EXTREMAL FUNCTIONS AND EQUILIBRIUM MEASURES FOR BOREL SETS

by

Z. Błocki¹, S. Kołodziej, N. Levenberg

Abstract. We extend some results on extremal functions and equilibrium measures from compact to Borel subsets of \mathbb{C}^N .

0. Introduction.

Let E be a bounded Borel set with closure \overline{E} contained in a bounded, hyperconvex domain Ω in \mathbb{C}^N (i.e., there exists a continuous, negative plurisubharmonic (psh) exhaustion function for Ω). We let

$$u_E(z) := \sup\{u(z) : u \text{ psh in } \Omega, \ u \le 0, \ u \le -1 \text{ on } E\}$$

and call $u_E^*(z) := \limsup_{\zeta \to z} u_E(\zeta)$ the relative extremal function of E (relative to Ω). Similarly, letting

$$V_E(z) := \sup\{u(z) : u \in \mathcal{L}, \ u \le 0 \text{ on } E\}$$

where

$$\mathbf{L} := \{ u \text{ psh in } \mathbb{C}^N : u(z) - \log |z| = 0(1), |z| \to \infty \},\$$

we call $V_E^*(z) := \limsup_{\zeta \to z} V_E(\zeta)$ the global extremal function of E. It is wellknown that $u_E^* \equiv 0 \iff V_E^* \equiv +\infty \iff E$ is pluripolar; i.e., there exists u psh in \mathbb{C}^N with $E \subset \{z \in \mathbb{C}^N : u(z) = -\infty\}$. If E is not pluripolar, then, using the complex Monge-Ampere operator $(dd^c(\cdot))^N$ for locally bounded psh functions, we can define the relative and global equilibrium measures $(dd^c u_E^*)^N$ and $(dd^c V_E^*)^N$ for E. It is known (cf., [BT1] or [K]) that these measures are supported in \overline{E} and, in the case where E is compact and the polynomially convex hull \widehat{E} of E is contained in Ω , $(dd^c u_E^*)^N$ and $(dd^c V_E^*)^N$ are mutually absolutely continuous [L]. Moreover, one can define a nonnegative function C(E) on the Borel subsets E of Ω via

$$C(E):=\sup\{\int_E (dd^c u)^N: u \text{ psh on } \Omega, \ 0\leq u\leq 1\}.$$

For Borel sets we have (Proposition 4.7.2 [K])

$$C(E) = \int_{\Omega} (dd^c u_E^*)^N.$$

In fact, from Proposition 10.1 [BT1] it follows that

$$C(E) = \int_{\Omega} -u_E^* (dd^c u_E^*)^N.$$
(0.1)

The purpose of this note is to give more precise information on the behavior of the extremal functions and extremal measures for Borel sets. First we prove the following equivalences.

¹Partially supported by Foundation for Polish Science (FNP) scholarship

Theorem 1. Let E and F be Borel sets with $\overline{E} \subset \Omega$ and $F \subset E$. The following statements are equivalent.

1. C(E) = C(F)2. $u_E^* = u_F^*$ 3. $V_E^* = V_F^*$.

Next we generalize the mutual absolute continuity of the relative and global equilibrium measures.

Theorem 2. Let E be a nonpluripolar Borel set with $\widehat{\overline{E}} \subset \Omega$ where Ω is hyperconvex. Then

$$(\sup_{\partial\Omega} V_E)^{-N} (dd^c V_E^*)^N \le (dd^c u_E^*)^N \le (\inf_{\partial\Omega} V_E)^{-N} (dd^c V_E^*)^N.$$
(0.2)

Note that we have $0 < \inf_{\partial \Omega} V_E \le \sup_{\partial \Omega} V_E < \infty$ (cf., Proposition 5.3.3 [K]).

Theorem 1 was stated in [BT2] for E compact and also proved in this case by [Z]. The question of the validity of the theorem for Borel sets E was raised by Tom Bloom and is used in [B]. An alternate proof for the planar case (N = 1) can be found in [ST], pp. 226-227. The mutual absolute continuity of $(dd^c u_E^*)^N$ and $(dd^c V_E^*)^N$ for E compact was proved in [L].

1. Proof of Theorem 1.

Note that Theorem 1 is trivial if E is pluripolar; thus we assume for the remainder of the discussion that E is nonpluripolar.

Lemma 1.1. Let E be a nonpluripolar Borel set with $\overline{E} \subset \Omega$. Define

$$E' := \{ z \in \Omega : u_E^*(z) = -1 \}.$$

Then

 $\begin{array}{ll} (1) \ E' = \{z \in \Omega : V_E^*(z) = 0\}; \\ (2) \ u_E^* = u_{E'}^* \ and \ V_E^* = V_{E'}^*. \end{array}$

Proof. (1) follows from Proposition 5.3.3 [K]. For (2), we prove $u_E^* = u_{E'}^*$; the proof for $V_E^* = V_{E'}^*$ is similar. First of all, from the definition of E', we have $u_E^* \leq u_{E'} \leq u_{E'}^*$. Since $u_E^* = -1$ on E except perhaps a pluripolar set (cf., Theorem 4.7.6 [K]), we also have that $E \subset E' \cup A$ where A is pluripolar. By Proposition 5.2.5 [K], $u_{E'}^* = u_{E'\cup A}^* \leq u_E^*$ and equality holds.

Proof of Theorem 1. 1. implies 2.: This argument was shown to us by Urban Cegrell. Suppose C(E) = C(F). Since $F \subset E$, $u_E^* \leq u_F^*$. Using this inequality, (0.1), and Stokes' theorem (recall that $\overline{E} \subset \Omega$ so that $u_E^*, u_F^* = 0$ on $\partial\Omega$ (cf. [K], Proposition 4.5.2)), we obtain

$$C(E) = \int_{\Omega} -u_E^* (dd^c u_E^*)^N \ge \int_{\Omega} -u_F^* (dd^c u_E^*)^N$$
$$= \int_{\Omega} -u_E^* dd^c u_F^* \wedge (dd^c u_E^*)^{N-1}$$
$$\ge \int_{\Omega} -u_F^* dd^c u_F^* \wedge (dd^c u_E^*)^{N-1}$$

$$\cdots \ge \int_{\Omega} -u_F^* (dd^c u_F^*)^N = C(F).$$

Thus equality holds throughout; in particular, from the first line we have

$$\begin{split} \int_{\Omega} (u_E^* - u_F^*) (dd^c u_E^*)^N &= 0; \text{ i.e.,} \\ \int_{\{u_E^* < u_F^*\}} (dd^c u_E^*)^N &= 0. \end{split}$$

By the comparison principle (Corollary 3.7.5 [K]), $u_E^* \ge u_F^*$ and equality holds.

2. implies 1.: This follows from (0.1).

2. \iff 3.: Let $E' := \{z \in \Omega : u_E^*(z) = -1\}$ and $F' := \{z \in \Omega : u_F^*(z) = -1\}$. From (1) and (2) of Lemma 1.1 it suffices to show that

$$u_E^* = u_F^* \iff E' = F'$$

(the proof that $V_E^* = V_F^* \iff E' = F'$ is similar). The implication $u_E^* = u_F^*$ implies E' = F' is obvious. For the reverse implication, if E' = F', then $u_F^* = -1$ on F' = E' so that $u_F^* \le u_{E'} \le u_{E'}^* = u_E^*$ (the last equality is from (2) of Lemma 1.1). The reverse inequality follows since $F \subset E$.

2. Proof of Theorem 2.

In this section, we prove Theorem 2, the mutual absolute continuity of the equilibrium measures $(dd^c u_E^*)^N$ and $(dd^c V_E^*)^N$ when E is a nonpluripolar Borel set. The main tool will be the following result.

Lemma 2.1. Let E be a compact subset of a bounded domain Ω in \mathbb{C}^N . Let u_1, u_2 be nonnegative continuous functions on $\overline{\Omega}$ which are psh on Ω . If

(1) $u_1 = u_2 = 0 \text{ on } E;$ (2) $u_1 \ge u_2 \text{ on } \Omega;$ (3) $(dd^c u_1)^N = (dd^c u_2)^N = 0 \text{ on } \Omega \setminus E;$ (4) $u_2 > 0 \text{ on } \partial\Omega,$ then $(dd^c u_1)^N \ge (dd^c u_2)^N;$ i.e., for all $\phi \in C_0^{\infty}(\Omega)$ with $\phi \ge 0,$

$$\int_{\Omega} \phi(dd^c u_1)^N \ge \int_{\Omega} \phi(dd^c u_2)^N.$$

Proof. This lemma follows easily from Theorem 5.6.5 [K] (see also [L]). For let ω be a domain containing E such that $\overline{\omega} \subset \Omega$ and $u_2 > 0$ on $\partial \omega$. Take any positive t with t < 1. Then we have $u_1 \ge tu_2 + \eta$ on $\partial \omega$ for some $\eta > 0$. By Theorem 5.6.5 [K], $(dd^c u_1)^N \ge (dd^c(tu_2))^N$ and the lemma follows.

We shall also need two simple lemmas.

Lemma 2.2. Let E and Ω be as in Theorem 2. Then

$$\sup_{\partial\Omega} V_E = \sup_{\overline{\Omega}} V_E^*$$

Proof. The inequality $\sup_{\partial\Omega} V_E \leq \sup_{\overline{\Omega}} V_E^*$ is obvious. To show the reverse inequality take any $u \in L$ with $u \leq 0$ on E. Then $u \leq \sup_{\partial\Omega} V_E$ on $\overline{\Omega}$; hence $V_E \leq \sup_{\partial\Omega} V_E$ on $\overline{\Omega}$ so that $\sup_{\overline{\Omega}} V_E^* \leq \sup_{\partial\Omega} V_E$.

Lemma 2.3. Let $\{f_j\}$ be a sequence of lower (resp. upper) semicontinuous functions defined on a compact set K which increase (resp. decrease) to a bounded function f. Then

$$\lim_{j \to \infty} (\inf_K f_j) = \inf_K f \quad (resp. \ \lim_{j \to \infty} (\sup_K f_j) = \sup_K f).$$

Proof. We have $\inf_K f_j \uparrow a \leq \inf_K f$. To prove the reverse inequality, assume that $a < b < \inf_K f$ for some b. From the lower semicontinuity of the $\{f_j\}$ it follows that the nonempty sets $\{f_j \leq b\}$ are compact. However, these sets decrease to the empty set since $\inf_K f > b$; this is a contradiction. The corresponding statement for a decreasing sequence of upper semicontinuous functions $\{f_j\}$ follows from the previous argument applied to the functions $\{-f_j\}$.

Proof of Theorem 2. First assume that E is compact and L-regular; i.e., $V_E = V_E^*$. Then V_E and u_E are continuous in $\overline{\Omega}$ and (0.2) follows from Lemma 2.1, since

$$V_E / \sup_{\partial \Omega} V_E \le u_E + 1 \le V_E / \inf_{\partial \Omega} V_E$$

(cf., Proposition 5.3.3 [K]).

Now suppose that E is compact but not necessarily L-regular. For j = 1, 2, ...define $E_j := \{z \in E : \text{dist}(z, E) \leq 1/j\}$. Then for j sufficiently large $\hat{E}_j \subset \Omega$ and E_j is L-regular (Corollary 5.1.5 [K]). Furthermore, $E_j \downarrow E$, $u_{E_j} \uparrow u_E$, and $V_{E_j} \uparrow V_E$ as $j \uparrow \infty$. Moreover, $\sup_{\partial\Omega} V_{E_j} \leq \sup_{\partial\Omega} V_E$ and, by Lemma 2.3, $\lim_{j\to\infty} (\inf_{\partial\Omega} V_{E_j}) =$ $\inf_{\partial\Omega} V_E$. From the previous case and the continuity of the Monge-Ampère operator under monotone increasing limits (cf., Theorem 3.6.1 [K] or Proposition 5.2 [BT1]), we get (0.2) for general nonpluripolar compact sets.

Finally, let E be an arbitrary nonpluripolar Borel set. Then from Corollary 8.5 [BT1] it follows that there exist compact sets E_j , j = 1, 2, ... and an F_{σ} set F such that $E_j \uparrow F \subset E$, $u_{E_j}^* \downarrow u_F^* = u_E^*$, and $V_{E_j}^* \downarrow V_F^* = V_E^*$. Then $\inf_{\partial\Omega} V_{E_j} \ge \inf_{\partial\Omega} V_E$ and by Lemmas 2.2 and 2.3,

$$\lim_{j \to \infty} (\sup_{\partial \Omega} V_{E_j}) = \lim_{j \to \infty} (\sup_{\overline{\Omega}} V_{E_j}^*) = \sup_{\overline{\Omega}} V_E^* = \sup_{\partial \Omega} V_E.$$

Using the continuity of the Monge-Ampère operator under monotone decreasing limits (cf., Theorem 3.4.3 [K] or Theorem 2.1 [BT1]), we conclude the proof of the theorem.

References

- [BT1] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [BT2] E. Bedford and B. A. Taylor, Fine topology, Shilov boundary, and $(dd^c)^n$, Journal of Functional Analysis **72** (1987), 225-251.
 - [B] T. Bloom, Orthogonal polynomials in \mathbb{C}^n , to appear in Indiana Univ. Math. J..
 - [K] M. Klimek, *Pluripotential Theory*, Clarendon Press, Oxford, 1991.
 - [L] N. Levenberg, Monge-Ampere measures associated to extremal plurisubharmonic functions in \mathbb{C}^N , Transactions of the AMS **289** (1985), No. 1, 333-343.
- [ST] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

[Z] A. Zeriahi, Fonction de Green pluricomplexe a pole a l'infini sur un espace de Stein parabolique, Math. Scand. 69 (1991), 89-126.

Błocki and Kołodziej: Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, POLAND

Levenberg: Department of Mathematics, University of Auckland, Private Bag 92019 Auckland, NEW ZEALAND