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Summary. An inequality concerning complex Monge-Ampére operator is proven. The
L"-L-stability of the Dirichlet problem in C" and a result concerning maximal plurisub-
harmonic functions is deduced {rom it.

1. Introduction. Throughout this note we use the standard notation
d=8+9,d =1i(0—8). Then dd° = 2i9 and

62
C\TL — 1 n
(dd)™ = nl4™det ( 5 63;;) dA

for smooth functions; dA stands for the 2n-dimensional volume form. Our
main result is the following inequality

(1) [(h-w)rddoo A .. Addov, < alljo]s... an_1||gf|vn|(ddcu)",
n 7

where u, h,v1,...,v, are plurisubharmonic (for short psh), locally bounded
functions in a bounded domain {2 in C* such that u < hin 2 and u = h on
912 and 1, ...,v, are negative (see Theorem 2.1 below for details).

As an application of the inequality (1) we obtain two results. First is
the L™-L'-stability of the Dirichlet problem in C* (Theorem 3.1). Cegrell
and Persson [5] obtained the L°-L%-stability. The second application of
(1) is a generalization of a theorem of Sadullaev concerning maximal psh
functions (see Theorem 4.4). From (1) one can also deduce a generalization
of Chern-Levine-Nirenberg inequalities [6] due to Demailly [7] (see Corollary
2.2 below).

(*) Supported by KBN Grant 2 1077 91 01.
AMS Classification: primary 32F07, secondary 32F05.
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2. Proof of the main result.

THEOREM 2.1. Let 2 be a bounded domain in C*. Let u,h,vy,...,v, €
PSH 0 LT (92) be such that u < h, lim,_a0(h(z) — u(2)) = 0 and v; < 0

(7=1,...,n). Then (1) holds.

Proof. Taking h, := max{u,h — £} we see that the left-hand side of
(1) with h replaced by A, converges. We can therefore assume that h = u
in a neighbourhood of 812.

Assume we have proven the theorem for smooth u and h. Now for ar-
bitrary u and h let u. and A, denote their smooth regularizations, so that
u. | u, by | has e | 0. Then u, € h, and, if we shrink 2 a little, u, = A,
in a neighbourhood of §42. So we have

(2) f(hf — w)"ddv; A ... A dd°v, < vy )| . ..||vn_1]|nf|vnl(dd“u5)".
7} Fri

By Lebesgue’s Dominated Convergence Theorem, the left-hand side of (2)
tends to

f(h —u)"dd®v; A ... A dd°v,.

a
By the convergence theorem from (3], the measures vn(dd®u, )" converge
weakly to v, (dd®u)” thus, having shrunk 2 already, the right-hand side of
(2) tends to

*

wlllerlln . vn-1lla [ [oal(ddow)".
iri

Now it suffices to prove Theorem 2.1 when u and h are smooth and they
coincide in a neighbourhood of 2. We may also assume lvjlla = 1. First,
we want to show that for p = 2,..., n we have

3) [ (h—wP(ddw) P A ddvn_pyr A ... A ddv,
2

< pf(h — w)P 1 (ddeu) P+ A Add“Vn_pia A ... AddCv,.
7

By Stokes’s Theorem, the left-hand side of (3) is equal to

f VUn—pt1(ddu)* P A dd®(h — w)P A ddvn_pia A ... A ddv,,
7
while the right-hand side of (3) is greater than or equal to

p f (=Vn—pt1)(h = )P (ddu) P A dd vy_pyq A ... A dd°u,,
n

Estimates for the Complex Monge-Ampére Operator 153

because —Up_pi1 = |Vn-ps1| € 1. To show (3) it is therefore enough to
prove that for p=2,...,7n ]

- ¢
(4) —dd®(h — u)? € p(h — u)P™ dd°u,

that is the difference between the right- and the left-hand side of (4) is a
positive (1,1)-form. We have
dde(h — w)? = d(p(h — w)P ' d°(h — u))
=p(p-1)(h— w)P~2d(h — u) A d°(h — u)
+ p(h — w)P 1 dd(h — u)
> p(p— 1)(h — w)"~2d(h — u) Ad°(h — u) — p(h - u)P " ddy
and d(h — u) Ad*(h — u) = 18(h - u) A9(h — u) 2 0, thus (4) follows and
we have (3). Now, by (3) and Stokes’s Theorem
f{h —w)tddovy A .. A ddv, € n!f(h — w)(dd°w)""" A ddv,
It Q
= n!f(—vn)(ddcu)“'l A dd(u — h)
2

< f |va](ddu)”
e

and the proof is complete.

COROLLARY 2.2. Let 2 € C* and let u,vy,...,v, € PSHN L. (12) be
negative. Assume that lim; a0 u(z) = 0. Then

[1ulrddevs A .. ddov, <nlfforlla - [lon-s o [ 1val(ddou)".
n
i)

(compare with [7, Th. 2.2]).

COROLLARY 2.3. Let 12 be a bounded domain in C*. Take u,h € PSII N
L2 (92) such that w < h and lim,_,50(h(2) — u(z)) = 0. Then
: 2 Crain liw
I~ wll gy < R2/4( [ (daou))
7

where .
R =min{r >0:02C B(z,r) for some z € C"}.
In particular R € diam{2, and when §2 is a ball then R = diam{2/2.

Proof. Without loss of generality we may assume that 2 C B(0, R).
It is enough to apply Theorem 2.1 with

n(z)=...=v(z) = |2)% — RZ



154 Z. Blocki

Remark. Certainly if {2 fulfils the assumptions of Corollary 2.2 with
u # 0, then it must be hyperconvex, in particular pseudoconvex. Notice
that this is not the case in Corollary 2.3. In fact in the proof of Theorem
4.4 below we shall use Corollary 2.3 for domains which are not necessarily
pseudoconvex.

To understand the meaning of Corollary 2.3 consider the following situ-
ation: take v € PSHN LY (2) and G € £2. Then by Proposition 4.1 below
there exists a unique solution to the following Dirichlet problem

{hEPSHnL‘”(Q)

loc

h maximal in G
h=wuin 2\G.

Then Theorem 2.3 says, roughly speaking, that if the measure (dd®u)" is
small in a neighbourhood of G then the functions A and « do not differ much
in the L™-norm.

3. The L"-L!-stability of the Dirichlet problem in C*. Let 2 be
strictly pseudoconvex in C*, ¢ € C(892) and f € C(2), f » 0. Then the
following Dirichlet problem

u € C(2) N PSH(2)
(dd°u)™ = fd\
ulag = ¢

has a unique solution U(¢p, f) (¢£.[2]). Cegrell and Persson [5], using a con-

nection between real and complex Monge-Ampeére operators (due to the‘idea
of Cheng and Yau discussed in [1]), proved that.

1UCe1, /1) = Ul 2)lla < ller = ezlloa + CllA = follthiay
We prove

THEOREM 3.1. With the above notations we have
(8) lU(e1, f1) = Ulwz, f)lln(n) € M2)|ler — w2llon + Cllfs — fz!liﬁ?m
with C = R%/4, as in Corollary 2.3.

Proof. This is in fact an easy application of Corollary 2.3. We have
(6) IT©,15 = FaDllzmgay € Cllfi = Al

and we can use an idea from [5]: from the superadditivity of (dd®)™ and
comparison principle (cf. [3]) it follows that

(7 (1, /1) = Ulgpas f2)l € = U(=|1 — pal, | i = fal)
< ller = wallan — U(0,]f1 — f2])
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(cf. [5, Cor. 1]). Combining (6) and (7) we get (5).

Remark. If we have the LPo- L% stability then, by Holder’s inequality, we
have also the LP-L9 stability for 1 < p < po and o € ¢ < <. By the above
results we have the LP-L7 stability in C* if

(p,g) € ([1,00] % [2,00]) U ([1, 7] x (1, 00]).
Of course we have not the L°-L! stability (take u(z) = log|z| and c‘o'nsider
its regularizations). The author does not know whether there is stability for
other pairs (p, q).

4. Maximal plurisubharmonic functions. If {2 is a dOIl?ELiIl in C*
then we say that a plurisubharmonic function  in {2 is mazimalif for every
open G € £2 and v € PSH(G) such that v:_g-u on @G (v* denotes ‘the upper
regularization of v; it is then defined on G) it follows that v < win G. The
connection between psh and maximal psh functions is the same as l?etween
subharmonic and harmonic functions: psh functions are s\lema}u-mal. If
n = 1 then maximal functions are harmonic. The notion of maximality was
first introduced by Sadullaev [9]; for the basic properties see [8].

The next proposition is essentially known.

ProrosITioN 4.1. For u € PSH(12) and open G € {2 let
(8) h = hy :=sup{v € PSH(2): v =u in N\ G}.
Then the following hold

(a) h € PSH(12),

(b) h is mazimal in G,

()h=uin 2\G, _

(d) ifuj | u and G; | G then hy g, | hug,

() if u € L&.(£2) then h € L% (12),

(f) if ulz is continuous in a neighbourhood of 9G and OG is smooth then
h € C(G); in particular if u € C(£2) and 8G is smooth then h € C(£2).

Proof. We sketch the proof for the convenience of the reader. To sh?w
(a) it is enough to see that h* < h thus h = h* € PSH({2). Now properties
(b)-(e) are obvious. It remains to prove (f). We have
(9) hlg = sup{v € PSH(G) : v* € u on 9G}
for if v is as in (9) then
— . [max{u,v} inG
R B in 2\ G
is psh in (2. It follows from the classical potential theory that there JSE €
C(G), harmonic in G such that hlsg = ulsc. We see that u < h < hin G
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thus h|g attains continuously boundary values of u|sg. Now (f) follows from
(9) and a theorem of Walsh ([10, Lemma 1]; see also the proof of Theorem
3.1.4in [8] for the arguments from [10]).

Directly from Proposition 4.1 we get

CoRroLLARY 4.2. The set of points where a mazimal psh function is not
continuous s either empiy or il is not relatively compact.

COROLLARY 4.3. Every mazimal psh function can be approzimated by
continuous mazimal funciions, More precisely: If v is mazimal in {2 and G €
£ then one can find a sequence {u;} of continuous mazimal psh functions
in G such that u; | v in G.

Sadullaev proved Corollary 4.3 for pseudoconvex 2 (cf. [9, 17.3]). It is a
result of Bedford and Taylor [2, 3] (see also [9]) that if u is psh and locally
bounded then it is maximal if and only if (dd°u)™ = 0. For n 2 2 maximal
psh functions are not necessarily locally bounded; for example functions
of the type log|F’|, where F is holomorphic (they are maximal because
(dd®)*|F|* = 0 for n > 2); also psh functions which do not depend on one
variable are maximal.

For maximal psh functions which are not necessarily locally bounded we
have the following

THEOREM 4.4. Let {u;} C PSH N LZ.(£2) be a sequence decreasing to
u € PSH(R2). Then u is mazimal if (dd°u;)" converges weakly to 0. ’

As pointed out to the author by S. Kolodziej one can apply an example
due to Cegrell [4] to show that the converse of Theorem 1.1 is not true if we
do not assume u to be bounded. Namely, the functions

n
uj(z) = Y max{log|2x), ~3}
k=1
are psh and decrease to u(z) = log|z; ... 2y|, which is maximal for n > 2.
However (dd®u;)™ tends weakly to n!(2r)"8, where &g is the Dirac measure.
Here we give an alternative proof of Theorem 4.4 quite different from
the Sadullaev’s one.

Proof of Theorem 4.4. It is enough to take an open G € f2 with
smooth boundary and to check that « is maximal in G. Let f; = huJ G be
defined by (8). Then k; | h = hy ¢ and it is enough to show that & = u. By
Corollary 2.3 the functions h; — u; converge to 0 in L™-norm and thus there
is a subsequence converging almost everywhere. Therefore h = u almost
everywhere and hence everywhere. The proof of Theorem 1.1 is complete.
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