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WEAK SOLUTIONS
TO THE COMPLEX HESSIAN EQUATION

by Zbigniew B�LOCKI

1. Introduction.

For a smooth function u defined on an open subset of Cn and
m = 1, . . . , n the elementary complex Hessian operator is defined by

Hm(u) =
∑

1�j1<...<jm�n
λj1 . . . λjm ,

where λ1, . . . , λn are the eigenvalues of the complex Hessian (∂2u/∂zj∂zk).
We have H1 = ∆/4 and Hn is the complex Monge-Ampère operator. Using
the operators d = ∂ + ∂ and dc = i(∂ − ∂), so that ddc = 2i∂∂, one gets

(ddcu)m ∧ ωn−m = 4nm!(n−m)!Hm(u) dλ,

where ω = ddc|z|2 is the fundamental Kähler form and dλ is the volume
form.

The class of smooth admissible functions for the operator Hm is
naturally defined by the condition Hm(u + A|z|2) � 0 for every A � 0.
Using for example approximation by smooth functions one can define this
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notion also for non-smooth functions. We will denote this class by Pm and
call such functions m-subharmonic. We clearly have

PSH = Pn ⊂ . . . ⊂ P1 = SH.

The class Pm is essentially determined by the following property

ddcu1 ∧ . . . ∧ ddcum ∧ ωn−m � 0, u1, . . . , um ∈ Pm ∩ C∞.

It would be interesting to find a geometric characterization of such func-
tions. A necessary condition is ddcu ∧ ωm−n � 0, which means that u is
subharmonic on every complex n − m + 1-dimensional affine subspace of
C
n, but this condition is not sufficient if 1 < m < n.

The aim of this paper is to study basic, mostly local properties of
m-subharmonic functions and the operator Hm. Similarly as in [4] or [5]
one can introduce the domain of definition of the operator Hm: a function
u ∈ Pm is said to belong to the classDm if there is a regular Borel measure µ

such that if uj is a decreasing sequence of smooth m-subharmonic functions
converging to u (we consider only germs of functions, uj may be defined on
a smaller domain than u) then Hm(uj) tends weakly to µ. For u ∈ Dm we
set Hm(u) = µ and one can easily show that Dm is the maximal subclass of
Pm where the operator Hm can be extended (the values of Hm are regular
Borel measures) so that it is continuous for decreasing sequences. Similarly
as in [4] and [5] for m = n, we shall completely characterize the class Dm.
We will show in particular the following result.

THEOREM 1.1. — If K � Ω ⊂ Cn and u, v ∈ Pm(Ω) are such that

u ∈ Dm(Ω), u � v in Ω \K, then v ∈ Dm(Ω).

Theorem 1.1 implies for example that the class Dm contains functions
from Pm(Ω) which are locally bounded away from a compact subset of Ω.

One of the main results is the following natural characterization of
m-maximal functions (a function u ∈ Pm(Ω), Ω open in Cn, is called m-
maximal if v ∈ Pm(Ω), v � u outside a compact subset of Ω implies that
v � u in Ω).

THEOREM 1.2. — A function u ∈ Dm is m-maximal if and only if

Hm(u) = 0.

Theorem 1.2 implies in particular that m-maximality of locally
bounded m-subharmonic functions is a local property. We conjecture that
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this is the case without the assumption of boundedness but this is an open
problem even if m = n = 2.

One can check that the function

(1.1) G(z) =
{
−|z|2−2n/m, m < n,
log |z|, m = n.

is a fundamental solution for the operator Hm (note that G ∈ Dm by
Theorem 1.1). We clearly have

(1.2) G ∈ Lp
loc ⇔ p <

nm

n−m
.

This leads naturally to the conjecture that for every p < nm/(n−m) one
has Pm ⊂ Lp

loc. We are only able to show the following partial result.

PROPOSITION 1.3. — For every p < n/(n−m) we have Pm ⊂ Lp
loc.

Note that we get optimal exponent in the well known, extreme cases
m = 1 and m = n.

For m = n we deal with the complex Monge-Ampère operator and
plurisubharmonic functions and the above results are of course known (see
e.g. [1], [2], [5], [11], [18]). The aim of this paper is to concentrate on those
problems related to the Hessian operator where the methods of the complex
Monge-Ampère operator cannot be automatically repeated.

The real Hessian operator has also been studied quite extensively in
the recent years – see e.g. [8], [15], [16], [19], [21], [22]. It is clear that if
u(z) = u(x + iy) is independent of y then it is m-subharmonic if and only
if it is m-convex (see [22]). This means that in a way the complex Hessian
operator is a generalization of the real one and indeed, for example, some
results of Section 2 are generalizations of some results from [22].

The real Hessian operator for functions on open subsets of Rn is
defined in the same way, one only takes the real Hessian instead of
the complex one. Denote the class of m-convex functions by Φm. The
fundamental solution for the real Hessian operator is

H(x) =


−|x|2−n/m, m < n/2,
log |x|, m = n/2,
|x|2−n/m, m > n/2.
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1738 Zbigniew B�LOCKI

One has
H ∈W 1,q

loc ⇔ q <
nm

n−m
.

It was in fact proved in [22, Theorem 4.1] that Φm ⊂ W 1,q
loc for q <

nm/(n −m). From the Sobolev theorem it thus follows that for m � n/2
and p < nm/(n − 2m) we have Φm ⊂ Lp

loc, which is an optimal result in
terms of the exponent p.

In the complex case however it is not possible to prove optimal
Lp estimates for m-subharmonic functions via gradient estimates and the
Sobolev theorem. On one hand we have

G ∈W 1,q
loc ⇔ q <

2nm

2n−m
.

But the function u(z) = log |z1| belongs to Pm for every m, u /∈ W 1,2
loc and

2 < 2nm/(2n−m) if 2 � m � n.

Most of the results of this paper were contained in the first version of
the author paper [5]. Later however, a simpler proof of the characterization
of the domain of definition of the complex Monge-Ampère operator was
found, not employing the complex Hessian operator.

The paper is organized as follows. In Section 2 certain basic facts
on elementary symmetric functions are collected. In Section 3 we prove
the main properties of m-subharmonic functions including a special case
of Theorem 1.2 for continuous functions. The proof relies heavily on an a
priori estimate for a special case of the complex Hessian equation which
is presented in Section 4. We remark that a much more general estimate
and a solution of the Dirichlet problem for non-degenerate equation was
independently shown in [20] with essentially the same methods as below.
Section 5 is devoted to the characterization of the class Dm. Since most
of the proofs are similar to those from [5], they are sketched only briefly.
Finally, in Section 6 we prove Proposition 1.3.

We have concentrated here on the study of weak solutions of complex
Hessian equations and therefore we restricted ourselves to the elementary
Hessian operators Hm - as [22] did for example in the real case. Of course
many results could be generalized here to more general complex Hessian
operators. The existence of strong solutions in domains in Cn for such
equations was recently proved in [20]. In particular, one could study the
operator (ddcu)m ∧ ωn−m on manifolds, where ω is an arbitrary Kähler
form. This would perhaps be interesting from a geometric point of view.

ANNALES DE L’INSTITUT FOURIER



COMPLEX HESSIAN EQUATION 1739

For the global Dirichlet problem on compact Kähler manifolds, in analogy
with the case of the Calabi-Yau theorem, one would have to consider the
operator (ω + ddcϕ)m ∧ ωn−m.

Acknowledgements. — The author would like to thank PaweMl Strze-
lecki for providing the references [6] and [17] (they are used in the remark
at the end of Section 3).

2. Basic properties of elementary symmetric functions.

In this section we recall some basic facts from (multi-)linear algebra
needed in the paper. We set

Sm(λ) =
∑

1�j1<...<jm�n
λj1 . . . λjm , λ = (λ1, . . . , λn) ∈ Rn.

The elementary symmetric function Sm is determined by

(λ1 + t) . . . (λn + t) =
n∑

m=0

Sm(λ)tn−m, t ∈ R.

By Γm we denote the closure of the connected component of {Sm > 0}
containing (1, . . . , 1). One can show that

Γm = {λ ∈ Rn : Sm(λ1 + t, . . . , λn + t) � 0 ∀t � 0}

and, since

Sm(λ1 + t, . . . , λn + t) =
m∑
p=0

Sp(λ)tm−p, t ∈ R,

we also have
Γm = {S1 � 0} ∩ . . . ∩ {Sm � 0}.

In particular
Γn ⊂ . . . ⊂ Γ1.

By G̊arding [14] the set Γm is a convex cone in Rn and S
1/m
m is concave on

Γm. By Maclaurin inequality on Γm one also has(
n

m

)−1/m

S1/m
m �

(
n

p

)−1/p

S1/p
p , 1 � p � m.
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By H we will denote the vector space (over R) of (complex) hermitian
n×n matrices. For A ∈ H let λ(A) = (λ1, . . . , λn) ∈ Rn be the eigenvalues
of A. We set

S̃m(A) = Sm(λ(A)).

The function S̃m is determined by

det(A + tI) =
n∑

m=0

S̃m(A)tn−m, t ∈ R.

Then S̃m is a homogeneous polynomial of order m on H which is hyperbolic
with respect to I (that is for every A ∈ H the equation S̃m(A + tI) = 0
has m real roots; see [14]). As in [14] we define the cone

Γ̃m := {A ∈ H : S̃m(A + tI) � 0 ∀t � 0}.

We have

Γ̃m = {A ∈ H : λ(A) ∈ Γm} = {S̃1 � 0} ∩ . . . {S̃m � 0}.

It was proved in [14] that the cone Γ̃m is convex and the function S̃
1/m
m is

concave on Γ̃m.

Let M : Hm → R be the polarized form of S̃m - it is determined by
the following three properties: M is linear in every variable, symmetric and

M(A, . . . , A) = S̃m(A), A ∈ H.

The inequality due to G̊arding [14, Theorem 5] asserts that

(2.1) M(A1, . . . , Am) � S̃m(A1)1/m . . . S̃m(Am)1/m, A1, . . . , Am ∈ Γ̃m.

Real (1, 1)-forms β we associate with hermitian matrices (ajk) by

β = 2
∑
j,k

ajkidzj ∧ dzk

(so that ω is associated with the identity matrix I). After diagonalizing
(ajk), we see that

βm ∧ ωn−m = m!S̃m((ajk))ω
n.
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It is also clear that β1∧ . . . βm∧ωn−m is the polarized form of βm∧ωn−m.
Accordingly, we set

Γ̂m := {β ∈ C(1,1) : β ∧ ωn−1 � 0, β2 ∧ ωn−2 � 0, . . . , βm ∧ ωn−m � 0}.

The crucial fact for us will be the following property.

PROPOSITION 2.1. — For β1, . . . , βp ∈ Γ̂m, p � m, we have

β1 ∧ . . . ∧ βp ∧ ωn−m � 0.

Proof. — We need to show that for any (1, 0) forms α1, . . . , αm−p we
have

iα1 ∧ α1 ∧ . . . ∧ iαm−p ∧ αm−p ∧ β1 ∧ . . . ∧ βq ∧ ωn−m � 0.

But since iαj ∧ αj ∈ Γ̂n ⊂ Γ̂m (this is because (iαj ∧ αj)2 = 0), we
may assume that p = m. Then the proposition follows from the G̊arding
inequality (2.1). �

For B ∈ H we define

Dm(B) :=

(
∂S̃m

∂bpq
(B)

)
∈ H.

We then have
tr(ADm(B)) = mM(A,B, . . . , B),

in particular

(2.2) tr(BDm(B)) = S̃m(B).

If B is diagonal then so is Dm(B). If λ = λ(B) then

λ(Dm(B)) = (Sm−1(λ(1)), . . . , Sm−1(λ(n))),

where λ(j) = (λ1, . . . , λj−1, λj+1, . . . , λn). If B ∈ Γ̃m then for t > 0

Sm−1(λ(j)) = t−1
(
Sm(λ + (0, . . . , t, . . . , 0))− Sm(λ)

)
� 0

TOME 55 (2005), FASCICULE 5



1742 Zbigniew B�LOCKI

so that Dm(B) � 0. By (2.1) we have

(2.3) tr(ADm(B)) � mS̃m(A)1/mS̃m(B)(m−1)/m, A,B ∈ Γ̃m,

and

S̃m(A)1/m =
1
m

inf{M(A,B, . . . , B) : B ∈ Γ̃m, S̃m(B) � 1}

=
1
m

inf{tr(ADm(B)) : B ∈ Γ̃m, S̃m(B) � 1}, A ∈ Γ̃m.

3. The m-subharmonic functions
and the complex Hessian operator.

In this section we define the class of admissible functions for the
complex Hessian operator Hm and prove their basic properties. Most of
the proofs are the same as in the case of plurisubharmonic functions and
the Monge-Ampère operator (that is when m = n) and therefore we will
present them only briefly.

A function u is called m-subharmonic (we write u ∈ Pm) if it is
subharmonic and

ddcu ∧ β1 ∧ . . . ∧ βm−1 ∧ ωn−m � 0, β1, . . . , βm−1 ∈ Γ̂m.

The following basic properties of m-subharmonic functions either follow
immediately from Proposition 2.1 or can be proven in the same way as in
the classical case, and therefore their proofs are left to the reader.

PROPOSITION 3.1. — i) If u is C2 smooth then it is m-subharmonic

if and only if the form ddcu belongs pointwise to Γ̃m;

ii) If u, v ∈ Pm then u + v ∈ Pm;

iii) If u ∈ Pm and γ : R → R is a convex, increasing function then

γ ◦ u ∈ Pm;

iv) If u is m-subharmonic then the standard regularizations u∗ρε are

also m-subharmonic ;

v) If {uι} ⊂ Pm is locally uniformly bounded from above then

(supι uι)∗ ∈ Pm, where v∗ denotes the upper regularization of v;

vi) PSH = Pn ⊂ . . . ⊂ P1 = SH. �
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The next result was proven in [23] for m = n.

PROPOSITION 3.2. — For a bounded domain Ω in Cn and f ∈ C(Ω)
set

u := sup{v ∈ Pm(Ω) : v � f}.
Assume moreover that u∗ = u∗ = f on ∂Ω. Then u ∈ Pm(Ω) ∩ C(Ω).

Proof. — It is clear that u∗ ∈ Pm(Ω) and u∗ � f , thus u = u∗ is
upper semi-continuous in Ω. To show the lower semi-continuity in Ω fix
z0 ∈ Ω and ε > 0. From the uniform continuity of f on Ω and of u = f on
∂Ω it follows that we can find δ > 0 such that

(3.1) dist (z0, ∂Ω) � 2δ,

(3.2) z ∈ Ω, w ∈ ∂Ω, |z − w| � 3δ ⇒ |u(z)− f(w)| � ε,

(3.3) z, z′ ∈ Ω, |z − z′| � δ ⇒ |f(z)− f(z′)| � 2ε.

Fix z̃ with |z0 − z̃| � δ. For z ∈ Ω set

v(z) :=
{

max{u(z + z0 − z̃)− 2ε, u(z)}, dist (z, ∂Ω) � δ,

u(z), dist (z, ∂Ω) < δ.

If dist (z, ∂Ω) � 2δ then we can find w ∈ ∂Ω with |w− z| � 2δ. Using (3.2)
twice we get

u(z + z0 − z̃) � f(w) + ε � u(z) + 2ε.

This implies that v(z) = u(z) if dist (z, ∂Ω) � 2δ, and thus v ∈ Pm(Ω). On
the other hand, if dist (z, ∂Ω) � δ, then by (3.3)

u(z + z0 − z̃) � f(z + z0 − z̃) � f(z) + 2ε

and it follows that v � f in Ω. Therefore v � u in Ω and by (3.1)

u(z̃) � v(z̃) � u(z0)− 2ε,

hence u is lower semi-continuous. �

Proposition 3.2 will mostly be used in the situation when Ω is a
regular domain (with respect to harmonic functions) and f is harmonic in
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Ω. In such a case, from the maximum principle it follows that the condition
v � f in the definition of u is equivalent to v∗ � f on ∂Ω.

For continuous m-subharmonic functions we can inductively define a
closed nonnegative current

(3.4)
ddcu1 ∧ . . . ddcup ∧ ωn−m := ddc

(
u1dd

cu2 ∧ . . . ∧ ddcup ∧ ωn−m)
,

u1, . . . , up ∈ Pm ∩ C, p � m.

(We have used the fact that the coefficients of nonnegative currents are
complex measures, see e.g. [13].) We can also define a nonnegative current
(3.5)

d(u0 − u1) ∧ dc(u0 − u1) ∧ ddcu2∧ . . . ∧ ddcup ∧ ωn−m

u0, u1, . . . , up ∈ Pm ∩ C, p � m.

as follows. We note that

d(u0−u1)∧dc(u0−u1) = 2du0∧dcu0+2du1∧dcu1−d(u0+u1)∧dc(u0+u1)

and
du ∧ dcu =

1
2
ddc(u + C)2 − (u + C)ddcu, u ∈ Pm ∩ C,

where C is sufficiently big, and use the previous part.

The proofs of the following three results for m = n can be essentially
found in [1].

PROPOSITION 3.3. — The operators (3.4) and (3.5) are continuous for

locally uniformly convergent sequences in Pm ∩ C.

Proof. — It is enough to prove the continuity of the operator

(Pm ∩ C)p � (u1, . . . , up) �−→ u1dd
cu2 ∧ . . . ∧ ddcup ∧ ωn−m.

This follows inductively from the fact that the coefficients of a nonnegative
current are complex measures and since the convergence is uniform. �

PROPOSITION 3.4. — For u, v ∈ Pm ∩ C we have

(ddc max{u, v})m∧ωn−m � χ{u>v}(ddcu)m∧ωn−m+χ{u�v}(ddcv)m∧ωn−m,

where χA denotes the characteristic function of a set A.
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Proof. — For a compact K ⊂ {u = v} by Proposition 3.3 we have∫
K

(ddc max{u, v})m ∧ ωn−m � lim
ε↓0

∫
K

(ddc max{u, v + ε})m ∧ ωn−m

=
∫
K

(ddcv)m ∧ ωn−m. �

PROPOSITION 3.5. — Let Ω be a bounded domain in C
n, u, v ∈

Pm(Ω) ∩ C(Ω) are such that u � v on ∂Ω and (ddcu)m ∧ ωn−m �
(ddcv)m ∧ ωn−m in Ω. Then u � v in Ω.

Proof. — Suppose that {u > v} �= ∅. We can then find ε > 0 such
that S := {ũ > v} �= ∅, where ũ := u + εψ and ψ(z) = |z|2 −M is negative
in Ω. We have

(ddc(u + εψ))m ∧ ωn−m � (ddcu)m ∧ ωn−m + εmωn

and from Proposition 3.4 it follows that (ddcũ)m∧ωn−m � (ddcv)m∧ωn−m

in Ω. However, since ũ = v near ∂Ω, regularizing ũ, v and using the Stokes
theorem we get ∫

Ω

(ddcũ)m ∧ ωn−m =
∫

Ω

(ddcv)m ∧ ωn−m

and we must thus have (ddcũ)m ∧ ωn−m = (ddcv)m ∧ ωn−m in Ω. On the
other hand∫

S

(ddcũ)m ∧ ωn−m �
∫
S

(ddcu)m ∧ ωn−m + εm
∫
S

ωn

and we get a contradiction. �

A function u ∈ Pm(Ω), Ω open in C
n, is called m-maximal if

v ∈ Pm(Ω), v � u outside a compact subset of Ω implies that v � u in
Ω. We first prove Theorem 1.2 for continuous functions.

THEOREM 3.6. — A function u ∈ Pm ∩ C(Ω) is m-maximal if and

only if it solves Hm(u) = 0.

Theorem 3.6 will easily follow from the comparison principle (Propo-
sition 3.5) and the solution of the Dirichlet problem for the m-Hessian
equation in a ball.

TOME 55 (2005), FASCICULE 5



1746 Zbigniew B�LOCKI

THEOREM 3.7. — Let B be a ball in Cn and ϕ a continuous function

on ∂B. Then the following Dirichlet problem
u ∈ Pm(B) ∩ C(B)
(ddcu)m ∧ ωn−m = 0 in B

u = ϕ on ∂B

has a unique solution.

Proof. — Uniqueness is a consequence of Proposition 3.5. To show
the existence we first assume that ϕ is smooth and for a constant a > 0
consider the Dirichlet problem

(3.6)


u ∈ Pm(B) ∩ C∞(B)
(ddcu)m ∧ ωn−m = aωn in B

u = ϕ on ∂B.

By the Evans-Krylov theory (see e.g. [7, Theorem 1]) there exists a solution
of (3.6) provided that we have an a priori bound

(3.7) ||u||C1,1(B) � C,

where C depends only on a and ϕ. The proof of this estimate is postponed
to Section 4.

Assuming that (3.7) is proven, and thus that we can solve (3.6), let ϕ

be arbitrary continuous. Approximate it from below by ϕj ∈ C∞(∂B). Let
uj be a solution of (3.6) with ϕj and a = 1/j. Let ψ(z) = |z − z0|2 − R2,
where z0 is the center and R the radius of B. For k � j Proposition 3.5
gives

uk + j−1/mψ − ||ϕj − ϕ||L∞(∂B) � uj � uk.

This implies that uj converges uniformly on B to a certain u, which is a
solution by Proposition 3.3. �

Proof of Theorem 3.6. — Proposition 3.5 directly implies that if u

satisfies Hm(u) = 0 then it is maximal. On the other hand, assume that
u is maximal and let B � Ω be a ball. By Theorem 3.7 we find ũ ∈ C(Ω)
determined by ũ = u in Ω \B, ũ ∈ Pm(B) and (ddcũ)m ∧ ωn−m = 0 in B.
By the comparison principle again we have ũ � u in B and thus ũ ∈ Pm(Ω).
Since u is maximal, it follows that ũ = u and we get Hm(u) = 0. �
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Remark. — For m = n Theorem 3.7 was proved by Bedford and
Taylor [1] with the help of an interior C1,1 estimate ([1, Theorem 6.7]),
which, together with later simplifications due to Demailly [11], gives an
overall simpler and more elementary proof than the one presented here
(not employing strong solutions at all and thus not using the Evans-
Krylov theory and estimate (3.7)). It relied however on the following,
rather rare, property: the group of smooth diffeomorphisms of the unit ball
in Cn preserving plurisubharmonic functions is transitive. Note that this
not true in the real case (where plurisubharmonic functions are replaced
by the convex ones - then we only have the affine mappings) and one
can also show that it is not true for m = 1, that is for subharmonic
functions. One can namely check that in this case such a diffemorphism
F = (F 1, . . . , F 2n) has to satisfy two properties: 1) the (real) Jacobian
matrix of F is orthogonal at every point; 2) ∆F j = 0, j = 1, . . . , 2n. By
the Liouville theorem (see e.g. [6] or [17]) the mappings satisfying 1) are
precisely the Möbius transformations. However, the Kelvin transformation
z �→ z/|z|2 is harmonic only in the real dimension 2. Thus, if n > 1 the
mappings satisfying 1) and 2) are precisely linear Möbius transformations
and the group in question is not transitive. We suspect that it is also not
transitive if 1 < m < n.

4. The a priori estimate.

In this section we will prove the estimate (3.7). We essentially follow
[8] using some ideas from [7] and the simplification from [21]. We use the
notation uj = ∂u/∂zj , uj = ∂u/∂zj . The real partial derivatives of u will
be denoted by uxj , uyj , and by uζ we mean the derivative of u in direction ζ.

It is no loss of generality to consider the equation

(4.1) S̃m((ujk)) = 1.

Computing the derivative of both sides of (4.1) in a direction ζ we get

(4.2) ajkuζjk = 0,

where (
apq

)
= Dm((ujk)) =

(
∂S̃m

∂upq
((ujk))

)
.
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By Section 2 we have (ajk) > 0. If (ujk) is diagonal then so is (ajk) which
implies that the product of these is a hermitian matrix. This means that
for every p, q

(4.3) apkuqk = ajqujp,

and by (4.2)

(4.4) ajk [zpuq − zqup]jk = 0.

Since S̃
1/m
m is concave on Γ̃m it follows that so is G := log S̃m.

Differentiating the logarithm of both sides of (4.1) twice in direction ζ

we get ∑
j,k,p,q

∂2G

∂ujk∂upq
ujkζupqζ +

∑
j,k

∂G

∂ujk

ujkζζ = 0.

The concavity of G implies that the first term is nonpositive and we get

(4.5) ajkuζζjk � 0.

It is no loss of generality to assume that B = B(0, 1) is the unit
ball in Cn and that ϕ ∈ C∞(B) is harmonic in B. By C we will denote
possibly different constants depending only on ||ϕ||C3,1(B) and say that they
are under control. We also set ψ(z) := (|z|2 − 1)/2. From the comparison
principle we get, for sufficiently big C, ϕ + Cψ � u � ϕ. This coupled with
(4.2) gives

(4.6) ||u||C0,1(B) � C.

We now turn to the estimates of D2u on ∂B. For ζ ∈ ∂B by s, t we
will denote the (real) tangential directions at ζ and by N the outer normal
direction. We clearly have

(4.7) ust = ϕst + (u− ϕ)Nδst.

From (4.6) it follows therefore that

(4.8) |ust(ζ)| � C, ζ ∈ ∂B.
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Next we estimate the mixed tangential-normal derivative utN (ζ0) for
a fixed ζ0 ∈ ∂B. We may assume that ζ0 = (0, . . . , 0, 1), so that at ζ0 we
have N = ∂/∂xn. First assume that t = ∂/∂xp for some p � n− 1. Set

v : = 2 Re [zp(u− ϕ)n − zn(u− ϕ)p]

= xp(u− ϕ)xn − xn(u− ϕ)xp + yp(u− ϕ)yn − yn(u− ϕ)yp .

Then v = 0 on ∂B, |v| � C on ∂B(ζ0, 1) ∩B and by (4.4)

±ajkvjk � −C
∑
j

ajj .

We now consider the barrier function w := ±v − C1|z − ζ0|2 + C2ψ. We
can choose constants 0 � C1 � C2 under control so that w � 0 on
∂(B ∩ B(ζ0, 1)) and ajkwjk � 0 in B ∩ B(ζ0, 1). Therefore w � 0 in
B ∩B(ζ0, 1),

|v| � C1|z − ζ0|2 − C2ψ

and it follows that |vxn(ζ0)| � C. At ζ0 we have however

vxn = −(u− ϕ)xp − (u− ϕ)xpxn

and thus |uxpxn(ζ0)| � C.

To estimate uypxn(ζ0) we take

v : = 2 Im [zp(u− ϕ)n − zn(u− ϕ)p]

= yp(u− ϕ)xn − xn(u− ϕ)yp + yn(u− ϕ)xp − xp(u− ϕ)yn .

and proceed similarly. Finally, for t = ∂/∂yn one can check, using (4.2) and
(4.3), that

ajk [ynuxn − xnuyn ]jk = 2 Im(ankunk) = 0

and consider
v := yn(u− ϕ)xn − xn(u− ϕ)yn .

We will eventually obtain

(4.9) |utN (ζ)| � C ζ ∈ ∂B.

We claim that to get (3.7) it is now enough to estimate

(4.10) unn(ζ0) � C.
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Indeed, this combined with (4.8), (4.9) and (4.5) implies that all the
eigenvalues of the real Hessian matrix D2u are bounded from above by
C in B. But since u is in particular subharmonic, it follows that they must
then be bounded from below by −(2n−1)C. It thus remains to show (4.10).

By (4.8) and (4.9) at ζ0 we may write

(4.11) 1 = unnS
′
m−1 + O(1),

where S′m−1(ζ
0) = S̃m−1((ujk(ζ

0))′) and if A is an n × n matrix then by
A′ we denote the (n− 1)× (n− 1) matrix created by deleting the nth row
and nth column in A. We will now use an idea from [21]. By (4.11) we
may assume that the quantity S′m−1(ζ), ζ ∈ ∂B, is minimized at ζ0. It is
elementary to show that there exists a smooth mapping

Φ : (B ∩B(ζ0, 1))× Cn → C
n

such that for every z ∈ B ∩ B(ζ0, 1) the mapping Φz = Φ(z, ·) is an
orthogonal isomorphism of Cn (and of B), Φζ(ζ) = ζ0 for ζ ∈ ∂B∩B(ζ0, 1)
and Φζ0 is the identity. For ζ ∈ ∂B ∩B(ζ0, 1) we then have

S′m−1(ζ) = S̃m−1(U(ζ)),

where by (4.7)
U(ζ) = A(ζ) + uN (ζ)I,

A(ζ) =
(
(ϕ ◦ Φζ)jk(ζ

0)
)′
− ϕN (ζ)I.

It is clear that ||A||C1,1(B∩B(ζ0,1)) � C. Define the (n−1)× (n−1) positive
definite matrix

B0 := Dm−1(U(ζ0)) =

(
∂S̃m−1

∂apq
(U(ζ0))

)
.

By (2.2) and (2.3)

tr
[
B0(U(ζ)− U(ζ0))

]
� S′m−1(ζ)− S′m−1(ζ

0) � 0.

We thus obtain

v(ζ) := uxn(ζ)−uxn(ζ0)+〈∇u(ζ), ζ−ζ0〉+(tr B0)−1tr
[
B0(A(ζ)−A(ζ0))

]
� 0

for ζ ∈ ∂B ∩B(ζ0, 1).
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Similarly as before, we define the barrier w := v−C1|z− ζ0|2 + C2ψ,
and choosing C1 � C2 under control we get w � 0 on ∂(B ∩B(ζ0, 1)) and
ajkwjk � 0 in B ∩B(ζ0, 1). Therefore w � 0 in B ∩B(ζ0, 1) and

uxnxn(ζ0) � C

which together with (4.8) gives (4.10). �

5. The class Dm.

Essentially just repeating the proof of [5, Theorem 1.1] and using the
necessary machinery from Section 3, we can get the following characteriza-
tion of the class Dm (we consider the germs of functions).

THEOREM 5.1. — For a negative u ∈ Pm the following are equivalent

i) u ∈ Dm;

ii) For every sequence uj ∈ Pm ∩ C∞ decreasing to u the sequence

Hm(uj) is locally weakly bounded;

iii) u ∈ Lm
loc and for every sequence uj ∈ Pm ∩ C∞ decreasing to u

the sequences

(5.1) |uj |m−p−2duj ∧ dcuj ∧ (ddcuj)p ∧ ωm−p−1, p = 0, 1, . . . ,m− 2,

are locally weakly bounded;

iv) u ∈ Lm
loc and there exists a sequence uj ∈ Pm ∩C∞ decreasing to

u such that the sequences (5.1) are locally weakly bounded.

For m = 2 it is clear that conditions iii) and iv) in Theorem 5.1 are
equivalent, and they mean precisely that u ∈ P2 ∩W 1,2

loc .

We will now very briefly sketch the proof of Theorem 5.1. The crucial
steps are the following two estimates.

PROPOSITION 5.2. — Let Ω′ � Ω be domains in Cn. Assume that

2 � m � n and that either r � 0 or r � 1. Then for any u ∈ Pm ∩ C(Ω),
u < 0, we have∫

Ω′
|u|r(ddcu)m ∧ ωn−m � C

∫
Ω

|u|rdu ∧ dcu ∧ (ddcu)m−2 ∧ ωn−m+1,

where C is a positive constant depending only on Ω′ and Ω.
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Proof. — It is the same as the proof of [5, Proposition 2.1].

THEOREM 5.3. — Let Ω′ � Ω be domains in C
n. Assume that

2 � m � n and r � 0. Then for u, v ∈ Pm ∩ C(Ω) with u � v < 0
one has∫

Ω′
|v|rdv ∧ dcv ∧ (ddcv)m−2 ∧ ωn−m+1

� C

(∫
Ω

|u|m+rωn +
m−2∑
p=0

∫
Ω

|u|m−p+r−2du ∧ dcu ∧ (ddcu)p ∧ ωn−p−1

)
,

where C is a constant depending only on Ω′,Ω and r.

Proof. — One has to repeat the proof of [5, Theorem 2.2].

Proof of Theorem 5.1 (sketch). — It follows from Theorem 5.3 that
the conditions iii) and iv) are equivalent. To show implication iii)⇒iv) one
has to use Cegrell’s arguments (see the proof of [9, Theorem 4.2], they are
also presented in [5]). The implication i)⇒ii) is trivial and to show the
remaining implication ii)⇒iii) we proceed the same way as in [5]. We have
however to show in addition that u is in Lm

loc which is already guaranteed
for m = n (and it will follow from Proposition 1.3 if m2/(m− 1) > n).

Suppose that ii) is satisfied but u /∈ Lm
loc. We can then find balls

B � B′ such that u is defined in a neighborhood of B′ and u /∈ Lm
loc(B).

Let vj = u ∗ ρ1/j be the sequence of the regularizations of u. Then there
exists an increasing sequence k = k(j) � j such that

(5.2)
∫
B

|vj − vk|mdλ � j

We set

uj : = sup{w ∈ Pm(B′) : w � vj in B′, w � vk in B}
= sup{w ∈ Pm(B′) : w � hj},

where hj ∈ C(B′) is defined by hj = vk in B, hj = vj on ∂B′ and hj is
harmonic in B′ \ B. By Proposition 3.2 uj ∈ Pm(B′) ∩ C(B′). It is clear
that uj is decreasing to u in B′ and therefore by ii) we have

sup
j

∫
B

(ddcuj)m ∧ ωn−m <∞.
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By Theorem 3.6 we have (ddcuj)m∧ωn−m = 0 in {uj < vj}, and, since uj �
vj , from Proposition 3.4 it follows that (ddcuj)m∧ωn−m � (ddcvj)m∧ωn−m

on {uj = vj}. By another application of the assumption, this time to the
sequence vj , we obtain therefore

sup
j

∫
B′

(ddcuj)m ∧ ωn−m <∞.

However, integrating by parts in the same way as in the proof of [3, Theorem
2.1] or [5, Proposition 3.1], using (5.2) we obtain

j �
∫
B′

(vj − uj)mdλ � C

∫
B′

(ddcuj)m ∧ ωn−m

where C is independent of j - a contradiction. �

The proof of Theorem 1.1 is now the same as the proof of [5, Theorem
1.2], whereas to show Theorem 1.2 we have to proceed as in the proof of
[4, Proposition 2.2] (using Theorem 3.6).

6. The Lp-estimate.

In this section we will prove Proposition 1.3. More precisely, we will
show the following estimate.

PROPOSITION 6.1. — For p < n/(n−m) and negative u ∈ Pm(B(0, 2))
one has

(6.1) ||u||Lp(B(0,1/2)) � C||u||L1(B(0,2)),

where C is a positive constant depending only on n,m and p.

Proof. — We will use similar methods as for example in [10] and [24].
Thanks to regularization we may assume that u is smooth. By C1, C2, . . .

we will denote constants depending only on n,m and p.

For ε > 0 let Gε ∈ Pm∩C∞(Cn) be such that Gε = G on Cn \B(0, ε)
and Gε ↓ G as ε ↓ 0, where G is given by (1.1). For w ∈ B(0, 1/2) we have,
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denoting B := B(0, 1) and uw := u(w − ·),

C1u(w) =
∫
B

uw(ddcG)m ∧ ωn−m = lim
ε→0

∫
B

uw(ddcGε)m ∧ ωn−m

= lim
ε→0

(∫
B

Gεdd
cuw ∧ (ddcGε)m−1 ∧ ωn−m

+
∫
∂B

uwdcG ∧ (ddcG)m−1 ∧ ωn−m
)

=
∫
B

Gddcuw ∧ (ddcG)m−1 ∧ ωn−m

+
∫
∂B

uwdcG ∧ (ddcG)m−1 ∧ ωn−m =: u1(w) + u2(w).

Since u is in particular subharmonic,

|u2(w)| � C2

∫
∂B

|uw|dσ � C3||u||L1(B(0,2)),

it is thus enough to estimate ||u1||Lp(B(0,1/2)).

Write G = E ◦ ψ. Then by Proposition 2.1 we have

(6.2)

0 � ddcuw ∧ (ddcG)m−1 ∧ ωn−m

= (E′ ◦ ψ)m−2(E′ ◦ ψ ω + E′′ ◦ ψ dψ ∧ dcψ) ∧ ddcuw ∧ ωn−2

� C4|z|−2n(m−1)/m∆uw,

since E′′ < 0. Set G̃ := G1/2, so that G̃ ∈ C∞(B) and G̃ = G near ∂B, and
let ϕ ∈ C∞0 (B(0, 3/2)) be such that ϕ = 1 in B and 0 � ϕ � 1 elsewhere.
Then∫

B

ddcuw ∧ (ddcG)m−1 ∧ ωn−m =
∫
∂B

dcG̃ ∧ ddcuw ∧ (ddcG̃)m−2 ∧ ωn−m

=
∫
B

ddcuw ∧ (ddcG̃)m−1 ∧ ωn−m

�
∫
B(0,3/2)

ϕddcuw ∧ (ddcG̃)m−1 ∧ ωn−m(6.3)

=
∫
B(0,3/2)

uwddcϕ ∧ (ddcG̃)m−1 ∧ ωn−m

� C5||u||L1(B(0,2)).

ANNALES DE L’INSTITUT FOURIER



COMPLEX HESSIAN EQUATION 1755

The Jensen formula combined with (6.2) and (6.3) gives

|u1(w)|p � (C5||u||L1(B(0,2)))p−1

∫
B

|G|pddcuw ∧ (ddcG)m−1 ∧ ωn−m

� (C5||u||L1(B(0,2)))p−1

∫
B(w,1)

|Gw|p|z − w|−2n(m−1)/m∆u dλ

from which (and (1.2)) (6.1) easily follows. �
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