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The C*! Regularity of the
Pluricomplex Green Function

ZBIGNIEW BRLOCKI

If QisadomaininC” and¢ € 2, then the pluricomplex Green function§thwith
pole at¢ is defined as
g =suplu e PSHQ) : u < 0, limsup(u(z) — log|z — ¢|) < oo}

z—>¢

(see [5] for details). The main goal of this note is to prove the following result.

THEOREM 1. Let Q be aC™ strictly pseudoconvex domain @, and letg be

the pluricomplex Green function g with pole at some € Q. Theng is C+1

in Q\ {¢} (thatis,g is C*1 in Q\ {¢} and the second derivative gfis bounded
near o).

An example given in [1] shows thgtneed not b&? smooth up to the boundary.
It remains an open problem if, in that exampdez C2(Q2 \ {p}).

In [4], Guan claimed to prove th€* regularity for everye < 1. However,
the proof was incomplete because the inequality (3.6) in [4] is false. In a correc-
tion to [4], written after | had sent him a preliminary version of this paper (with
the proof of Theorem 1), Guan has given a new proof ofG@hé regularity.

Our proof will be based on a construction from [4] of an approximating se-
quence fog and an idea from [2] used to shai*! regularity for the solutions of
the complex Monge—Ampére equation in a ball (see also [3]).

Using similar methods, one can also characterize domains where the Green
function is Lipschitz up to the boundary. We recall that a domai@’inis called
hyperconvexf it admits a bounded PSH exhaustion function.

THEOREM 2. Let Q be a bounded hyperconvex domaindf, and letg be the
Green function of2 with a pole atz € Q. Theng € C%XQ \ {¢}) if and only if
there exists) € PSH(Q) with

—Cdist(z,92) < ¥(z) <0, zeQ,
for someC > 0.
Proof of Theorem 1We may assume that = 0. Chooses > 0 such that

B. € Q, and setQ, = Q \ B.. By [4], there is a sequence of function$
PSH(,) N C*(L2,) which increase locally uniformly tg on 2\ {0} ase | 0 and
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which satisfyu® = 0 ond$2 andu® = log|z| + ¥ on dB., wherey is smooth in
Q and detufj) = ¢. It follows that the tangential derivatives of the second order
of u® with respect tdB, are bounded; that is,

IV2(uf )l < C1. )
In addition, it was shown in [4] that the’ satisfy
VUt llag, 1V2uf [lag < Ca. 2)

HereC; andC, are constants depending only @n
Fix K € @\ {0}. By C3, Cq4, ... we will denote positive constants depending
only on2 andK. We need to show that
IV2ullk < Ca. ®)

Forg € C" \ {0} with |¢| = 1, let 9, denote the directional derivative in the direc-
tion ¢. Sinceu® is plurisubharmonic, we have

dfu® + dfu® = 0.
This easily gives

. & h & _ h _ 2 &
V24" (@)] = supdZu‘ (a) = lim sup” athn+u (az ) — 2u®(a)
I¢1=1 h—0 |h|

(4)

fora e K.
We will need a lemma as follows.

LEMMA. Let0 < g9 < r1 <rpandR > 0. Then there exis8 > 0 and aC®
smooth mapping

T:[0, 0] x (B,, \ B,,) X Bs x Bg —> C"
(B, stands for an open ball centered at the origin with raditusuch that
T(g,a, h,-) is holomorphic inBg,
T(e,a, h,-) mapsoB, onto dB,, (5)
T(e,a,h,a) =a+h,
T(e,a,0,2) =z

Proof. Let T'(¢, a, h, -) be a holomorphic automorphism 8f (defined, in fact,
on By) of the formU o P, where
. b b
<|Zb|2>b + 1= |b|2<z - <|Zb|2)b> — b
P L) — )
@) =¢ e—(z.b)

|b| < R/¢ (see [6]), andJ is a linear orthogonal mapping with

h h
P(a) = la + |a’ U(|a+ |a)=a+h.
la| la|
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One can check that the first condition is satisfiebl # cxa, where
la + h| — |a|
o = -
lal(la + hlla| — &)

This gives
%a +J1- 82a2|a|2(z — <|Z’ ;)a) — c%qa
a
P(z) =
© 1-a(z.a)
The existence of an appriopriate depending smoothly amandh and in fact in-
dependent of, is clear. O

Proof of Theorem 1 (cont.).et 2" and2” be domains such th#t € Q' € Q" €
Q. We will use the foregoing lemma withy, r» and R such thatk C B,, \ B,
andQ C Bg. Forz € Q” andh, ¢ small enough, set

v() =u’(T(e,a,h,z)+u’(T(e, a, —h,z))

so that it is well-defined and(a) = u®(a + h) + u®(a — h).
A Taylor expansion about the origin of an arbitrary smooth funciiagives

f(h) + f(=h) = 2f(0) + J(V2F (W) + V2F(h")) - h?
for someh’ € [0, h] andh” € [0, —h]. Therefore, by (1) and (2),

v(2) < 2u®(z) + Calh|?, z€0B,. (6)
On the other hand,

v(2) < 2u®(z) + Clhf?, zedQ’, 7
where ;

C= sup |Viw oT)(e a ' 2l
[W|<|h|,z€0Q2”

It follows that ~

C = Cs(IV2ulllgygr + IV 11, ) (®)

for 1 small enough. Since the mappidg— (detA)Y” is superadditive on the set
of positive hermitian matrices, we have

(det(v;;) " > e¥"(|JacT (¢, a, h, )|?" + |JacT (e, a, —h, -)|*/")
> e7"(2— Cglh|?). 9)
Let M > 0 be such thaz|2 — M < 0 forz € Q, and define
w(z) = v(z) — max{Ca, C}h|* + " Celh*(1z” — M).

Thenw is PSH inQ”, w < 2u® ondB, U aQ" by (6) and (7), and détv;;) > 2"¢
in Q” by (9). The comparison principle (see e.g. [2]) now implies that 2u°®
in Q”. In particular,w(a) < 2u®(a), and this coupled with (4) and (8) gives
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IV2u*(@)] < C7(IV2ulllgygr + IV 11, ) + C.
Since2’ can be chosen to be arbitrarily close?o (3) follows thanks to (2). O

Proof of Theorem 2The “only if” part is obvious. Assume again that= 0 and
fix K € @\ {0}. Letr > O be suchthaB, € Q. For0< ¢ < r, define
u® :=supfv e PSH(Q) : v < 0, v|p, <log(e/r)}.

Then one can easily show théte PSHQ)NC(R), u® = 00ndQ, u® = log(e/r)
on B, andu® | g ase | O (see e.g. [5]). Sincgis a maximal PSH function near
92, we may assume that

u® > g >y neardQ. (10)
Fora € K, ¢ as before, and small enough, define
Q' ={zeQ:T(s,a,h,z)e).
By (10) and the assumption ahwe have
ut(z) > ¥(z) > —Cdist(z, 0Q) > —C'|h|, z€d/,
whereC’ depends only oK and2. Hence, forz € 9Q’ we have
u®(T(e,a,h,z2)) <0<u’(z)+ C'|h|.
Sinceu® is maximal on2’ \ B,, (1) gives
u®(T(e,a,h,2)) <u’(z) +C'lh|, zeQ'
Thus, ifz = a fora € K and|k| < §, wheres depends only oK and$2, we have
ut(a+h) < u(a) + C'|h|

and the theorem follows. O
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