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ABSTRACT. In this note we show that an equilibrium measure of a product
of two subsets of C™ and C™, respectively, is a product of their equilibrium
measures. We also obtain a formula for (dd® max{u,v})P, where u, v are locally
bounded plurisubharmonic functions and 2 < p < n.

INTRODUCTION
Let E be a bounded subset of C*. The function

Vg :=sup{u € PSH(C") : u|g <0, sup (u(z) —log™ |z|) < oo}
zeCn
is called a global extremal function (or the Siciak extremal function) of E. It is
known that V3, the upper regularization of Vg, is plurisubharmonic in C" if and
only if F is not pluripolar. In such a case, by [BT1], (dd°V)™ is a well defined
nonnegative Borel measure and it is called an equilibrium measure of E. We refer
to [KI] for a detailed exposition of this topic.
In this note we shall show

Theorem 1. Let E and F be nonpluripolar bounded subsets of C"™ and C™, respec-
tively. Then

(1) Vixr = max{Vg, Vi}
and
(2) (dd°Viy p)" ™™ = (dd°Vig)"™ A (dd°Vi)™.

Note that here we treat V7 (resp. V) as a function of C"*™ independent of the
last m (respectively first n) variables.

The formula (1) was proved by Siciak (see [Si]) for E, F' compact (see also [Ze] for
a proof using the theory of the complex Monge-Ampere operator). For n =m =1
the proof of (2) can be found in [BT2].

If E C D, where D is a bounded domain in C", then the function

ug,p =sup{v € PSH(D):v <0,v|g < -1}
is called a relative extremal function of E. Combining our methods of the proof of

Theorem 1 with a result from [EP] we can also obtain
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Theorem 2. Let D be a bounded domain in C"* and G a bounded domain in C™.
Then for arbitrary subsets E C D, F C G we have
(3) ULy p.DxG = Max{Up p, Up g}
and
(ddupy ppxe)"™ = (dd°uf p)" A (ddufpq)™
The relative Monge-Ampére capacity of E C D is defined by
c¢(E,D):= sup{/ (dd°u)™ :w e PSH(D),—1 < u <0},
E

provided that F is Borel. If E C D is arbitrary, then, as usual, we can define

c*(E,D) = inf c(U, D),
ECU, U open
cs(E, D) = sup ¢(K, D).

KCE, K compact
By [BTT], if E € D and D is hyperconvex (that is (ug,p). = 0 on 0D), then

¢ (E.D) = [ (ddup, )"
D
Moreover, ¢*(E, D) = ¢(F, D) = c¢.(E, D) if E is Borel. Theorem 2 thus gives

Theorem 3. Assume that D and G are bounded hyperconver domains in C" and
C™, respectively. Then for E € D, ' € G we have
¢*(Ex F,DxG)=c"(E,D)c*(F,G). O
I would like to thank N. Levenberg for inspiring discussions and E. Poletsky for
his help in the proof of Lemma 8 below.

PRroOOFS
If © is an open subset of C™ and 1 < p < n, then by [BTT] the mapping
(4) (U1, ..., up) — dduy A -+ - A ddu,

is well defined on the set (PSH N L{S.(2))? and its values are nonnegative cur-
rents of bidegree (p,p). Moreover, (4) is symmetric and continuous with respect to

decreasing sequences. First, we shall prove

Theorem 4. Let u,v be locally bounded plurisuharmonic functions. Then, if 2 <
p <n, we have

(dd® max{u,v})?

p—1 p—1
= dd®max{u,v} A Y (dd“u)* A (ddv)P~7F = "(dd°u)* A (dd°v)PF.
k=0 k=1

Proof. We leave it as an exercise to the reader to show that a simple inductive
argument reduces the proof to the case p = 2. By the continuity of (4) under
decreasing sequences we may also assume that u, v are smooth.

Let x : R — [0, 400) be smooth and such that x(z) =0if x < -1, x(x) = z if
z>1and 0 <y <1, x” >0 everywhere. Define

VI %ww—v»
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Denote for simplicity w = max{u,v} and &« = v —v. We can easily check that
;| was j T oco. An easy computation gives

(5) ade(x(je) /) = X (ja)dd<a + jx"(ja)da A da.
Therefore
dd°p; = ¥ (jo)dd®u + (1 - ' (ja))dd®v + jx" (ja)da A d°a

and, in particular, v; is plurisubharmonic.
From the definition of ¢; we obtain

(6) (dd°yp;)? = (ddv)? + 2dd°(x(jar) /) A dd°v + (dd*(x(je)/))*.
We have weak convergences
) (dd“p;)? — (dd°w)?,

dd®(x(ja)/3) N dd°v — dd°(w — v) A dd°v,

so it remains to analyze the third term of the right-hand side of (6). Using (5) and
the fact that (da A d°a)? = 0, we compute

(dd°(x(ja) /5))? = (X' (ja))?(dd°@)® + 25X/ (ja)x" (ja)da A d°a A dd°a
=d[(xX'(jo))?d°a A dd°al]
=dd*(y(j)/j) Ndda,

where v : R — R is such that v/ = (x’)2. In fact, if 7 is chosen so that v(—1) = 0,
then v(jz)/j | max{0,z} as j 1 co and

(dde(x(ja) /)2 — dd(w — v) A dda
weakly. Combining this with (6) and (7) we conclude
(dd°w)?* = (ddv)? + 2dd°(w — v) A dd°v + dd°(w — v) A dd°(u — v)
= dd°w A (dd°u + dd°v) — dd°u A ddv
which completes the proof of Theorem 4. O

From Theorem 4 we can immediately get the following two consequences:

Corollary 5. If u is locally bounded, plurisubharmonic and h is pluriharmonic,
then

(dd® max{u, h})? = dd® max{u, h} A (dd°u)P~?. O

Corollary 6. Suppose u,v are locally bounded plurisubharmonic functions with
(dd°u)®» = 0 and (dd°v)? = 0, where 1 < p,g < n and p+ q < n. Then
(dd° max{u,v})PT7 = 0. O

The main part of the proof of (2) will be contained in

Theorem 7. Let D be open in C* and G open in C™. Assume that u,v are
nonnegative plurisubharmonic functions in D and G, respectively, such that

/ (dd°u)" =0 and (dd®v)™ = 0.
{u>0} {v>0}

Then, treating w,v as functions on D X G, we have
(dd® max{u,v})" ™ = (dd°u)™ A (dd°v)™.
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Proof. Let w, x and 1; be defined in the same way as in the proof of Theorem 4.
By Theorem 4 and since (dd°u)"*! = 0, (dd°v)™*! = 0, we have
®) (dd°w)" ™ = dd“wA [(dd“u)" "' A (dd“v)™ + (dd°u)™ A (ddv)™ "]
— (ddu)™ A (ddv)™.
Using the hypothesis on u, v we may compute
dd®ap; A (ddu)" "t A (ddv)™
= [X(0)(dd“u)"™ + jx" (ju)du A d°u A (dd°u)" '] A (ddv)™
— dd(x(ju) /§) A (dd°w)™ = A (ddev)™.
Since x(ju)/j | v as j T oo, it follows that
dd“w A (dd°u)" 1 A (dd“v)™ = (dd“u)™ A (dd“v)™
and, similarly,
ddw A (dd°u)"™ A (dd°v)™ ™ = (dd°u)™ A (dd“v)™
This, together with (8), finishes the proof. O

For the proof of Theorem 1 we need a lemma which is an extension of a result
from [Sal.

Lemma 8. Let E, F,D,G be as in Theorem 2. For e > 0 set
E. :={Vi <e}, F.:={Vp <e},

E.:={upp<-l+e}, Fo:={upg<-1+e}.

Then
(9) Ve, 1Ve: Ve 1 Ve Vixr T Vexrs
(10) U*EE,D 7 U*E,Da U*ﬁE’G 7 u;‘,Gv U;}ExmeXG 7 U*EXF,DxGa

as € | 0, and every convergence is uniform.

Proof. The set E'\ E. = EN{V} > ¢} is pluripolar by Bedford-Taylor’s theorem
on negligible sets (see [BTT]). It follows that
Ve —e< Ve =Vg < Vg

which gives the first two convergences of (9). In order to show the third one, observe
that

(11) max{Vg, Vr} < Vexr < Ve + Vr.

Indeed, the first inequality in (11) follows easily from the definition of extremal
function. Fixing one of the variables (z,w) € C" x C™, we see that the second
inequality in (11) is satisfied, first on the cross (E x C™) U (C™ x F), and then
everywhere.

By (11) Vgxr < 2¢ on E. x F.. On the other hand, by (11) the set (E x F) \
(E: x F;) is contained in (E x F)N{V3, p > €} and is thus pluripolar. Therefore

Vixr =26 <Ve.xr. = Vi wr. < Vigr

and this gives (9).
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Similarly as in (11) we can show

max{up,p,Ur,c} < UExF,DxG < —UE,DUF,G-
Now the proof of (10) is parallel to that of (9). O

Proof of Theorem 1. If E|F are compact and L-regular (that is, Vg and Vp are
continuous), then (1) was shown in [Si] and (2) follows immediately from Theorem
7. For E,F open we can find sequences of compact, L-regular sets with E; T E
and F; T F. Then Vg, | Vg, VF, | Vr and Vg, xFr; | VExF as j T oo. This gives (1)
and (2) for open sets. The general case can now be deduced from Lemma 8. g

Proof of Theorem 2. The proof of (3) for open subsets can be found in [EP]. Now
the proof is the same as the proof of Theorem 1. O

Remark. Although (3) is stated in [EP] for arbitrary subsets E, F, the way from
open subsets to the general case is not so straightforward as the authors claim—one
needs Lemma 8.
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