DO 16.1007A00208.008-0307 3 Mathematische Annalen

A gradient estimate in the Calabi-Yau theorem

Zbigniew Blocki

Received: 11 May 2008 / Revised: 20 September 2008 / Published online: 18 November 2008
© Springer-Verlag 2008

Abstract We prove a C'-estimate for the complex Monge—Ampgre equation on a
compact Kihler manifold directly from the C°-estimate, without using a C>-estimate.
This was earlier done only under additional assumption of non-negative bisectional
curvature.
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0 Introduction

Let M be a compact Kéhler manifold of complex dimension n > 2 with Kéhler form
. We consider the complex Monge—Ampere equation on M

(0 +ddp)" = fo", 0.1)
we look for solutions satisfying
w+dd¢ > 0. 0.2)

Our main result is the following a priori gradient estimate:
Theorem 1 Let ¢ € C3(M) be a solution of (0.1) satisfying (0.2). Then

[Vo| < Cy,
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318 7. Blocki

where Cy is a positive constant depending only on upper bounds for osce, f,
IV(f1/™)|, on a lower (negative) bound for the bisectional curvature of M, and on n.

Here osc¢ = sup,, ¢ — inf ) ¢ and by a lower bound for the bisectional curvature
we mean a constant — B, where B > 0 is such that

o(X,Y)> —B|XPIY]>?, X,YeTM, 0.3)

0(X,Y)=R(X,Y,Y,X)+ R(X, JY, JY, X) is the bisectional curvature).

Theorem 1 was proved in [2] under the additional assumption B = 0. It is new even
in the non-degenerate case (when one assumes in addition control of f from below
by a positive constant).

One of the main steps in the proof of the Calabi—Yau theorem is a C?-estimate
proved independently by Aubin [1] and Yau [17], which does not make use of any
C!-estimate (and therefore a C!-estimate is not needed when solving this Monge—
Ampere equation). This is a very rare situation in the theory of fully nonlinear ellip-
tic equations of second order. In fact, the main motivation behind Theorem 1 is
an upcoming work on complex Hessian equations on compact Kihler manifolds
where this Aubin—Yau phenomenon, at least apparently, does not appear, and where
the method we use here to prove Theorem 1 will be applied to actually solve an
equation.

As observed by Duong Phong, our gradient estimate may be also used to provide an
alternative proof of the C'-estimates obtained by blow-up arguments in Chen’s proof
of the existence of C!-! geodesic segments in the space of Kihler metrics [7].

By the way, we also revisit the aforementioned C2-estimate and its generalization
to the degenerate case from [2] (which was influenced by P. Guan’s work [8] on the
degenerate real Monge—Ampere equation, see also [4,9]). We will prove the following,
slightly more precise result:

Theorem 2 For ¢ € cH(M) satisfying (0.1) and (0.2) one has
Ag < (C,

where C» is a constant depending only on upper bounds for osc ¢, f and the scalar
curvature of M, on lower bounds for /=Y A(log f) and the bisectional curvature
of M, and on n.

Surprisingly, the proof of Theorem 1, although the method and main ideas are
similar, is more complicated than that of Theorem 2. Similarly as in [2], and unlike
[17], we do not use covariant derivatives in our proofs. The key however is a local
holomorphic change of variables giving (1.2)—(1.4) below.

One can check that the assumptions on f in Theorem 2 are satisfied for example
when || £1/@=D || 22y, is under control.

Dependence on M in Theorems 1 and 2 is quite explicit in terms of its geometry.
One of the main ingredients of the fundamental work of Yau [17] was an a priori
estimate for osc ¢. Together with subsequent simplifications due to Kazdan, Aubin
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A gradient estimate in the Calabi—Yau theorem 319

and Bourguignon, one can show that the following result holds (see e.g. [15] or [6]):
if ¢ satisfies (0.1) and (0.2) then

where Co > 0 depends on M and sup,, f. However, the dependence on M here is not
so geometric as in Theorems 1 and 2.

The technique used by Yau to estimate osc ¢ was Moser’s iteration. Kotodziej [10]
gave another proof using pluripotential theory. In fact, he improved this estimate as

follows: for any p > 1 the constant Cy depends on M, || f||.r(am) and p (see also [5]).
He also showed that for any p > 1, f € LP(M), f > 0, satisfying the necessary

condition
/fa)ﬂ — /wn

M M

there exists ¢ € C (M) such that (in the weak sense)

w+dd°9 >0, (w+dd¢)" = fo", supp =0. (0.4)
M

In [11] it was shown that the solution of (0.4) is unique (see also [3] for a more general
uniqueness result with much simpler proof).
The Calabi—Yau theorem may be now viewed as the following regularity of (0.4):
feC® f>0= peC™.
Theorem 2 easily gives (see [2])

fUa=bechl o Apel® = peC™, a<l.

Plis$ [13], modifying an example of Wang [16], showed that 1/(n — 1) here, and thus
also in Theorem 2, is an optimal exponent. From Theorem 1 we deduce in turn

firect®! = e

Pli$ [14] noticed that from [13] it follows that the optimal exponent here is not bigger
than 1/(n — 2). Recently Kotodziej [12] showed the following Holder regularity:

p>1, feLl = ¢eC™ forsome g > 0.
Here g depends on M, p, and || f||1r(m)-
The author would like to thank Duong Phong for his interest in this topic, Stawomir

Dinew for very careful reading, and Szymon PIiS for finding an error in the previous
version of the paper.
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1 Proof of Theorem 1

Without loss of generality we may assume that inf s ¢ = 0, then sup,,; ¢ = oscg =:
Cp. Set

B :=|Vel*
and
a:=logB—vyooq,

where (smooth) y : [0, Co] — R with ¥’ > 0 will be determined later. Since M is
compact, o attains maximum at some O € M. Then

log g <log B(O) +y o9 — y(p(0)), (1.1)

so it is enough to estimate 8(O) (provided that y is under control).

Near O we have w = dd°g for some smooth strongly plurisubharmonic g. By (0.2)
the function u := ¢ + g is strongly plurisubharmonic. We claim that there exists a
holomorphic chart near O where

8ii(0) =k, (1.2)
¢;u(0) =0, (13)
(upz(0)) is diagonal, (1.4)

where lower indices denote partial differentiation: v; = dv/ 9z, v ;= 0v /977 ...
After a linear change of variables we can get (1.2) and (1.4). We then apply another
change of variables of the form F = (F!, ..., F""), where

1 ‘
Flo)=7+ 5 aészzk

and aljk = a,lq., which changes neither (1.2) nor (1.4). For g := g o F we have

gp=g0oFF., g;=ggoFF,Fk
and

Zpam = &g © F Fpp FY + g, 0 F Fy FY F,
Since F!,(0) = 8y, F},,(0) =dl,,,, we have

gpém(O) = a[q7m + &pgm(0).

Therefore, choosing agm = —gpgm(0), we will also get (1.3).
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A gradient estimate in the Calabi—Yau theorem 321
We have 8 = g/kg;¢r, where (/%) is the inverse transposed of (g;7), that is
g;i8’ = bu. (1.5)
We get
Bp = ") p0j0r + 8% 0jp0r + ¢ 0j0 1.
Since
"y = —8"¢%gsip (1.6)
(which we obtain differentiating (1.5)), from (1.2) to (1.4) at O we infer
B=> loil
J
Br =D 0jpej+eplups — 1), 1.7)
J
Bos = (87 pppjor +2Re D upsjvi + D lojpl* + ¢ (1.8)
J J
At O we have
13
(gj )pﬁ:_gj]}pﬁ:Rﬂ}p,‘,, (1.9
provided that we normalize the definition of d¢ to
1. -
d¢ = Zz(a —9d), (1.10)
so that dd® = 99 /2 and
i . —
Note that (0.3) is pointwise equivalent to
R zpq@’a*bPbe > —Blal*|b]*, a.b e C". (1.11)

On the other hand
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Since a,(0) = 0, at O we have

Boo 1By
app = ;” - —v"10pl> = ¥'0p5
ﬂ -
= =22 =0 + 7" len = ¥'onp. (1.12)

where with some abuse of notation we denote ' = y'(¢(0)), ¥ = y"(¢(0)).
Near O we have

det(upg) = f det(gpg) =: f-
Differentiating both sides and dividing by fwe get
uPlu g = (log f);. (1.13)

By (1.2)—(1.4) this means at O
> = (log ),
o Upp

Combining this with (1.8), (1.9), (1.11), (1.12), and the fact that ¢ has maximum at
O, we obtain

. { ’ 1 lgjpl?
02> 2= (/=B ——+2Re > (og f)jp;+5 > ~ i
Upp upp B i P ton
p 7 j J:P
N2 " |(Pp|2 /
—[ +y"1 2~y -
o Upp

The proof so far was essentially the same as in [2] (except for the way we changed
variables). If B = 0 then in order to get rid of u,5’s in (1.14) one could take y (1) =
27 og(2t41) (then y’ = 2Co+ 1)1, —[y" 4+ (¥")?] = (2Co+1)72), and we could
easily estimate 8. However, one cannot construct y withy” > Band —[y"+(y’ )21>0
if B > 1/Cy.

To improve the method from [2] we will in addition estimate the term

1< lojpl?
v
p ip PP

from below. Since «,(0) = 0, at O we have B, = y'By,. Using (1.7) this means
that (at O)

Z(ﬂjp(ﬂj =/ B+1—upp)ep.
J
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By the Schwarz inequality

2

Z‘R/p‘ﬂ] =B Z l9ipl?
J J

and thus (at O)

2
|

I\/

B upp

J:P

l9jp* iZ ('B+1—upp)lep
2 > Upp

v

=

1% 2
/)22 u[’_ _2)//__’
» “ep
where we have used the inequality
/ N2 N2 2 _ / _
VB+1—upp) =) B —2upp —2y Bupp
(and the fact that y’ > 0). Moreover,

VUYL F
fl/n - 2f1/n’

IV(og /)| =n
where
. 2 1/n
Fy = —sup|V(f /")
n oy

Assuming in addition that 8(0) > 1

2|V(log f)|

T = Vo Pl = - i

1
fl/n -

2
gRe > (og f)p; = —
J

(1.15)

Flz—

Upp

by the inequality between arithmetic and geometric means. Combining this with (1.14)

and (1.15)

1 lopl*
02 =B=F)Y ——y' 3 = +2)y -2
p PP p

pp

This time we can easily find a right y, for example set

1
y(@) == (B+ F| +3)t — C—tz, 0<t<Co.
0
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Then
/ i 2
B+F+1<y <B+F+3, -y =
0
Therefore
12 el ,
Dt D> =D =24+ DB+ +3). (116)
~upp - Co S upp
Thus
1
— < D.
Upp

Combining this with u 7 ... uu5 < Fo := supy, f, we get
Upp < F()Dnil.
Using (1.16) again

CoFoD"

2 <
lopl”™ < )

and therefore

nC()FoD")

B(0) < max (1, 5

Combining this with (1.1), and since oscy = y(Co) = Co(B + F1 + 2), we get
Theorem 1 with

CoF
CF = OPHITD max (1, SR+ DB+ Fi+ 3)1")
(the constants are of course subjected to the normalization given by (1.10)).

2 Proof of Theorem 2
By (0.2)
Ap = ngE(pﬂ; > —n

(A denotes the complex Laplacian which is the double of the real one). We keep the
previous notation, except that this time we set

o :=log(A¢p +n) — Agp,
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where a constant A > 0 will be determined later. As before, the functionu = g + ¢
is defined near O where « attains maximum. We have

(Au)p
Au
C(Awps (Aw),l?

PP Au (Au)?

%p = — Agp,

+ A= Aupp. @.1)
By (1.2)~(1.4), (1.6), (1.9) at O we will get
(Au)p = Z”jip’

(Au)pp = ZRIIPP i + Z Ujipp: 22

Differentiating (1.13) and using (1.6) for u we obtain
upququjf = (log f);; + uptusqupq/'u”—]f.
Similarly
(log f) ;7= (og f) 7+ 878,57 — 8" 8" 8paj8si7-

At O by (1.2)—(1.4) we thus get

Uiipp |t pg|*
]”ip = Adlog f) — ZRJJPP + Z —pal

oo PP Jip jopaq 'PPYa4
F 7,1
>~ /m{l) —s+ > L (2.3)
f jop PP
where
Fy := max (o, —inf [f1/<”—1>A(1og f)])
and S denotes an upper bound for the scalar curvature.
By the Schwarz inequality
2
|”/’7p|2
(A, Zu“,, < Audyl = 2.4)

j Ji
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Combining (2.1)-(2.4) and using the fact that & has maximum at O, we get there

App oy F 1
0= 2 2 S | g~ ey S | FAY - nA @)
Upp ip upp f 5 Upp

We also have

Ziju _ Bz Y =—BAL¢Z— (2.6)

i T Hpp Upp

1
2 — = =DV @YD = (A HV @)
p ‘pp

From (2.5) to (2.7) with A := B + 1 we get

0> (A" D —u(B + 1) /DAy — F, — 50D
> (A=Y B+ 1)F)/ "V Au— F, — SF/" 7Y,

Since for x, a, b,e > 0
T —ax—bh<0 = x <max ((Za)]/g, (2b)]/(1+8)) ,
we get
Au(0) = max ([2(B + D'~ Fo, [2(F + SFy/ "~ e=D/m)
But
Ap+n < A9 < oACo Ay (0)
and we obtain Theorem 2 with

Ca = e max (12n(B + DI"™' Fo, [20F + SFy/ "~ )1e=/m) —

References

1. Aubin, T.: Equations du type de Monge—Ampere surles variétés Kihleriennes compactes. C. R. Acad.
Sci. Paris 283, 119-121 (1976)

2. Btocki, Z.: Regularity of the degenerate Monge—Ampére equation on compact Kihler manifolds. Math.
Z.244, 153-161 (2003)

3. Btocki, Z.: Uniqueness and stability for the Monge—Ampére equation on compact Kahler manifolds.
Indiana Univ. Math. J. 52, 1697-1702 (2003)

4. Btocki, Z.: Interior regularity of the degenerate Monge—Ampere equation. Bull. Austral. Math. Soc.
68, 81-92 (2003)

5. Btocki, Z.: On uniform estimate in Calabi—Yau theorem. Sci. China Ser. A 48(suppl), 244-247 (2005)

@ Springer



A gradient estimate in the Calabi—Yau theorem 327

10.
. Kotodziej, S.: Stability of solutions to the complex Monge—Ampere equation on compact Kihler mani-

12.

14.
15.
16.

17.

. Btocki, Z.: The Monge—Ampere equation on compact Kihler manifolds. unpublihed lecture notes,

course given at Winter School in Complex Analysis, Toulouse (2005). http://gamma.im.uj.edu.pl/
~blocki/publ/

. Chen, X.X.: The space of Kiahler metrics. J. Diff. Geom. 56, 189-234 (2000)
. Guan,P:C2a priori estimates for degenerate Monge—Ampere equations. Duke Math. J. 86, 323-346

(1997)

. Guan, P, Trudinger, N.S., Wang, X.-J.: On the Dirichlet problem for degenerate Monge—Ampére

equations. Acta Math. 182, 87-104 (1999)
Kotodziej, S.: The complex Monge—Ampere equation. Acta Math. 180, 69—117 (1998)

folds. Indiana Univ. Math. J. 52, 667-686 (2003)

Kotodziej, S.: Holder continuity of solutions to the complex Monge—Ampere equation with the right
hand side in L?. The case of compact Kihler manifolds, arXiv:math/0611051v1. Math. Ann. (2009,
in press)

. Pli§, Sz.: A counterexample to the regularity of the degenerate complex Monge—Ampére equation. Ann.

Polon. Math. 86, 171-175 (2005)

Plis, Sz.: Personal communication (2008)

Tian, G.: Canonical metrics in Kéhler geometry. Birkhéduser, Basel (2000)

Wang, X.-J.: Some counterexamples to the regularity of Monge—Ampére equations. Proc. Am. Math.
Soc. 123, 841-845 (1995)

Yau, S.-T.: On the Ricci curvature of a compact Kéhler manifold and the complex Monge—Ampere
equation, I. Comm. Pure Appl. Math. 31, 339-411 (1978)

@ Springer


http://gamma.im.uj.edu.pl/~blocki/publ/
http://gamma.im.uj.edu.pl/~blocki/publ/

	A gradient estimate in the Calabi--Yau theorem
	Abstract
	0 Introduction
	1 Proof of Theorem 1
	2 Proof of Theorem 2


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


