PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 12, Pages 3595-3599 S 0002-9939(00)05552-0 Article electronically published on June 7, 2000

EQULIBRIUM MEASURE OF A PRODUCT SUBSET OF \mathbb{C}^n

ZBIGNIEW BŁOCKI

(Communicated by Steven R. Bell)

ABSTRACT. In this note we show that an equilibrium measure of a product of two subsets of \mathbb{C}^n and \mathbb{C}^m , respectively, is a product of their equilibrium measures. We also obtain a formula for $(dd^c \max\{u, v\})^p$, where u, v are locally bounded plurisubharmonic functions and $2 \leq p \leq n$.

INTRODUCTION

Let E be a bounded subset of \mathbb{C}^n . The function

$$V_E := \sup\{u \in PSH(\mathbb{C}^n) : u|_E \le 0, \sup_{z \in \mathbb{C}^n} (u(z) - \log^+ |z|) < \infty\}$$

is called a global extremal function (or the Siciak extremal function) of E. It is known that V_E^* , the upper regularization of V_E , is plurisubharmonic in \mathbb{C}^n if and only if E is not pluripolar. In such a case, by [BT1], $(dd^c V_E^*)^n$ is a well defined nonnegative Borel measure and it is called an *equilibrium measure* of E. We refer to [K1] for a detailed exposition of this topic.

In this note we shall show

Theorem 1. Let E and F be nonpluripolar bounded subsets of \mathbb{C}^n and \mathbb{C}^m , respectively. Then

(1)
$$V_{E\times F}^* = \max\{V_E^*, V_F^*\}$$

and

(2)
$$(dd^c V_{E\times F}^*)^{n+m} = (dd^c V_E^*)^n \wedge (dd^c V_F^*)^m.$$

Note that here we treat V_E^* (resp. V_F^*) as a function of \mathbb{C}^{n+m} independent of the last m (respectively first n) variables.

The formula (1) was proved by Siciak (see [Si]) for E, F compact (see also [Ze] for a proof using the theory of the complex Monge-Ampère operator). For n = m = 1the proof of (2) can be found in [BT2].

If $E \subset D$, where D is a bounded domain in \mathbb{C}^n , then the function

$$u_{E,D} := \sup\{v \in PSH(D) : v \le 0, v|_E \le -1\}$$

is called a *relative extremal function* of E. Combining our methods of the proof of Theorem 1 with a result from [EP] we can also obtain

©2000 American Mathematical Society

Received by the editors February 18, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 32U15; Secondary 32W20.

This work was partially supported by KBN Grant #2 PO3A 003 13.

Theorem 2. Let D be a bounded domain in \mathbb{C}^n and G a bounded domain in \mathbb{C}^m . Then for arbitrary subsets $E \subset D$, $F \subset G$ we have

(3)
$$u_{E\times F, D\times G}^* = \max\{u_{E,D}^*, u_{F,G}^*\}$$

and

$$(dd^{c}u_{E\times F,D\times G}^{*})^{n+m} = (dd^{c}u_{E,D}^{*})^{n} \wedge (dd^{c}u_{F,G}^{*})^{m}.$$

The relative Monge-Ampère capacity of $E \subset D$ is defined by

$$c(E,D) := \sup\{\int_E (dd^c u)^n : u \in PSH(D), -1 \le u \le 0\},\$$

provided that E is Borel. If $E \subset D$ is arbitrary, then, as usual, we can define

$$c^*(E,D) := \inf_{\substack{E \subset U, \ U \text{ open}}} c(U,D),$$
$$c_*(E,D) := \sup_{\substack{K \subset E, \ K \text{ compact}}} c(K,D).$$

By [BT1], if $E \in D$ and D is hyperconvex (that is $(u_{E,D})_* = 0$ on ∂D), then

$$c^*(E,D) = \int_D (dd^c u^*_{E,D})^n$$

Moreover, $c^*(E, D) = c(E, D) = c_*(E, D)$ if E is Borel. Theorem 2 thus gives

Theorem 3. Assume that D and G are bounded hyperconvex domains in \mathbb{C}^n and \mathbb{C}^m , respectively. Then for $E \subseteq D$, $F \subseteq G$ we have

$$c^*(E \times F, D \times G) = c^*(E, D)c^*(F, G). \quad \Box$$

I would like to thank N. Levenberg for inspiring discussions and E. Poletsky for his help in the proof of Lemma 8 below.

Proofs

If Ω is an open subset of \mathbb{C}^n and $1 \leq p \leq n$, then by [BT1] the mapping

(4)
$$(u_1, \ldots, u_p) \longmapsto dd^c u_1 \wedge \cdots \wedge dd^c u_p$$

is well defined on the set $(PSH \cap L^{\infty}_{loc}(\Omega))^p$ and its values are nonnegative currents of bidegree (p, p). Moreover, (4) is symmetric and continuous with respect to decreasing sequences. First, we shall prove

Theorem 4. Let u, v be locally bounded plurisuharmonic functions. Then, if $2 \le p \le n$, we have

$$(dd^{c}\max\{u,v\})^{p} = dd^{c}\max\{u,v\} \wedge \sum_{k=0}^{p-1} (dd^{c}u)^{k} \wedge (dd^{c}v)^{p-1-k} - \sum_{k=1}^{p-1} (dd^{c}u)^{k} \wedge (dd^{c}v)^{p-k}.$$

Proof. We leave it as an exercise to the reader to show that a simple inductive argument reduces the proof to the case p = 2. By the continuity of (4) under decreasing sequences we may also assume that u, v are smooth.

Let $\chi : \mathbb{R} \to [0, +\infty)$ be smooth and such that $\chi(x) = 0$ if $x \leq -1$, $\chi(x) = x$ if $x \geq 1$ and $0 \leq \chi' \leq 1$, $\chi'' \geq 0$ everywhere. Define

$$\psi_j := v + \frac{1}{j}\chi(j(u-v)).$$

Denote for simplicity $w = \max\{u, v\}$ and $\alpha = u - v$. We can easily check that $\psi_j \downarrow w$ as $j \uparrow \infty$. An easy computation gives

(5)
$$dd^{c}(\chi(j\alpha)/j) = \chi'(j\alpha)dd^{c}\alpha + j\chi''(j\alpha)d\alpha \wedge d^{c}\alpha$$

Therefore

$$dd^{c}\psi_{j} = \chi'(j\alpha)dd^{c}u + (1-\chi'(j\alpha))dd^{c}v + j\chi''(j\alpha)d\alpha \wedge d^{c}\alpha$$

and, in particular, ψ_j is plurisubharmonic.

From the definition of ψ_j we obtain

(6)
$$(dd^c \psi_j)^2 = (dd^c v)^2 + 2dd^c (\chi(j\alpha)/j) \wedge dd^c v + (dd^c (\chi(j\alpha)/j))^2.$$

We have weak convergences

(7)
$$(dd^c \psi_j)^2 \longrightarrow (dd^c w)^2, \\ dd^c (\chi(j\alpha)/j) \wedge dd^c v \longrightarrow dd^c (w-v) \wedge dd^c v.$$

so it remains to analyze the third term of the right-hand side of (6). Using (5) and the fact that $(d\alpha \wedge d^c \alpha)^2 = 0$, we compute

$$(dd^{c}(\chi(j\alpha)/j))^{2} = (\chi'(j\alpha))^{2}(dd^{c}\alpha)^{2} + 2j\chi'(j\alpha)\chi''(j\alpha)d\alpha \wedge d^{c}\alpha \wedge dd^{c}\alpha$$
$$= d\left[(\chi'(j\alpha))^{2}d^{c}\alpha \wedge dd^{c}\alpha\right]$$
$$= dd^{c}(\gamma(j\alpha)/j) \wedge dd^{c}\alpha,$$

where $\gamma : \mathbb{R} \to \mathbb{R}$ is such that $\gamma' = (\chi')^2$. In fact, if γ is chosen so that $\gamma(-1) = 0$, then $\gamma(jx)/j \downarrow \max\{0, x\}$ as $j \uparrow \infty$ and

$$(dd^c(\chi(j\alpha)/j))^2 \longrightarrow dd^c(w-v) \wedge dd^c\alpha$$

weakly. Combining this with (6) and (7) we conclude

$$(dd^cw)^2 = (dd^cv)^2 + 2dd^c(w-v) \wedge dd^cv + dd^c(w-v) \wedge dd^c(u-v)$$
$$= dd^cw \wedge (dd^cu + dd^cv) - dd^cu \wedge dd^cv$$

which completes the proof of Theorem 4.

From Theorem 4 we can immediately get the following two consequences:

Corollary 5. If u is locally bounded, plurisubharmonic and h is pluriharmonic, then

$$(dd^{c}\max\{u,h\})^{p} = dd^{c}\max\{u,h\} \wedge (dd^{c}u)^{p-1}.$$

Corollary 6. Suppose u, v are locally bounded plurisubharmonic functions with $(dd^c u)^p = 0$ and $(dd^c v)^q = 0$, where $1 \leq p, q \leq n$ and $p + q \leq n$. Then $(dd^c \max\{u,v\})^{p+q} = 0$.

The main part of the proof of (2) will be contained in

Theorem 7. Let D be open in \mathbb{C}^n and G open in \mathbb{C}^m . Assume that u, v are nonnegative plurisubharmonic functions in D and G, respectively, such that

$$\int_{\{u>0\}} (dd^c u)^n = 0 \quad and \quad \int_{\{v>0\}} (dd^c v)^m = 0.$$

Then, treating u, v as functions on $D \times G$, we have

 $(dd^c \max\{u, v\})^{n+m} = (dd^c u)^n \wedge (dd^c v)^m.$

Proof. Let w, χ and ψ_j be defined in the same way as in the proof of Theorem 4. By Theorem 4 and since $(dd^c u)^{n+1} = 0$, $(dd^c v)^{m+1} = 0$, we have

(8)
$$(dd^{c}w)^{n+m} = dd^{c}w \wedge \left[(dd^{c}u)^{n-1} \wedge (dd^{c}v)^{m} + (dd^{c}u)^{n} \wedge (dd^{c}v)^{m-1} \right] \\ - (dd^{c}u)^{n} \wedge (dd^{c}v)^{m}.$$

Using the hypothesis on u, v we may compute

$$\begin{aligned} dd^c \psi_j \wedge (dd^c u)^{n-1} \wedge (dd^c v)^m \\ &= \left[\chi'(0)(dd^c u)^n + j\chi''(ju)du \wedge d^c u \wedge (dd^c u)^{n-1}\right] \wedge (dd^c v)^m \\ &= dd^c(\chi(ju)/j) \wedge (dd^c u)^{n-1} \wedge (dd^c v)^m. \end{aligned}$$

Since $\chi(ju)/j \downarrow u$ as $j \uparrow \infty$, it follows that

$$dd^{c}w \wedge (dd^{c}u)^{n-1} \wedge (dd^{c}v)^{m} = (dd^{c}u)^{n} \wedge (dd^{c}v)^{m}$$

and, similarly,

$$dd^{c}w \wedge (dd^{c}u)^{n} \wedge (dd^{c}v)^{m-1} = (dd^{c}u)^{n} \wedge (dd^{c}v)^{m}.$$

This, together with (8), finishes the proof.

For the proof of Theorem 1 we need a lemma which is an extension of a result from [Sa].

Lemma 8. Let E, F, D, G be as in Theorem 2. For $\varepsilon > 0$ set

$$E_{\varepsilon} := \{ V_E^* < \varepsilon \}, \ F_{\varepsilon} := \{ V_F^* < \varepsilon \},$$

$$\widetilde{E}_{\varepsilon} := \{ u_{E,D}^* < -1 + \varepsilon \}, \ \widetilde{F}_{\varepsilon} := \{ u_{F,G}^* < -1 + \varepsilon \}.$$

Then

(9)
$$V_{E_{\varepsilon}}^{*} \uparrow V_{E}^{*}, \ V_{F_{\varepsilon}}^{*} \uparrow V_{F}^{*}, \ V_{E_{\varepsilon} \times F_{\varepsilon}}^{*} \uparrow V_{E \times F}^{*},$$

(10)
$$u_{\widetilde{E}_{\varepsilon},D}^* \uparrow u_{E,D}^*, \ u_{\widetilde{F}_{\varepsilon},G}^* \uparrow u_{F,G}^*, \ u_{\widetilde{E}_{\varepsilon} \times \widetilde{F}_{\varepsilon},D \times G}^* \uparrow u_{E \times F,D \times G}^*,$$

as $\varepsilon \downarrow 0$, and every convergence is uniform.

Proof. The set $E \setminus E_{\varepsilon} = E \cap \{V_E^* \ge \varepsilon\}$ is pluripolar by Bedford-Taylor's theorem on negligible sets (see [BT1]). It follows that

$$V_E^* - \varepsilon \le V_{E_\varepsilon} = V_{E_\varepsilon}^* \le V_E^*$$

which gives the first two convergences of (9). In order to show the third one, observe that

(11)
$$\max\{V_E, V_F\} \le V_{E \times F} \le V_E + V_F.$$

Indeed, the first inequality in (11) follows easily from the definition of extremal function. Fixing one of the variables $(z, w) \in \mathbb{C}^n \times \mathbb{C}^m$, we see that the second inequality in (11) is satisfied, first on the cross $(E \times \mathbb{C}^m) \cup (\mathbb{C}^n \times F)$, and then everywhere.

By (11) $V_{E \times F} \leq 2\varepsilon$ on $E_{\varepsilon} \times F_{\varepsilon}$. On the other hand, by (11) the set $(E \times F) \setminus (E_{\varepsilon} \times F_{\varepsilon})$ is contained in $(E \times F) \cap \{V_{E \times F}^* \geq \varepsilon\}$ and is thus pluripolar. Therefore

$$V_{E\times F}^* - 2\varepsilon \le V_{E_{\varepsilon}\times F_{\varepsilon}} = V_{E_{\varepsilon}\times F_{\varepsilon}}^* \le V_{E\times F}^*$$

and this gives (9).

3598

Similarly as in (11) we can show

$$\max\{u_{E,D}, u_{F,G}\} \le u_{E \times F, D \times G} \le -u_{E,D} u_{F,G}.$$

Now the proof of (10) is parallel to that of (9).

Proof of Theorem 1. If E, F are compact and *L*-regular (that is, V_E and V_F are continuous), then (1) was shown in [Si] and (2) follows immediately from Theorem 7. For E, F open we can find sequences of compact, *L*-regular sets with $E_j \uparrow E$ and $F_j \uparrow F$. Then $V_{E_j} \downarrow V_E, V_{F_j} \downarrow V_F$ and $V_{E_j \times F_j} \downarrow V_{E \times F}$ as $j \uparrow \infty$. This gives (1) and (2) for open sets. The general case can now be deduced from Lemma 8.

Proof of Theorem 2. The proof of (3) for open subsets can be found in [EP]. Now the proof is the same as the proof of Theorem 1. \Box

Remark. Although (3) is stated in [EP] for arbitrary subsets E, F, the way from open subsets to the general case is not so straightforward as the authors claim—one needs Lemma 8.

References

- [BT1] E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-41. MR 84d:32024
- [BT2] E. Bedford and B.A. Taylor, The complex equilibrium measure of a symmetric convex set in Rⁿ, Trans. Amer. Math. Soc. 294 (1986), 705-717. MR 87f:32039
- [EP] A. Edigarian and E. Poletsky, Product property of the relative extremal function, Bull. Polish Acad. Sciences 45 (1997), 331-335. MR 98i:32017
- [Kl] M. Klimek, *Pluripotential Theory*, Clarendon Press, 1991. MR 93h:32021
- [Sa] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61-119.
- [Si] J. Siciak, Extremal plurisubharmonic functions in Cⁿ, Ann. Pol. Math. 39 (1981), 175-211. MR 83e:32018
- [Ze] A. Zeriahi, Fonction de Green pluricomplexe à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), 89-126. MR 93a:32031

Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

E-mail address: blocki@im.uj.edu.pl