
EXTREMAL FUNCTIONS AND EQUILIBRIUM MEASURES

FOR BOREL SETS

by

Z. BÃlocki1, S. KoÃlodziej, N. Levenberg

Abstract. We extend some results on extremal functions and equilib-
rium measures from compact to Borel subsets of CN .

0. Introduction.

Let E be a bounded Borel set with closure E contained in a bounded, hyper-
convex domain Ω in CN (i.e., there exists a continuous, negative plurisubharmonic
(psh) exhaustion function for Ω). We let

uE(z) := sup{u(z) : u psh in Ω, u ≤ 0, u ≤ −1 on E}
and call u∗E(z) := lim supζ→z uE(ζ) the relative extremal function of E (relative to
Ω). Similarly, letting

VE(z) := sup{u(z) : u ∈ L, u ≤ 0 on E}
where

L := {u psh in CN : u(z)− log |z| = 0(1), |z| → ∞},
we call V ∗

E(z) := lim supζ→z VE(ζ) the global extremal function of E. It is well-
known that u∗E ≡ 0 ⇐⇒ V ∗

E ≡ +∞ ⇐⇒ E is pluripolar; i.e., there exists u psh
in CN with E ⊂ {z ∈ CN : u(z) = −∞}. If E is not pluripolar, then, using the
complex Monge-Ampere operator (ddc(·))N for locally bounded psh functions, we
can define the relative and global equilibrium measures (ddcu∗E)N and (ddcV ∗

E)N for
E. It is known (cf., [BT1] or [K]) that these measures are supported in E and, in
the case where E is compact and the polynomially convex hull Ê of E is contained
in Ω, (ddcu∗E)N and (ddcV ∗

E)N are mutually absolutely continuous [L]. Moreover,
one can define a nonnegative function C(E) on the Borel subsets E of Ω via

C(E) := sup{
∫

E

(ddcu)N : u psh on Ω, 0 ≤ u ≤ 1}.

For Borel sets we have (Proposition 4.7.2 [K])

C(E) =
∫

Ω

(ddcu∗E)N .

In fact, from Proposition 10.1 [BT1] it follows that

C(E) =
∫

Ω

−u∗E(ddcu∗E)N . (0.1)

The purpose of this note is to give more precise information on the behavior of
the extremal functions and extremal measures for Borel sets. First we prove the
following equivalences.
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Theorem 1. Let E and F be Borel sets with E ⊂ Ω and F ⊂ E. The following
statements are equivalent.
1. C(E) = C(F )
2. u∗E = u∗F
3. V ∗

E = V ∗
F .

Next we generalize the mutual absolute continuity of the relative and global
equilibrium measures.

Theorem 2. Let E be a nonpluripolar Borel set with Ê ⊂ Ω where Ω is hypercon-
vex. Then

(sup
∂Ω

VE)−N (ddcV ∗
E)N ≤ (ddcu∗E)N ≤ (inf

∂Ω
VE)−N (ddcV ∗

E)N . (0.2)

Note that we have 0 < inf∂Ω VE ≤ sup∂Ω VE < ∞ (cf., Proposition 5.3.3 [K]).
Theorem 1 was stated in [BT2] for E compact and also proved in this case by

[Z]. The question of the validity of the theorem for Borel sets E was raised by
Tom Bloom and is used in [B]. An alternate proof for the planar case (N = 1) can
be found in [ST], pp. 226-227. The mutual absolute continuity of (ddcu∗E)N and
(ddcV ∗

E)N for E compact was proved in [L].

1. Proof of Theorem 1.

Note that Theorem 1 is trivial if E is pluripolar; thus we assume for the remainder
of the discussion that E is nonpluripolar.

Lemma 1.1. Let E be a nonpluripolar Borel set with E ⊂ Ω. Define

E′ := {z ∈ Ω : u∗E(z) = −1}.

Then
(1) E′ = {z ∈ Ω : V ∗

E(z) = 0};
(2) u∗E = u∗E′ and V ∗

E = V ∗
E′ .

Proof. (1) follows from Proposition 5.3.3 [K]. For (2), we prove u∗E = u∗E′ ; the
proof for V ∗

E = V ∗
E′ is similar. First of all, from the definition of E′, we have

u∗E ≤ uE′ ≤ u∗E′ . Since u∗E = −1 on E except perhaps a pluripolar set (cf.,
Theorem 4.7.6 [K]), we also have that E ⊂ E′ ∪ A where A is pluripolar. By
Proposition 5.2.5 [K], u∗E′ = u∗E′∪A ≤ u∗E and equality holds. ♣
Proof of Theorem 1. 1. implies 2.: This argument was shown to us by Urban
Cegrell. Suppose C(E) = C(F ). Since F ⊂ E, u∗E ≤ u∗F . Using this inequality,
(0.1), and Stokes’ theorem (recall that E ⊂ Ω so that u∗E , u∗F = 0 on ∂Ω (cf. [K],
Proposition 4.5.2)), we obtain

C(E) =
∫

Ω

−u∗E(ddcu∗E)N ≥
∫

Ω

−u∗F (ddcu∗E)N

=
∫

Ω

−u∗Eddcu∗F ∧ (ddcu∗E)N−1

≥
∫

Ω

−u∗F ddcu∗F ∧ (ddcu∗E)N−1
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· · · ≥
∫

Ω

−u∗F (ddcu∗F )N = C(F ).

Thus equality holds throughout; in particular, from the first line we have
∫

Ω

(u∗E − u∗F )(ddcu∗E)N = 0; i.e.,

∫

{u∗
E

<u∗
F
}
(ddcu∗E)N = 0.

By the comparison principle (Corollary 3.7.5 [K]), u∗E ≥ u∗F and equality holds.

2. implies 1.: This follows from (0.1).

2. ⇐⇒ 3.: Let E′ := {z ∈ Ω : u∗E(z) = −1} and F ′ := {z ∈ Ω : u∗F (z) = −1}.
From (1) and (2) of Lemma 1.1 it suffices to show that

u∗E = u∗F ⇐⇒ E′ = F ′

(the proof that V ∗
E = V ∗

F ⇐⇒ E′ = F ′ is similar). The implication u∗E = u∗F
implies E′ = F ′ is obvious. For the reverse implication, if E′ = F ′, then u∗F = −1
on F ′ = E′ so that u∗F ≤ uE′ ≤ u∗E′ = u∗E (the last equality is from (2) of Lemma
1.1). The reverse inequality follows since F ⊂ E. ♣

2. Proof of Theorem 2.

In this section, we prove Theorem 2, the mutual absolute continuity of the equi-
librium measures (ddcu∗E)N and (ddcV ∗

E)N when E is a nonpluripolar Borel set.
The main tool will be the following result.

Lemma 2.1. Let E be a compact subset of a bounded domain Ω in CN . Let u1, u2

be nonnegative continuous functions on Ω which are psh on Ω. If
(1) u1 = u2 = 0 on E;
(2) u1 ≥ u2 on Ω;
(3) (ddcu1)N = (ddcu2)N = 0 on Ω \ E;
(4) u2 > 0 on ∂Ω,
then (ddcu1)N ≥ (ddcu2)N ; i.e., for all φ ∈ C∞0 (Ω) with φ ≥ 0,

∫

Ω

φ(ddcu1)N ≥
∫

Ω

φ(ddcu2)N .

Proof. This lemma follows easily from Theorem 5.6.5 [K] (see also [L]). For let ω
be a domain containing E such that ω ⊂ Ω and u2 > 0 on ∂ω. Take any positive t
with t < 1. Then we have u1 ≥ tu2 + η on ∂ω for some η > 0. By Theorem 5.6.5
[K], (ddcu1)N ≥ (ddc(tu2))N and the lemma follows. ♣

We shall also need two simple lemmas.

Lemma 2.2. Let E and Ω be as in Theorem 2. Then

sup
∂Ω

VE = sup
Ω

V ∗
E .

Proof. The inequality sup∂Ω VE ≤ supΩ V ∗
E is obvious. To show the reverse in-

equality take any u ∈ L with u ≤ 0 on E. Then u ≤ sup∂Ω VE on Ω; hence
VE ≤ sup∂Ω VE on Ω so that supΩ V ∗

E ≤ sup∂Ω VE . ♣
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Lemma 2.3. Let {fj} be a sequence of lower (resp. upper) semicontinuous func-
tions defined on a compact set K which increase (resp. decrease) to a bounded
function f . Then

lim
j→∞

(inf
K

fj) = inf
K

f (resp. lim
j→∞

(sup
K

fj) = sup
K

f).

Proof. We have infK fj ↑ a ≤ infK f . To prove the reverse inequality, assume that
a < b < infK f for some b. From the lower semicontinuity of the {fj} it follows
that the nonempty sets {fj ≤ b} are compact. However, these sets decrease to the
empty set since infK f > b; this is a contradiction. The corresponding statement
for a decreasing sequence of upper semicontinuous functions {fj} follows from the
previous argument applied to the functions {−fj}. ♣
Proof of Theorem 2. First assume that E is compact and L-regular; i.e., VE =
V ∗

E . Then VE and uE are continuous in Ω and (0.2) follows from Lemma 2.1, since

VE/ sup
∂Ω

VE ≤ uE + 1 ≤ VE/ inf
∂Ω

VE

(cf., Proposition 5.3.3 [K]).
Now suppose that E is compact but not necessarily L-regular. For j = 1, 2, . . .

define Ej := {z ∈ E : dist(z, E) ≤ 1/j}. Then for j sufficiently large Êj ⊂ Ω and Ej

is L-regular (Corollary 5.1.5 [K]). Furthermore, Ej ↓ E, uEj ↑ uE , and VEj ↑ VE as
j ↑ ∞. Moreover, sup∂Ω VEj ≤ sup∂Ω VE and, by Lemma 2.3, limj→∞(inf∂Ω VEj ) =
inf∂Ω VE . From the previous case and the continuity of the Monge-Ampère operator
under monotone increasing limits (cf., Theorem 3.6.1 [K] or Proposition 5.2 [BT1]),
we get (0.2) for general nonpluripolar compact sets.

Finally, let E be an arbitrary nonpluripolar Borel set. Then from Corollary 8.5
[BT1] it follows that there exist compact sets Ej , j = 1, 2, . . . and an Fσ set F such
that Ej ↑ F ⊂ E, u∗Ej

↓ u∗F = u∗E , and V ∗
Ej
↓ V ∗

F = V ∗
E . Then inf∂Ω VEj ≥ inf∂Ω VE

and by Lemmas 2.2 and 2.3,

lim
j→∞

(sup
∂Ω

VEj ) = lim
j→∞

(sup
Ω

V ∗
Ej

) = sup
Ω

V ∗
E = sup

∂Ω
VE .

Using the continuity of the Monge-Ampère operator under monotone decreasing
limits (cf., Theorem 3.4.3 [K] or Theorem 2.1 [BT1]), we conclude the proof of the
theorem. ♣
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