.4)
holds.

Let B′ be a ball satisfying B � B′ � Ω. We set

uj := sup{w ∈ PSH(B′) : w ≤ vj in B′, w ≤ vk in B}
= sup{w ∈ PSH(B′) : w ≤ hj},

where hj ∈ C(B′) is defined by hj = vk in B, hj = vj on ∂B′ and hj is harmonic in
B′ \ B. By [17] uj ∈ PSH(B′) ∩ C(B′). It is clear that uj is decreasing to u in B′

and therefore by (ii) (by approximation it follows that we can use this condition
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also for sequences of continuous functions) we have

sup
j

∫
B

(ddcuj)
n <∞.

We also have (ddcuj)n = 0 in {uj < vj}, and, since uj ≤ vj, it follows that
(ddcuj)n ≤ (ddcvj)n on {uj = vj}. (It is a general fact that if u, v are psh and
continuous then (ddc max{u, v})n ≥ (ddcv)n on the set {u ≤ v} - see e.g. [1].)
By another application of (ii), this time to the sequence vj, we obtain therefore

sup
j

∫
B′

(ddcuj)
n <∞.

However, combining (3.4) with the following estimate we will arrive at contra-
diction, which will finish the proof of Theorem 1.1.

PROPOSITION 3.1. Assume that 0 ≤ p ≤ n− 2 and that Ω is a bounded domain
in Cn. Let u, v ∈ PSH(Ω) ∩ C(Ω) be such that u ≤ v in Ω and u = v on ∂Ω. Then∫

Ω
(v − u)n−p−2d(v − u) ∧ dc(v − u) ∧ (ddcu)p ∧ ωn−p−1 ≤ C

∫
Ω

(ddcu)n,

where C is a constant depending only on n and on an upper bound for the diameter
of Ω.

Proof. It will be similar to that of [4, Theorem 2.1]. For ε > 0 set vε :=
max{u, v − ε}. Then by the weak convergence we have∫

Ω
(v − u)m−p−2d(v − u) ∧ dc(v − u) ∧ (ddcu)p ∧ ωn−p−1

≤ lim inf
ε→0

∫
Ω

(vε − u)m−p−2d(vε − u) ∧ dc(vε − u) ∧ (ddcu)p ∧ ωn−p−1.

We may thus assume that u = v near ∂Ω.
Set ψ(z) := |z − z0|2 −M, where z0 ∈ Ω and M is so big that ψ ≤ 0 in Ω.

We then have

(n− p− 1)
∫

Ω
(v − u)n−p−2d(v − u) ∧ dc(v − u) ∧ (ddcu)p ∧ ωn−p−1

=
∫

Ω
d(v − u)n−p−1 ∧ dc(v − u) ∧ (ddcu)p ∧ ωn−p−1

≤
∫

Ω
(v − u)n−p−1(ddcu)p+1 ∧ ωn−p−1

=
∫

Ω
ψ ddc(v − u)n−p−1 ∧ (ddcu)p+1 ∧ ωn−p−2,
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and

−ddc(v − u)n−p−1 ≤ (n− p− 1)(v − u)n−p−2ddcu.

Therefore ∫
Ω

(v − u)n−p−1(ddcu)p+1 ∧ ωn−p−1

≤ M(n− p− 1)
∫

Ω
(v − u)n−p−2(ddcu)p+2 ∧ ωn−p−2.

Successive application of this inequality for p = 0, 1, . . . , n− 2 gives the desired
estimate.

Proof of Theorem 1.2. Let K be a compact subset of Ω such that u ≤ v in
Ω\K. By Theorem 2.2 (and Theorem 1.1) we have v ∈ D(Ω\K). Let Ω′, Ω′′ be
smooth domains satisfying K ⊂ Ω′ � Ω′′ � Ω. We need to show that v ∈ D(Ω′).
Let vj ∈ PSH ∩ C∞(Ω′′) be a sequence decreasing to v in Ω′′. We can find a
sequence uj ∈ PSH ∩ C∞(Ω′′) decreasing to u in Ω′′ and such that uj ≤ vj + 1/j
near ∂Ω′. Set ûj := max{uj, vj + 2/j}. Then ûj decreases to max{u, v} ∈ D(Ω′′)
and ûj = vj + 2/j near ∂Ω′. We thus have∫

Ω′
(ddcvj)

n =
∫

Ω′
(ddcûj)

n.

By Theorem 1.1 we obtain that for every such a sequence vj

sup
j

∫
Ω′

(ddcvj)
n <∞.

This means that the function v satisfies a slightly weaker condition than (ii) in
Theorem 1.1: only for sequences defined on a neighborhood of K. However,
the proof of implication (ii)⇒(iii) can be repeated in this case with only one
modification: B′ has to be chosen as Ω′′.
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