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EQULIBRIUM MEASURE OF A PRODUCT SUBSET OF Cn

ZBIGNIEW B LOCKI

(Communicated by Steven R. Bell)

Abstract. In this note we show that an equilibrium measure of a product
of two subsets of Cn and Cm, respectively, is a product of their equilibrium
measures. We also obtain a formula for (ddc max{u, v})p , where u, v are locally
bounded plurisubharmonic functions and 2 ≤ p ≤ n.

Introduction

Let E be a bounded subset of Cn. The function

VE := sup{u ∈ PSH(Cn) : u|E ≤ 0, sup
z∈Cn

(u(z)− log+ |z|) <∞}

is called a global extremal function (or the Siciak extremal function) of E. It is
known that V ∗E , the upper regularization of VE , is plurisubharmonic in Cn if and
only if E is not pluripolar. In such a case, by [BT1], (ddcV ∗E)n is a well defined
nonnegative Borel measure and it is called an equilibrium measure of E. We refer
to [Kl] for a detailed exposition of this topic.

In this note we shall show

Theorem 1. Let E and F be nonpluripolar bounded subsets of Cn and Cm, respec-
tively. Then

V ∗E×F = max{V ∗E , V ∗F }(1)

and

(ddcV ∗E×F )n+m = (ddcV ∗E)n ∧ (ddcV ∗F )m.(2)

Note that here we treat V ∗E (resp. V ∗F ) as a function of Cn+m independent of the
last m (respectively first n) variables.

The formula (1) was proved by Siciak (see [Si]) for E,F compact (see also [Ze] for
a proof using the theory of the complex Monge-Ampère operator). For n = m = 1
the proof of (2) can be found in [BT2].

If E ⊂ D, where D is a bounded domain in Cn, then the function

uE,D := sup{v ∈ PSH(D) : v ≤ 0, v|E ≤ −1}
is called a relative extremal function of E. Combining our methods of the proof of
Theorem 1 with a result from [EP] we can also obtain
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Theorem 2. Let D be a bounded domain in Cn and G a bounded domain in Cm.
Then for arbitrary subsets E ⊂ D, F ⊂ G we have

u∗E×F,D×G = max{u∗E,D, u∗F,G}(3)

and

(ddcu∗E×F,D×G)n+m = (ddcu∗E,D)n ∧ (ddcu∗F,G)m.

The relative Monge-Ampère capacity of E ⊂ D is defined by

c(E,D) := sup{
∫
E

(ddcu)n : u ∈ PSH(D),−1 ≤ u ≤ 0},

provided that E is Borel. If E ⊂ D is arbitrary, then, as usual, we can define

c∗(E,D) := inf
E⊂U, U open

c(U,D),

c∗(E,D) := sup
K⊂E, K compact

c(K,D).

By [BT1], if E b D and D is hyperconvex (that is (uE,D)∗ = 0 on ∂D), then

c∗(E,D) =
∫
D

(ddcu∗E,D)n.

Moreover, c∗(E,D) = c(E,D) = c∗(E,D) if E is Borel. Theorem 2 thus gives

Theorem 3. Assume that D and G are bounded hyperconvex domains in Cn and
Cm, respectively. Then for E b D, F b G we have

c∗(E × F,D ×G) = c∗(E,D)c∗(F,G).

I would like to thank N. Levenberg for inspiring discussions and E. Poletsky for
his help in the proof of Lemma 8 below.

Proofs

If Ω is an open subset of Cn and 1 ≤ p ≤ n, then by [BT1] the mapping

(u1, . . . , up) 7−→ ddcu1 ∧ · · · ∧ ddcup(4)

is well defined on the set (PSH ∩ L∞loc(Ω))p and its values are nonnegative cur-
rents of bidegree (p, p). Moreover, (4) is symmetric and continuous with respect to
decreasing sequences. First, we shall prove

Theorem 4. Let u, v be locally bounded plurisuharmonic functions. Then, if 2 ≤
p ≤ n, we have

(ddc max{u, v})p

= ddc max{u, v} ∧
p−1∑
k=0

(ddcu)k ∧ (ddcv)p−1−k −
p−1∑
k=1

(ddcu)k ∧ (ddcv)p−k.

Proof. We leave it as an exercise to the reader to show that a simple inductive
argument reduces the proof to the case p = 2. By the continuity of (4) under
decreasing sequences we may also assume that u, v are smooth.

Let χ : R → [0,+∞) be smooth and such that χ(x) = 0 if x ≤ −1, χ(x) = x if
x ≥ 1 and 0 ≤ χ′ ≤ 1, χ′′ ≥ 0 everywhere. Define

ψj := v +
1
j
χ(j(u− v)).
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Denote for simplicity w = max{u, v} and α = u − v. We can easily check that
ψj ↓ w as j ↑ ∞. An easy computation gives

ddc(χ(jα)/j) = χ′(jα)ddcα+ jχ′′(jα)dα ∧ dcα.(5)

Therefore

ddcψj = χ′(jα)ddcu+ (1− χ′(jα))ddcv + jχ′′(jα)dα ∧ dcα
and, in particular, ψj is plurisubharmonic.

From the definition of ψj we obtain

(ddcψj)2 = (ddcv)2 + 2ddc(χ(jα)/j) ∧ ddcv + (ddc(χ(jα)/j))2.(6)

We have weak convergences

(ddcψj)2 −→ (ddcw)2,

ddc(χ(jα)/j) ∧ ddcv −→ ddc(w − v) ∧ ddcv,
(7)

so it remains to analyze the third term of the right-hand side of (6). Using (5) and
the fact that (dα ∧ dcα)2 = 0, we compute

(ddc(χ(jα)/j))2 = (χ′(jα))2(ddcα)2 + 2jχ′(jα)χ′′(jα)dα ∧ dcα ∧ ddcα
= d

[
(χ′(jα))2dcα ∧ ddcα

]
= ddc(γ(jα)/j) ∧ ddcα,

where γ : R→ R is such that γ′ = (χ′)2. In fact, if γ is chosen so that γ(−1) = 0,
then γ(jx)/j ↓ max{0, x} as j ↑ ∞ and

(ddc(χ(jα)/j))2 −→ ddc(w − v) ∧ ddcα
weakly. Combining this with (6) and (7) we conclude

(ddcw)2 = (ddcv)2 + 2ddc(w − v) ∧ ddcv + ddc(w − v) ∧ ddc(u− v)

= ddcw ∧ (ddcu+ ddcv)− ddcu ∧ ddcv
which completes the proof of Theorem 4.

From Theorem 4 we can immediately get the following two consequences:

Corollary 5. If u is locally bounded, plurisubharmonic and h is pluriharmonic,
then

(ddc max{u, h})p = ddc max{u, h} ∧ (ddcu)p−1.

Corollary 6. Suppose u, v are locally bounded plurisubharmonic functions with
(ddcu)p = 0 and (ddcv)q = 0, where 1 ≤ p, q ≤ n and p + q ≤ n. Then
(ddc max{u, v})p+q = 0.

The main part of the proof of (2) will be contained in

Theorem 7. Let D be open in Cn and G open in Cm. Assume that u, v are
nonnegative plurisubharmonic functions in D and G, respectively, such that∫

{u>0}
(ddcu)n = 0 and

∫
{v>0}

(ddcv)m = 0.

Then, treating u, v as functions on D ×G, we have

(ddc max{u, v})n+m = (ddcu)n ∧ (ddcv)m.
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Proof. Let w,χ and ψj be defined in the same way as in the proof of Theorem 4.
By Theorem 4 and since (ddcu)n+1 = 0, (ddcv)m+1 = 0, we have

(ddcw)n+m = ddcw∧
[
(ddcu)n−1 ∧ (ddcv)m + (ddcu)n ∧ (ddcv)m−1

]
− (ddcu)n ∧ (ddcv)m.

(8)

Using the hypothesis on u, v we may compute

ddcψj ∧ (ddcu)n−1 ∧ (ddcv)m

=
[
χ′(0)(ddcu)n + jχ′′(ju)du ∧ dcu ∧ (ddcu)n−1

]
∧ (ddcv)m

= ddc(χ(ju)/j) ∧ (ddcu)n−1 ∧ (ddcv)m.

Since χ(ju)/j ↓ u as j ↑ ∞, it follows that

ddcw ∧ (ddcu)n−1 ∧ (ddcv)m = (ddcu)n ∧ (ddcv)m

and, similarly,

ddcw ∧ (ddcu)n ∧ (ddcv)m−1 = (ddcu)n ∧ (ddcv)m.

This, together with (8), finishes the proof.

For the proof of Theorem 1 we need a lemma which is an extension of a result
from [Sa].

Lemma 8. Let E,F,D,G be as in Theorem 2. For ε > 0 set

Eε := {V ∗E < ε}, Fε := {V ∗F < ε},

Ẽε := {u∗E,D < −1 + ε}, F̃ε := {u∗F,G < −1 + ε}.
Then

V ∗Eε ↑ V
∗
E , V

∗
Fε ↑ V

∗
F , V

∗
Eε×Fε ↑ V

∗
E×F ,(9)

u∗
Ẽε,D

↑ u∗E,D, u∗F̃ε,G ↑ u
∗
F,G, u

∗
Ẽε×F̃ε,D×G

↑ u∗E×F,D×G,(10)

as ε ↓ 0, and every convergence is uniform.

Proof. The set E \ Eε = E ∩ {V ∗E ≥ ε} is pluripolar by Bedford-Taylor’s theorem
on negligible sets (see [BT1]). It follows that

V ∗E − ε ≤ VEε = V ∗Eε ≤ V
∗
E

which gives the first two convergences of (9). In order to show the third one, observe
that

max{VE , VF } ≤ VE×F ≤ VE + VF .(11)

Indeed, the first inequality in (11) follows easily from the definition of extremal
function. Fixing one of the variables (z, w) ∈ Cn × Cm, we see that the second
inequality in (11) is satisfied, first on the cross (E × Cm) ∪ (Cn × F ), and then
everywhere.

By (11) VE×F ≤ 2ε on Eε × Fε. On the other hand, by (11) the set (E × F ) \
(Eε × Fε) is contained in (E × F ) ∩ {V ∗E×F ≥ ε} and is thus pluripolar. Therefore

V ∗E×F − 2ε ≤ VEε×Fε = V ∗Eε×Fε ≤ V
∗
E×F

and this gives (9).
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Similarly as in (11) we can show

max{uE,D, uF,G} ≤ uE×F,D×G ≤ −uE,DuF,G.
Now the proof of (10) is parallel to that of (9).

Proof of Theorem 1. If E,F are compact and L-regular (that is, VE and VF are
continuous), then (1) was shown in [Si] and (2) follows immediately from Theorem
7. For E,F open we can find sequences of compact, L-regular sets with Ej ↑ E
and Fj ↑ F . Then VEj ↓ VE , VFj ↓ VF and VEj×Fj ↓ VE×F as j ↑ ∞. This gives (1)
and (2) for open sets. The general case can now be deduced from Lemma 8.

Proof of Theorem 2. The proof of (3) for open subsets can be found in [EP]. Now
the proof is the same as the proof of Theorem 1.

Remark. Although (3) is stated in [EP] for arbitrary subsets E,F , the way from
open subsets to the general case is not so straightforward as the authors claim—one
needs Lemma 8.
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