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TheC1,1 Regularity of the
Pluricomplex Green Function

Z bigniew Błock i

If � is a domain inCn andζ ∈�, then the pluricomplex Green function in�with
pole atζ is defined as

g = sup{u∈PSH(�) : u < 0, lim sup
z→ζ

(u(z)− log|z− ζ|) <∞}

(see [5] for details). The main goal of this note is to prove the following result.

Theorem 1. Let � be aC∞ strictly pseudoconvex domain inCn, and letg be
the pluricomplex Green function of� with pole at someζ ∈ �. Theng is C1,1

in �̄ \ {ζ } (that is,g isC1,1 in � \ {ζ } and the second derivative ofg is bounded
near∂�).

An example given in [1] shows thatg need not beC2 smooth up to the boundary.
It remains an open problem if, in that example,g /∈C2(� \ {p}).

In [4], Guan claimed to prove theC1,α regularity for everyα < 1. However,
the proof was incomplete because the inequality (3.6) in [4] is false. In a correc-
tion to [4], written after I had sent him a preliminary version of this paper (with
the proof of Theorem 1), Guan has given a new proof of theC1,α regularity.

Our proof will be based on a construction from [4] of an approximating se-
quence forg and an idea from [2] used to showC1,1 regularity for the solutions of
the complex Monge–Ampère equation in a ball (see also [3]).

Using similar methods, one can also characterize domains where the Green
function is Lipschitz up to the boundary. We recall that a domain inCn is called
hyperconvexif it admits a bounded PSH exhaustion function.

Theorem 2. Let � be a bounded hyperconvex domain inCn, and letg be the
Green function of� with a pole atζ ∈�. Theng ∈ C 0,1(�̄ \ {ζ }) if and only if
there existsψ ∈PSH(�) with

−C dist(z, ∂�) ≤ ψ(z) < 0, z∈�,
for someC > 0.

Proof of Theorem 1.We may assume thatζ = 0. Chooseε > 0 such that
Bε b �, and set�ε = � \ B̄ε. By [4], there is a sequence of functionsuε ∈
PSH(�ε)∩C∞(�̄ε)which increase locally uniformly tog on�̄\{0} asε ↓ 0 and
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which satisfyuε = 0 on∂� anduε = log|z| + ψ on ∂Bε, whereψ is smooth in
�̄ and det(uεi̄ ) = ε. It follows that the tangential derivatives of the second order
of uε with respect to∂Bε are bounded; that is,

‖∇2(uε|∂Bε )‖ ≤ C1. (1)

In addition, it was shown in [4] that theuε satisfy

‖∇uε‖∂�, ‖∇2uε‖∂� ≤ C2. (2)

HereC1 andC2 are constants depending only on�.
Fix K b � \ {0}. By C3, C4, . . . we will denote positive constants depending

only on� andK. We need to show that

‖∇2uε‖K ≤ C3. (3)

For ζ ∈Cn \ {0} with |ζ| = 1, let ∂ζ denote the directional derivative in the direc-
tion ζ. Sinceuε is plurisubharmonic, we have

∂2
ζ u

ε + ∂2
iζu

ε ≥ 0.

This easily gives

|∇2uε(a)| = sup
|ζ|=1

∂2
ζ u

ε(a) = lim sup
h→0

uε(a + h)+ uε(a − h)− 2uε(a)

|h|2 (4)

for a ∈K.
We will need a lemma as follows.

Lemma. Let 0 < ε0 < r1 < r2 andR > 0. Then there existδ > 0 and aC∞

smooth mapping

T : [0, ε0] × (B̄r2 \ Br1)× B̄δ × B̄R 7−→ Cn

(Br stands for an open ball centered at the origin with radiusr) such that

T(ε, a, h, ·) is holomorphic inBR,

T (ε, a, h, ·) maps∂Bε onto ∂Bε, (5)

T(ε, a, h, a) = a + h,
T (ε, a,0, z) = z.

Proof. Let T(ε, a, h, ·) be a holomorphic automorphism ofBε (defined, in fact,
onBR) of the formU B P, where

P(z) = ε
〈z, b〉
|b|2 b +

√
1− |b|2

(
z− 〈z, b〉|b|2 b

)
− εb

ε − 〈z, b〉 ,

|b| < R/ε (see [6]), andU is a linear orthogonal mapping with

P(a) = |a + h||a| a, U

( |a + h|
|a| a

)
= a + h.
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One can check that the first condition is satisfied ifb = εαa, where

α = |a + h| − |a|
|a|(|a + h||a| − ε2)

.

This gives

P(z) =
〈z, a〉
|a|2 a +

√
1− ε2α2|a|2

(
z− 〈z, a〉|a|2 a

)
− ε2αa

1− α〈z, a〉 .

The existence of an appriopriateU, depending smoothly ona andh and in fact in-
dependent ofε, is clear.

Proof of Theorem 1 (cont.).Let�′ and�′′ be domains such thatK b �′ b �′′ b
�. We will use the foregoing lemma withr1, r2 andR such thatK ⊂ B̄r2 \ Br1
and� ⊂ BR. For z∈�′′ andh, ε small enough, set

v(z) := uε(T (ε, a, h, z))+ uε(T (ε, a,−h, z))
so that it is well-defined andv(a) = uε(a + h)+ uε(a − h).

A Taylor expansion about the origin of an arbitrary smooth functionf gives

f(h)+ f(−h) = 2f(0)+ 1
2(∇2f(h′)+∇2f(h′′)) · h2

for someh′ ∈ [0, h] andh′′ ∈ [0,−h]. Therefore, by (1) and (2),

v(z) ≤ 2uε(z)+ C4|h|2, z∈ ∂Bε. (6)

On the other hand,

v(z) ≤ 2uε(z)+ C̃|h|2, z∈ ∂�′′, (7)

where
C̃ = sup

|h′|≤|h|,z∈∂�′′
|∇2

h(u
ε B T )(ε, a, h′, z)|.

It follows that
C̃ ≤ C5(‖∇2uε‖�̄\�′ + ‖∇uε‖2�̄\�′) (8)

for h small enough. Since the mappingA 7→ (detA)1/n is superadditive on the set
of positive hermitian matrices, we have

(det(vi̄ ))
1/n ≥ ε1/n

(|JacT (ε, a, h, ·)|2/n + |JacT (ε, a,−h, ·)|2/n)
≥ ε1/n(2− C6|h|2). (9)

LetM > 0 be such that|z|2 −M ≤ 0 for z∈�, and define

w(z) = v(z)−max{C4, C̃}|h|2 + ε1/nC6|h|2(|z|2 −M).
Thenw is PSH in�′′, w ≤ 2uε on∂Bε ∪ ∂�′′ by (6) and (7), and det(wi̄ ) ≥ 2nε
in �′′ by (9). The comparison principle (see e.g. [2]) now implies thatw ≤ 2uε

in �′′. In particular,w(a) ≤ 2uε(a), and this coupled with (4) and (8) gives
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|∇2uε(a)| ≤ C7(‖∇2uε‖�̄\�′ + ‖∇uε‖2�̄\�′)+ C8.

Since�′ can be chosen to be arbitrarily close to�, (3) follows thanks to (2).

Proof of Theorem 2.The “only if ” part is obvious. Assume again thatζ = 0 and
fix K b � \ {0}. Let r > 0 be such thatBr b �. For 0< ε < r, define

uε := sup{v ∈PSH(�) : v < 0, v|Bε ≤ log(ε/r)}.
Then one can easily show thatuε ∈PSH(�)∩C(�̄), uε = 0 on∂�, uε = log(ε/r)
on B̄ε, anduε ↓ g asε ↓ 0 (see e.g. [5]). Sinceg is a maximal PSH function near
∂�, we may assume that

uε ≥ g ≥ ψ near∂�. (10)

Fora ∈K, ε as before, andh small enough, define

�′ = {z∈� : T(ε, a, h, z)∈�}.
By (10) and the assumption onψ we have

uε(z) ≥ ψ(z) ≥ −C dist(z, ∂�) ≥ −C ′|h|, z∈ ∂�′,
whereC ′ depends only onK and�. Hence, forz∈ ∂�′ we have

uε(T (ε, a, h, z)) ≤ 0 ≤ uε(z)+ C ′|h|.
Sinceuε is maximal on�′ \ B̄ε, (1) gives

uε(T (ε, a, h, z)) ≤ uε(z)+ C ′|h|, z∈�′.
Thus, ifz = a for a ∈K and|h| < δ,whereδ depends only onK and�,we have

uε(a + h) ≤ uε(a)+ C ′|h|
and the theorem follows.
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