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The Complex Monge-Ampère Operator
in Hyperconvex Domains

ZBIGNIEW BLOCKI*

Introduction

In the Classical Potential Theory (CPT) regular domains can be described
as follows (see e.g. [Doo]): for a bounded domain Q in R’ the following are
equivalent:

i) Q is regular with respect to the Laplace equation.
ii) Q is regular with respect to the Poisson equation.
iii) Every boundary point of Q admits a strong subharmonic barrier.
iv) Every boundary point of Q admits a weak subharmonic barrier.

In this paper we take up a corresponding problem in the Pluripotential Theory
where the situation is much more complicated.

A domain in C" admitting a weak plurisubharmonic (psh) barrier at every
boundary point is called hyperconvex. Kerzman and Rosay [KR] proved that
in a hyperconvex domain Q C Cn there exists an exhaustion function 1fr (that
is E PSH (Q), 1fr  0 and lim,,aq 1fr(z) = 0) which is smooth (by smooth
we always mean C°°) and strictly psh. On the other hand the class of domains
that admit strong psh barriers was investigated by Sibony [Sib] and following
him we will call them B-regular. Sibony proved in particular that a domain is
B-regular if and only if it admits a smooth exhaustion function * such that

(that is every eigenvalue of the matrix is &#x3E; 1). The proofs of the
above results were based on a theorem of Richberg [Rich] concerning global
approximation of continuous strictly psh functions.

*Partially supported by KBN Grant No. 2 P03A 058 09 and the Foundation for Polish Science
(FNP) scholarship.
Pervenuto alla Redazione il 31 maggio 1995 e in forma definitiva il 26 luglio 1996.
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The main result of this paper is the following: any hyperconvex domain
admits a smooth exhaustion function * such that

(that is the product of all eigenvalues of the matrix is &#x3E; 1). This
essentially strengthens the Kerzman-Rosay’s result (what they got was in fact
M~ &#x3E; 0).

The operator M is the complex Monge-Amp6re operator and it plays a sim-
ilar role in the Pluripotential Theory as the Laplacean in CPT (see [BT2], [Bed]
and [Kli]). Bedford and Taylor [BTI], using an inequality proved earlier by
Chem, Levine and Nirenberg [CLN], showed that Mu can be well defined as
a non-negative Borel measure for any continuous psh u. They considered the
following Dirichlet problem:

where f E and F E C (S2), F &#x3E; 0. (0.3) is a counterpart of the Poisson
equation in CPT. The main result from [BTI] is that (0.3) has a unique solution
if S2 is strictly pseudoconvex. However, really essential is the existence of an
exhaustion function satisfying (0.1), thus the problem (0.3) is solvable in B-

regular domains for arbitrary boundary data. On the other hand, as shown
in [Sib], S2 is B-regular if and only if every f E is a restriction of some
v E PSH (Q) n C (S2). This implies that if for some F E C (S2), F &#x3E; 0, (0.3)
has a solution for every f E then S2 must be B-regular.

In [Blo2] we considered the problem (0.3) when Q is only hyperconvex.
A necessary assumption on the data is that f must be a restriction of some
v E n C(S2). It turns out also to be sufficient. For example (0.3) is
solvable if f - 0 and F - 1. In this case for arbitrary hyperconvex domain
we get a uniquely defined continuous exhaustion function u with Mu = 1.
We do not know whether u is smooth in general. However, it can be used
to construct a smooth exhaustion function satisfying (0.2) via approximation
methods from [Rich].

The paper is assumed to be self-contained. We present (although rather
briefly) proofs of all required results concerning hyperconvex and B-regular
domains as well as the complex Monge-Ampère operator which are not available
in well known monographs like [Doo], [GT], [H6r] or [Rud].

In Section 1 we generalize (Theorem 1.3) a result of Richberg (Theorem 1.1 )
concerning global approximation of continuous psh functions, so that we can
use it in Section 6. It is convenient to use the terminology of sheaves. Next,
we prove already mentioned characterizations of hyperconvex (Theorem 1.6)
and B-regular (Theorem 1.7) domains. Very useful is a result of J.B. Walsh

(Theorem 1.5).
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Section 2 includes a few well known (but hard to find in the literature)
elementary results concerning positive forms and matrices. Together with an
estimate from [Blol] they are used in Section 3 to define the complex Monge-
Ampere operator for continuous psh functions (see also [Ceg], [Dem2] and [Kli]
for slightly different approaches). We also prove those of its properties which.
will be needed later (they were established in [BTI]). Since considering only
continuous psh functions is sufficient for our purposes, we do not discuss a
wider class of psh functions for which the complex Monge-Amp6re operator
can be well defined (e.g. locally bounded psh functions). Also, generalized
versions of results like Theorems 3.4, 3.7 and 3.8 are more difficult to prove
(cf. [BT2] and [Dem2]).

Section 4 is devoted to the solution of the Dirichlet problem (0.3) in B-
regular domains. For F - 0 (then we have a homogeneous equation - it is a

counterpart of the Laplace equation in CPT) the original arguments from [BTl]
have been essentially shortened by Demailly [Dem2] but his improvements work
also in the inhomogeneous case. The main Demailly’s contribution made Step IV
of the proof of Theorem 4.1 much shorter by applying Rademacher theorem.
Moreover, Demailly’s proof that the estimate (4.8) for a psh u implies that u is

1 is much simpler than the original one. On the other hand, the application
of Theorem 3.11 allowed to avoid introducing the operator C (essentially M1/n)
used in [BT 1 ] .

In Section 5 we consider the notion of stability for the complex. Monge-
Amp6re operator. The main result, used later to solve the Dirichlet problem in
hyperconvex domains, is Theorem 5.3 due to Cegrell and Persson [CP]. They
used an idea of Cheng and Yau presented in [Bed] concerning a relation between
real and complex Monge-Amp6re operators (Lemma 5.5).

Finally, in Section 6, we solve the Dirichlet problem in hyperconvex do-
mains (Theorem 6.1) and prove the existence of smooth subsolutions (Theo-
rem 6.2). In particular, we get an exhaustion function satisfying (0.2). The

corresponding result for convex domains in M" and the real Monge-Amp6re
operators was proved in [Blo3]. 

’ 

.

This paper is an English version of the author’s Ph.D. thesis. My thanks
go to the supervisor, professor Jozef Siciak, for his scientific advice and to

professors Slawek Kolodziej and Marek Jarnicki for fruitful discussions.

1. - Global approximation of plurisubharmonic functions

Let S2 be an open subset of C". If u is a psh function on S2 then for
3 &#x3E; 0 we have the standard regularizations of u:

where k is the Lebesgue measure, B the unit ball in C", ~ &#x3E; 0 whereas
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p E Col (CI) is nonnegative, depends only on I w 1, supp p = B, IB pdÀ = 1

and := 8-2np(w/8). Then US E PSH nC°°(S2s), where S2s := (z E Q :
dist(z, &#x3E; 8}, and us $ u as 6 $ 0. If u is continuous then the convergence
is uniform.

We say that a function u is strictly psh on Q if for every w E C’(0) there
exists 80 &#x3E; 0 such that u + E PSH(Q) for 8 E [0, 6’o]. One can easily show
that u is strictly psh on Q if and only if for an open Q’ (c Q one can find
c &#x3E; 0 such that the function u (z) - is psh on Q’.

Concerning the global approximation of psh functions we have the following
result due to Richberg:

THEOREM 1.1. ([Rich]). Assume that S2 is open in (Cn and u is continuous,
strictly psh on Q. Let 8 &#x3E; 0 be a continuous function on Q. Then one can find a
smooth, strictly psh function v on S2 such that u  v  u + 8.

Using Richberg’s methods we will generalize the above theorem to apply
it in Section 6. One of the main ideas in the proQf of Theorem 1.1 in [Rich]
was to consider functions of the following form:

where o E C’(0), 0  8  8. Observe that if u is smooth on an open D c S2
then so is us on Ds, for we can then differentiate under the sign of integration.

DEFINITION. A subsheaf S of the sheaf of continuous psh functions over (Cn will
be called a Richberg sheaf if the following conditions are satisfied:

( 1.1 ) For any u E S(Q), ~p E C’(Q) and c E R there exists Eo &#x3E; 0 such that
U + + c E S(Q) for 8 E [0, £0].

(1.2) Ifu, v E S(Q) then max{u, v} E S(Q).
( 1.3) If Q’ C Q, o E C°° (S2), 0  o  1 and u E S(Q) is smooth on a neighborhood

of {o  1 } f1 S2’ then U88 E S f1 C°° (Q’) for 8 &#x3E; 0 small enough.

The condition (1.3) implies in particular that if Q’ C Q and u E S(Q)
then Us E S f1 C°° (S2’) for 8 small enough (we assume that the empty set is a
neighborhood of itself).

PROPOSITION 1.2. The sheaf of continuous strictly psh functions is a Richberg
sheaf.

In Section 6 we will construct another Richberg sheaf.

PROOF OF PROPOSITION 1. 2. It is enough to show (1.3). We can find D C Q,
a neighborhood of {o  1 } n S2’, such that for 8 small enough U88 = us on a
neighborhood of S2’BD and U88 is smooth on D. We have
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where the function Yjk is uniformly bounded for Zo E D, w E B and 8  r. We

get uniform convergence of the partial derivatives a2UBg/aZj azk - a2u/aZjaZk
on D. This implies that for 8 sufficiently small U88 is strictly psh on Q’. The
proof is complete. o

The next result is therefore a generalization of Theorem 1.1.

THEOREM 1.3. Assume that S is a Richberg sheaf and let Q and E be as
in Theorem 1.1. Then for u E 5(Q) one can find v E 5 f1 C°° (SZ) such that

The proof of Theorem 1.3 relies on the following:
LEMMA 1.4. Let u E 5(Q) where S is a Richberg sheaf and Q an open subset

of en. Assume that u is smooth on a neighborhood of D where D c- SZ is open. Let
V and W be open with V c- W c- Q and let E &#x3E; 0 (constant). Then there exists
v E S(Q) such that

i) 

ii) u  v  u + 8 on Q,

iii) v is smooth on a neighborhood of D U V.

Lemma 1.4 easily implies Theorem 1.3:

PROOF OF THEOREM 1.3. Suppose SZk t Q where the sets S2k C SZk+1 c Q,
k &#x3E; 0, are open, 00 = 0. For k &#x3E; 1 set Wk : := (WI := Q2) and
let Vk be open such that Vk C Wk. Let yk &#x3E; 0; it will be specified
later. From Lemma 1.4 we can get a sequence { u k } C 5(Q) such that u o = u

and

uk is smooth in a neighborhood of Vj
(D = j=I "J). The sequence is locally constant for k big enough, thus
we may define v := 1im u k Then on SZ and for z e 
one has 

-- -- 

’

Now, if yk are such that

D

PROOF OF LEMMA 1.4. Let r e be such that 0 :S q :S 1 on 

supp q C = 1 on a neighborhood of V.
First assume that D is empty. From ( 1.1 ) it follows that there exists

co e (0, 2c) such that u e 8(Q). Regularization of u and (1.3) give
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a function 1/fo E S n such that u + cor¡ :S u + + ~ on W .
Define

Then v = u if i7=0, and v = 1/fo - co if 1] = 1. Hence by (1.2), v E 
is smooth on a neighborhood of V and u  v  u -~- ~  u -~- E on Q.

Let now D be arbitrary. Choose open sets Gj, Dj and 0 E 
7 = 1, 2, = [Oj = 01, Dj = -11, Di I c.

G2 C D2 (s Q and u is smooth on a neighborhood of D2. By ( 1.1 ) we can
find c E (0, 8/2) such that

We claim that for 8 &#x3E; 0 small enough the function {fr := defined on W,
satisfies the following conditions:

( 1.5 ) ~ = u on a neighborhood of W n D 1,
(1.6) 

(1.7) ~ E S n C°°(W).
To get (1.5) take 8 such that Ðl C {z E S2 : dist(z, aG2) &#x3E; 28}. We have

and the convergence is locally uniform on S2. Hence, if + c on
W = and we get (1.6). The condition (1.7) follows
immediately from (1.3).

Now put * := r 2013 cOlon W. We claim that
(1.8) 1fr E S n 

(1.9) ~ if ~=0.
Indeed, on W B D 1 we have c and on a neighborhood of W n Di,
by (1.5), 1fr - u - Therefore from (1.4) and (1.7) we obtain (1.8); (1.9)
follows from (1.5) and (1.6).

Define

By (1.8), (1.9) and (1.2) we have v E S(S2) . Obviously i) is fulfilled and
from (1.6) it follows that ii) is also satisfied. It remains to show iii). If 77 = 1
then by (1.6) we have 1/1 2: U - u + c - u, hence by (1.8) v is
smooth on a neighborhood of V. Now it is enough to show that v is smooth
on G 1. If 17 = 0 then by (1.9) v = u, therefore it is enough to prove that v
is smooth on G 1 f1 W. There by (1.5) 1fr = ;¡, = u + thus v = u + C1] on

G 1 n W. The proof of the lemma is complete. D

Having Theorem 1.1 at our disposal we will now characterize hyperconvex
and B-regular domains. The following result of J.B. Walsh will also be useful:
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THEOREM l. 5. ([Wal]). Suppose Q is a bounded domain in (Cn and f E C(aQ).
Set

(v*, respectively v*, denotes the upper, respectively lower, regularization of v; it is
defined on Q). Assume moreover that u* = u* = f on aS2. Then u is continuous.

PROOF. The function u* is psh on Q by the hypothesis u*lan  f. Thus
u = u* and u is upper semicontinuous. To show that is lower semicontinuous
take Zo E Q and s &#x3E; 0. By the compactness of a SZ we may find 0  8 

dist(zo, a SZ) such that 
°

Take i E 0 such that I zo - 21 [  8 and for z E S2 define

If z + zo - 2 E aS2 then by (l.lo) u(z + zo - z)  u(z) - E, hence v E PSH (Q).
From (1.10) it also follows that v = u on a neighborhood of therefore

v  u on S2. Eventually we have u (z) &#x3E; v(z) 2: u(zo) - 28, which shows that
u is lower semicontinuous. D

THEOREM 1.6. ([KR]). For a bounded domain S2 in (Cn the following are equiv-
alent :

i) Every boundary point of Q admits a weak psh barrier, that is for every Zo E a Q
there exists v E PSH(Q) such that v  0 and limz,zo v (z) = 0. 

’

ii) There exists smooth, strictly psh function 1/1 in S2 such that limz,aq * (z) = 0.

If Q satisfies the condition i) then it is called hyperconvex. Another
alternative definition is that in Q there exists a negative psh u such that

limz-*ðQ u(z) = 0 (this means that u is a bounded exhaustion function).
By CPT hyperconvex domains are regular with respect to the Laplace

equation, that is every continuous function on aQ can be extended to a har-
monic function on Q, continuous on S2 (see e.g. [Doo], p. 125). As proved
in [Deml], every bounded, pseudoconvex domain in C" with Lipschitz bound-
ary is hyperconvex. On the other hand, an example of the Hartogs triangle
T := { (z 1, z2) : [  I  11 shows that not every pseudoconvex, regular
domain is hyperconvex. (It follows from the exterior cone condition that T is
regular and since T n {Zl = 0} is a punctured disc, T is not hyperconvex).

A stronger version of Theorem 1.6 will be proved in Section 6. Namely,
we shall show that the function 1/1 from ii) can have additional property
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PROOF OF THEOREM 1.6. The implication ii) ~ i) is obvious, so assume that
S2 satisfies i). First we are going to show that there is a continuous exhaustion
function. Take any ball Q and put

Then -1  0, (by logarithmic convexity of psh functions)
and = 0 (by i)). Applying Theorem 1.5 to we have therefore
u E n C (S2), 0, -1, thus u is a continuous exhaustion
function. 

°

Let C &#x3E; 0 be such that v(z) := C  0 on Q. Put 
Then u is continuous on S2 and = 0. In case of smooth functions of one
variable we have

therefore in the general case u is strictly psh. Now, if E &#x3E; 0 is continuous on
Q and such that = 0 then from Theorem 1.1 we get the required
1/f. D

THEOREM 1.7. ([Sib]). For a bounded domain S2 in (Cn the following are 
*

equivalent:
i) Every boundary point admits a strong psh barrier, that is for every Zo 

there exists v E PSH(Q) such that limz,zo v (z) = 0 and  0.

ii) In S2 there exists a smooth exhaustion function 1/f such that

iii) Continuous functions on a Q are extendable to psh function on Q, continuous
on S2, that is for every f E there exists v E PSH(S2) fl c(f2) such that
Vlao = f.

A domain S2 satisfying any of the above conditions is called B-regular. In
particular its boundary has no analytic structure (that is no analytic disc can be
embedded in Of course B-regular implies hyperconvex but these notions
are not equivalent; for example a polydisc is hyperconvex but not B-regular.

PROOF OF THEOREM 1.7. The implication iii) ~ i) is obvious. To show the
converse take f E and let u be as in Theorem 1.5. There is a function
h E C(Q), harmonic on S2 and equal to f on By the definition of u we
have u  h, hence f on Take any zo E and 8 &#x3E; 0. By i) there
exists vo E n with limz,zo vo (z) = 0 and  0. Now if
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v : := f (,zo) -~ t vo then for t big enough we have f ~+- ~ . Thus 
on S2, therefore u*(zo) and finally f  u * on So we have

u* = u* = f on aS2 and from Theorem 1.5 it follows that u E PSH (Q) n c (f2).
Next we want to prove that iii) implies ii). By iii) there is v E PSH(Q) n

such that for z E aQ one has v (.z) = Set u (z) := v(z) + 
Theorem 1.1 gives M E such that = 0. Now
it suffices to put := u (.z) + [z[.

It remains to show the implication ii) ~ iii). Take f E and again
let u be as in Theorem 1.5. Let s &#x3E; 0; we will then find g E C’(f2) such that

For A big enough the functions g + A~ 
are psh on Q. The function g + A 1/1- s is  f on thus is also  u on Q.
On the other hand for v E PSH (Q) such that f the function 
is  0 on thus is also  0 on Q, hence u - g + 0 on Q. Therefore,
we have obtained g + A1/!- s  u  g - A1fr on Q. If we now let E - 0 then
we get u* = u* = f on By Theorem 1.5 u E PSH(Q) n C(2). D

2. - Positive forms and matrices

Let a E C(p,p) be a (p, p)-form with constant coefficients p  n);
that is a can be written in the form

We say that a is positive if for any al ... , an-p E one has a A ial 1B
al A ... 1B ian-p A GLn_ p 2: 0 (we identify (C~n,n~ with C).

PROPOSITION 2.1. A (1, I)-form a = ajki dZj A dZk is positive if and
only if the matrix (ajk) is nonnegative. 

where Mj = det(ast) s-1,... ,n-i . - v
t = 1,... , n, t:Aj

PROPOSITION 2.2. If a is a positive ( p, p) -form and {3 a positive ( 1, 1) -form
then a A {3 is positive.

PROOF. After a change of variables we may write {3 = A d z j , I
where a j &#x3E; 0. Then for a 1, ... , Ctn-p-1 1 E we have
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We shall also need some simple properties of hermitian matrices:

LEMMA 2.3. Suppose A E gl(n, C), the set of all square matrices with elements
from C. By ~ denote the natural embedding of gl(n, C) into gl(2n, R). Then
det i = det A ~ 2.

PROOF. Write A = M + iN, where M, N E gl (n, R); then

If ~,1, ... , hn are all the eigenvalues of A then k 1, ... , Àn, -k 1, ... , hn are all
the eigenvalues of A. D

LEMMA 2.4. ([Gav]). By A denote the family of all hermitian matrices A E
gl(n, (C) with det A = 1. Then for a hermitian matrix B we have

PROOF. Take A E A. Then we can find an orthogonal matrix P such that
the matrix C := is diagonal. From the inequality between geometric
and arithmetic means we get

It remains to show that the infimum is attained. This is straightforward if
B is diagonal. Then general case can be obtained after diagonalization of B.

1:1

COROLLARY 2.5. ([BT1]). The mapping B 1--* is concave on the set

of hermitian matrices.

PROOF. By Lemma 2.4 we have

The concavity now follows from the homogeneity of the mapping. D
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3. - The complex Monge-Ampère operator

For a smooth function u defined on an open subset of C" we set

M is called the complex Monge-Ampère operator. The aim of this section is to
extend the definition of Mu to the class of continuous psh functions and list
some of the basic properties.

The following estimate is a variation of a result from [Blol] and will be
crucial in our presentation:

THEOREM 3. l. Let Q be a bounded domain in (Cn and suppose that u, v, g, h E
PSH nc,(Q) are such that u  v S 0, g  h and g = h on a neighborhood of

Then

In the proof of Theorem 3.1 we shall use the operators a and a. We have
d = a + a ; set d ~ : := I (8 - a ) . Then d d ~ = 2i a a and, if u is smooth,

Moreover, from Proposition 2.1 and 2.2 it follows that if u 1, ... , uk e PSH-nCoo
then A ... 1B ddcuk 2: 0 (that is the form is positive at every point).

PROPOSITION 3.2. If a E C(;,p)’ then

PROOF. We have

and

PROOF OF THEOREM 3.1. Write

where
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By Stokes Theorem and Proposition 3.2 we have

Further

because for any smooth w one has A - 18w A 0. Hence, by
Proposition 2.2

Repeating the above arguments n - 1 times we easily get

which completes the proof. D

The next result is essentially the Chern-Levine-Nirenberg inequality.
COROLLARY 3.3. Let 0  r  R. If we denote B R - B(0, R) the n for

u E PSHnCOO(BR), u  0,

PROOF. Let g(z) := Izl2 - R2 and he E PSH nC°°(BR) be such that
0 and hs = g on a neighborhood of a BR . If we now

let s tend to 0, Theorem 3.2 with v - 0 gives

which implies (3.1 ). 0

THEOREM 3.4. ([BT1]). If u is continuous and psh then Mu can be uniquely
defined as a nonnegative Borel measure in such a manner that

if u is smooth, and uniform convergence uj - u implies weak convergence
MUj - Mu.
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PROOF. Take u E and suppose r and R are such that Br c
B © Q. We may assume u  0 on B R . Take a nonnegative test
function ~ such that E C’ (Br). One can find g, h E PSH nC°°(S2) such
that = h - g.

By Theorem 3.1 for any E 
the following estimate holds:

(because  V2)-
Choose a sequence fujl c PSHnc-(B R )uniformly convergent to u and

such that -K  uj  0. By (3.3) the sequence fBT wmuj is convergent and,
again by (3.3), the limit is independent of the choice of fujl. We may therefore
define for ~ &#x3E; 0 with E C~(B~) and by Corollary 3.3

where C does not depend on ~. This implies that we can well define 
for every ~ E thus Mu is a nonnegative Borel measure on Br. Since the
problem is purely local, the definition of Mu is valid in whole Q. Moreover,
approximation arguments show that (3.3) remains valid if v, and v2 are only
continuous.

Finally, let fujl be an arbitrary sequence converging uniformly to u. After
adding appropriate constants we may assume and the se-

quence is decreasing. Then by the extended version of (3.3) - 

0 with E It follows that Muj converges weakly to Mu
which completes the proof. D

The right hand-side of (3.2) is also well defined for C2, and even 1

functions, that is C 1 functions with Lipschitz first partial derivatives. It follows
from Rademarcher theorem that a 1 function is twice differentiable almost

everywhere with respect to the Lebesgue measure. Moreover, second partial
derivatives of such a function, defined pointwise as locally bounded functions,
coincide with distributional derivatives (this follows from the fact that Lipschitz
functions of one variable can be integrated by parts). The Sobolev theorem

implies that every distribution with locally bounded second partial derivatives
is a C 1’ 1 function.

PROPOSITION 3.5. The equality (3.2) remains valid for 1 psh functions.
Moreover, if us := u * ps is a regularization of such a function u then MUD --~ Mu
locally in the Lp-norm for every p  oo.

PROOF. It is enough to prove the second claim of the proposition. Since
the second partial derivatives of u are locally bounded, we have for p  o0

the convergence in LÎoc
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To complete the proof it suffices to observe that if two sequences of func-
tions ffjj and are locally uniformly bounded and convergent to f and g,
respectively, then hgj - f g in Lkc. Indeed, write

and the proposition follows. 1:1

An important property of the complex Monge-Ampère operator is its good
behavior under a holomorphic change of coordinates:

PROPOSITION 3.6. Let 0 and S22 be open in Cn and suppose that H : Qi --~ Q2
is a holomorphic mapping with non-vanishing jacobian. Then for u E PSH nC (S22)
we have

PROOF. H* : D’(02) - D’ (S21 ) is a continuous linear mapping and, since
the problem is purely local, we may assume that u is smooth. Then we have
an equality of matrices

where A = (aHpjazq), and the proposition follows. 0

Next theorem is called the comparison principle.

THEOREM 3.7. ([BTI]). If S2 C u, v E are such that

u  v on 8 Q and Mu &#x3E; Mv, then u  v on Q.

PROOF. Suppose the set fu  v} is non-empty. Let C be such :=

0 on S2; then for some e &#x3E; 0 the set S := &#x3E; v } is non-empty
too. For 3 &#x3E; 0 set vs : := max { u + + 8 } . Then v8  u + s1fr on S, if 6 $ 0,
and vs = v + 3 on a neighborhood of a S. From Stokes theorem and the weak
convergence 2013~ M(u + s1fr) we get

which is a contradiction. (The operator M is subadditive - this follows for

example from Corollary 2.5). 0

THEOREM 3.8. ([BTl]). If u and v are psh and continuous then

where 1 A stands for the characteristic function of a set A.
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PROOF. It is enough to show that for compact K c ju = vl one has
M max{u, v}(K) &#x3E; Mu(K). For 8 &#x3E; 0 let us := max{u + 3, v}; then us =
u + 8 on a neighborhood of K and u s ,~ max{M, v). The weak convergence
Mus ---~ M max{u, v} gives

We will need the following version of the comparison principle:

THEOREM 3.9. Let 0 and u be as in Theorem 3. 7. Suppose that v E C2(0) n
C(Q), v on aS2 and Mu &#x3E; Mv on rv, the open set where (a2v/aZjaZk) is
positive. Then u  v on Q.

PROOF. It is similar to the proof of Lemma 5.2 in [RT]. Let C be such that
:= - C  0 on Q. Suppose that the set { u &#x3E; v } is non-empty; then

S : = f u -~ e z/r~ &#x3E; v } ~ Q~ for some s &#x3E; 0. By a denote the maximum of the
function u + 8* - v and by W the set where it is attained. W is a compact
subset of S.

Suppose that W C rv. Then for some a’  a we would have u + 81/f -
a’ on 8rv and by the classical comparison principle we would get a

contradiction. We may therefore assume that there exists zo E W B rv . Then the
matrix is not positive, hence for some a e C"

Therefore we have

which contradicts the fact that u -f- e1fr - v has a local maximum at zo. 0

REMARK. Theorem 3.9 is not true for arbitrary v E C(S2). A counterex-
ample can be easily constructed even in the case n = 1.

For A = (ajk) E A, where ,,4 is defined in Lemma 2.4, put

1 
n a2

AA .- _ n l: ajk a2 .n j,k=l aZj azkJ, -

By Lemma 2.4 and Proposition 3.5 we have

(3.4) = inf AAU if u E 
A E,,4

THEOREM 3.10. Let u be a continuous psh function and let F be continuous
and nonnegative. Then the following are equivalent:
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PROOF. The implication iii) ~ i) follows from the weak convergence
M u s --~ M u and the uniform convergence F 1 ~ n * ps ~ F 1 ~ n . From ii) it
follows that 0 A u s = ps 2: and (3.4) implies iii). It remains
therefore to show the implication i) # ii). Fix A E A. After simple approxi-
mation arguments we may assume that is smooth. Take any ball B and
let v E C(B) be such that AAV = and v = u on aB. Then v is smooth
in B and by (3.4) F on rv. Now, Theorem 3.9 implies that and
it follows that f B which completes the proof of the theorem.

BD

In Section 4 we will use the following extension of the subadditivity of
the Monge-Amp6re operator:

THEOREM 3.11. Let u, v E PSH f1C be such that Mu &#x3E; F, Mv &#x3E; G, where F
and G are continuous and nonnegative. Then

PROOF. If u and v are smooth then (3.5) follows directly from Lemma 2.5.
In order to prove it for arbitrary u and v take a nonnegative test function
and use Theorem 3.10:

4. - The Dirichlet problem in B-regular domains

The aim of this section is to prove the following theorem:

THEOREM 4.1. ([BTI]). Assume S2 c C’ is a B-regular domain. Let f E
C (a S2), F E C (f2), F &#x3E; 0. Then there exists a unique solution u = F) of
the following Dirichlet problem:
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In Section 6 we will generalize the above theorem to the class of hyper-
convex domains.

PROOF OF THEOREM 4.1. The uniqueness follows from the comparison prin-
ciple. Moreover, the solution, if exists, must be of the form u = sup B, where

(Elements of B are called subsolutions of the problem (4.1 ).) Let 1fr be as in
Theorem 1.7. The family B is nonempty, for if v E n C (S2), viaq = f
then M ( v ~- A ~ ) &#x3E; Mv + F for sufficiently big A. By
Theorem 3.8 the family B has a lattice property:

Theorem 4.1 will be proved in several steps.

STEP I. u : = SUpS E B.

Choose any Vo E B and let h be harmonic on S2, continuous on S2 and
such that = f. We have vo  u  h which implies u * = u * = f on 

By the definition u is lower semicontinuous. We want to show that it is

also upper semicontinuous. The arguments will be similar to those from the

proof of Theorem 1.5. Fix zo E S2 and 8 &#x3E; 0. We can find 0  8  dist(zo, 
such that

(by the compactness of and

(by the uniform continuity of F on Q). Fix 2 E B(zo, 8). We can find V E B
such that + 8. From (4.2) it follows that we can vo, thus

by (4.3) we have

Define

If E aS2 then by (4.5) v(z+z-zo)  v(z)+e, hence v E PSH(Q)nC(Q).
From (4.5) it follows also that C = v on a neighborhood of By (4.4) and
Theorem 3.8 F - and it follows that C(z) 
Therefore we have v (z) - 3E &#x3E; u(1) - 4E, so u is lower

semicontinuous. We have thus shown that u E PSH(Q) n C(2), ulan = f.



738

Choquet lemma (cf. [Doo]) implies that there exists a sequence fvjl c B
such that u = Then, for uj : = E ,t3 we have uj t u.
The convergence is uniform, hence Mu &#x3E; F and u E B.

STEP II. We may reduce the proof to the case when S2 is the unit ball B,
C°° (B) and f E C°° (8 8).

By Step I, to prove Theorem 4.1 it remains to show that Mu = F. First

assume we have done it for a ball and let Q be arbitrary. Fix B = B(zo, r) C Q
and put it := By the comparison principle u &#x3E; u on B and
u = u on a B . From Theorem 3.8 it follows that the function

belongs to ,t3 (because v = max{u, v}). This implies that M = u on B, hence
Mu = F on B. Therefore we may assume that Q = B.

Assume that Theorem 4.1 is true for smooth data and let f, F be continu-
ous. We can find sequences f fj I c C°° (a B), decreasing to f, c C"O (B),
increasing to and solutions My := By the comparison principle

hence

Thus the sequence is uniformly convergent on B and u = limuj is the

required solution.

STEP III. If f E and E then u E 

ForaEB set

where Pa (z) = is the projection of z on the complex line Ca, = z -II
Pa (z), sa = /(1 2013 (To(z) = -z). Then Ta is a holomorphic autoinorphism
of B, Ta = Ta and Ta (0) = a (cf. [Rud]).

Fix 8 &#x3E; 0 and define

Then L E (Bl-t: x B~ x B) (BR = R)), because we can c( mpute that
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If we put

then and

First we want to show that there are positive constants I~1 and K2, de-

pending only on u and 8, such that for (a, h) E x BE12 the function

belongs to B. For a E B l-£ and Z E a B we have = 0, thus at
the points where V is twice differentiable the Taylor expansion of V gives

for By (4.6) it is enough to take

to get By proposition 3.6, Theorem 3.11 and since F,

Mv

Now, using the Taylor expansion again, we get that with the constant

we have

and thus V E ~3 for I~2 big enough.
If a = z then from (4.7) we obtain the estimate
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where the constant K := Ki + K2 depends only on 6’, f and F.
Now we shall show that if a psh function u fulfills the estimate (4.8) then

u First observe that the estimate holds also for the regularizations
:= u * P8. Indeed, by (4.8) for 8  E /2 we have

This implies that Klhl2. The functions u3 are psh, thus

Therefore we have

hence K. Since is weakly convergent to u", we get that the
second partial derivatives of u are locally bounded and therefore u E 

STEP IV. Mu = F, if U E C’  .

By Step I we have F. It follows from Proposition 3.5 that it is

enough to show that

at point where u is twice differentiable. Suppose for some zo we have a strict
inequality in (4.9). We may assume that the matrix has a

diagonal form &#x3E; 0. Let 0  Àj be such &#x3E; F(zo).
The Taylor expansion gives

where

Therefore we can find r &#x3E; 0 and 6 &#x3E; 0 such that F(zo + h)  Àl ... Àn, if

if h ~ = r. Then the function

belongs to B, hence v  u. But v(zo) 2: Re P(0) + s = u(zo) + 8 which leads
to a contradiction.

The proof of Theorem 4.1 is complete. 0

Incidently, in Step III of the above proof we obtained the following regu-
larity theorem:

THEOREM 4.2. If B is the unit ball in f E Cl,l(aB) and F lln E Cl,l(B)
then uB(f, F) 0
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5. - Stability of the complex Monge-Ampère operator

DEFINITION. Let p, q E (0, oo]. We say that the complex Monge-Ampère
operator is ( p, q )-stable if there is a constant C, depending only on p, q and n, such
that

It follows from H61der’s inequality that (po, qo)-stability implies (p, q)-
stability for p  po and q 2: qo. By the comparison principle for F E C(B),
F &#x3E; 0, we have

and it follows that the Monge-Amp6re operator is (oo, oo)-stable. This means

that it is also (p, oo)-stable for every p &#x3E; 0.

We shall now see when the Monge-Amp6re operator is not stable:

EXAMPLE. Let u be psh, smooth on C’ such that u(z) = log [z[ I if

Izl &#x3E; 1. Define := u(jz) -logj. Then = log Izl, if lzl &#x3E; 

log if j f oo, and Therefore we have

IILP(B) - II log and, since = M(log Izl) = 0 if Izl &#x3E; llj,
we get IIMujIlLq(B) = This shows that the Monge-Amp6re
operator is not (p, q)-stable if either q  1 or p = oo and q = 1.

(p, q)-stability means that the Lp-norm of a sufficiently regular psh function
u on the unit ball, vanishing on the boundary, can be estimated by the Lq -norm
of the density of Mu. It turns out that considering only a ball and psh functions
is not essential:

THEOREM 5.1. Let S2 be a domain in ~Cn contained in a ball of radius R. Assume
that the Monge-Ampère operator is (p, q)-stable. Then

i) For u, v E n C (Q) such that u = v on and Mu, Mv E we

have

where

ii) For ~p E such that = 0 we have

PROOF. We may assume that R = 1 and S2 C B (the exponent at R one
can get using the linear transformation z H Rz).
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To prove i) choose Fj E C ( B ) such that I Mu - M v I 0 on

If we set := uB (0, then by the comparison principle 
on S2 . Thus (p, q)-stability gives

To show ii) let be as in Theorem 3.9. As before we can find G~ , 1
G- E C(B) such that G/ = M(+w) in and G/ $ 0 on Now, if

u I := Gl), then Theorem 3.9 gives Eventuallyi g i Y

On the other hand the next theorem shows that it is enough to verify the
stability only for smooth functions.

THEOREM 5.2. Assume that for some p, q, C and C we the following estimate
holds:

Then the Monge-Ampère operator is ( p, q ) -stable.
PROOF. Since the estimate (5.2) does not hold for q  1 and the Monge-

Amp6re operator is (p, oo)-stable for every p &#x3E; 0, we may assume that 1 

q  oo.

To show (5.1) take first F &#x3E; 0 with smooth on B. By Theorem 4.2
the function u : := F) is 1 in B. Fix E &#x3E; 0 and let := u * pa E

= 1 - )) be a regularization of u. Let 5 &#x3E; 0 be such
 E . Then

By (5.2) and Proposition 3.5

Combining (5.3) and (5.4) one obtains

which implies (5.1) for smooth.

- 

Now let F be arbitrary and take Fj decreasing to F with 7’ smooth on
B. By the comparison principle we have

where u = uB (0, F), Uj = uB (0, hence uj t u. In particular 
and II F II Lq (B) which completes the proof. D
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Now we prove a result of Cegrell and Persson which will be used in the
next section:

THEOREM 5.3. ([CP]). The complex Monge-Ampère operator is (00, 2)-stable.
The proof will rely on two lemmas:

LEMMA 5.4. (([GT]), Lemma 9.2). Let B be the unit ball in Then for
u E C2(B) n C(B) one has

where D2u = 0

LEMMA 5.5. Suppose that u is twice differentiable at Zo ECn and the matrix

is nonnegative (we use the notation zj = xi + ixn+j, i = 1, ... , n). Then

PROOF. Denote

One can easily compute that, with notations from Lemmas 2.3 and 2.4, for

A E ,,4 one has 4 tr ( A B ) = Then from Lemmas 2.3 and 2.4 we get

PROOF OF THEOREM 5.3. Take u E u  0. By Lemmas 5.4
and 5.5 we have

(oo, 2)-stability follows from Theorem 5.2. D

REMARK. Kolodziej [Kol] has recently shown that the complex Monge-
Amp6re is (p, q)-stable for all pairs (p, q ) except the ones from the example
at the beginning of this section. His methods however are more complicated
than the ones used above.
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6. - The Monge-Ampère operator in hyperconvex domains

Using the (oo, 2)-stability we can generalize Theorem 4.1 to the class of

hyperconvex domains:

THEOREM 6.1. ([Blo2]). Let S2 C C" be a hyperconvex domain. Suppose that
f E can be continuously extended to a psh function on Q, that is there exists
vo E fl such that = f. Let F be as in Theorem 4. l. Then there
exists a solution u = u 0 ( f, F) of (4.1 ).

PROOF. First suppose that F == 0 and let u be as in Theorem 1.5. We
can find h, harmonic on Q, continuous on S2 and such that hlao = f. Then

vo  u  h and, by Theorem 1.5, u E PSH(Q) n C(2). If B = B(zo, r) C S2
then we can easily show that u = on B, hence Mu = 0. We may
therefore assume in addition that Mvo = 0.

Next suppose that F has compact support in Q. Let * be as in Theorem 1.6.
Then M (vo -~ A~) ~ F for A big enough (because F has compact support).
Let Q be B-regular domains. Theorem 4.1 provides solutions uj :=

By the comparison principle

We want to show that the sequence is locally uniformly convergent on S2.
and let ko be such that and on 

Then by (6.1 ) and the comparison principle for j, k &#x3E; ko one has

thus the sequence (uj) is locally uniformly convergent on SZ. We can now

easily show that u := lim uj is the desired solution.
Let now F be arbitrary. We can find Fj E C’ (0), Fj &#x3E; 0, such the

Fj 2013~ F in L(Q). It is enough to show that the solutions uj := Fj)
are uniformly convergent on S2. We may assume that Q c B. Then by the
comparison principle we have on S2

hence by Theorem 5.3

Therefore the sequence (uj) is uniformly convergent on S2 and this completes
the proof. D

REMARK. In the proof of Theorem 6.1 it is not necessary to use the full

strength of Theorem 1.6. For if K c S2 then without appealing to Theorem 1.1
we can easily construct an exhaustion function which is smooth and strictly psh
only on a neighborhood of K, and this is sufficient in the proof of Theorem 6.1.

Moreover, we do not need to use stability of the Monge-Amp6re operator
if we know that Q admits an exhausting 1fr with M~ &#x3E; F. This is so in the
case of a bidisc:
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EXAMPLE. The bidisc 02 in (C2 is hyperconvex but not B-regular. For
S E (0,1] set

Then 1frlaô2 = 0, is smooth, separately subharmonic on 02 and

thus * is psh on 02 1/2.
This shows (without appealing to the results of Sections 1 and 5) that

for Q = 02 the problem (4.1 ) has a solution if f is as in Theorem 6.1 and
F E C(02) is such that

for some C &#x3E; 0 and f3  2. This is precisely a result of Levenberg and
Okada ([LO], Theorem 3.1) who use however much more complicated proba-
bilistic methods in their proof.

We also want to prove that a function f E satisfies the hypothesis
of Theorem 6.1 if and only if it is separately subharmonic on 9A~, that is

(6.2) for every ~ E a0 f (~, ~) and f (~, ~) are subharmonic in A.

The part "only if" is obvious. To show "if" put

From the regularity of 02 it follows that u*  f on a 02. Thus, by Theorem 1.5,
it is enough to show that u * &#x3E; f on * We may assume that f E 
and f satisfies (6.2). Fix ~ E 9A and s &#x3E; 0. We can find a barrier ~ E C(A),
subharmonic in A and such that w(§) = 0, 0. We claim that for A

big enough the function

satisfies v  f on Li2. From the uniform continuity of f one can get r &#x3E; 0
such that f (zl, ,z2) - f (~, if 2013 ~! I  r. Now, taking A so large that

we have v  f. Therefore U. (~, z2) &#x3E; f (~, u,, &#x3E; f on 9A x A.
Of course, in the same way one shows the desired inequality also on A x 9A
which completes the proof of the contention.

Finally, we want to show that in hyperconvex domains the problem (4.1 )
has smooth subsolutions:

THEOREM 6.2. Let Q, F and f be as in Theorem 6.1. Then one can find
u E PSH n C (Q) such that = f and Mu &#x3E; F.

If F - 1 and f - 0, we get a smooth exhaustion function u with Mu &#x3E; 1.
Theorem 6.1 strengthens therefore Theorem 1.6.
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To prove Theorem 6.1 we shall define a suitable Richberg sheaf:

DEFINITION. If Q is open in en then by denote the set of all continuous
strictly psh functions u on SZ with Mu &#x3E; 1 (that is for S2’ c- Q there exists a &#x3E; 1
such that Mu &#x3E; a in S2’).

Observe that if u is psh and 1 then Mu &#x3E; 0 implies that u is strictly
psh. However, it is not so for arbitrary psh u as the following example shows:

EXAMPLE. For z = (Zl, Z2) E e2 set u(z) := (1 + Then u is

separately subharmonic in (~2, smooth on 01 and Mu = 1 /4 there. This

implies that u E PSHnC(e2) and 1 /4 in (2. (In fact one can show that
Mu = 0 and thus Mu = 1 /4 everywhere). To see that u is not strictly

psh it is enough to observe that a2U/aZ,azl = [z2[.
PROPOSITION 6.3. ,~’ is a Richberg sheaf.
PROOF. The definition is local, thus .~’ is a sheaf. To show that .F satisfies

( 1.1 ) take u E E and Q’ (c Q. We may assume that supp w C Q’
and &#x3E; 1 in S2’ . If  h  1, then for some 80 &#x3E; 0 we have

(1 - ~,)u + E PSH(Q) for 8 E and M(u + e~p) &#x3E; ÀnMu 2: Àna &#x3E; 1,
which implies (1.1). (1.2) follows directly from Theorem 3.8.

Finally, let Q’, Q, 9 and u be as in (1.3). If D is as in the proof of
Proposition 1.2, in the same way as there we can get uniform convergence of
the partial derivatives - as 8 $ 0 on D, whereas on
a neighborhood of Q’BD we have use - us for 6 small enough. Now it is

enough to apply Theorem 3.10 with F - 1 to see that .~’ satisfies (1.3). D

PROOF OF THEOREM 6.2. First assume that F - 1. Then, in view of

Proposition 6.3 and Theorem 1.3, it suffices to find u E n with

ulan = f. Let v : := 1) be given by Theorem 6.1 and * by Theorem 1.6.
Put u : := v + 1fr. Then u is strictly psh and Mu &#x3E; M v + M 1fr &#x3E; 1. Thus,
Theorem 6.2 is proved for F - 1.

Let now F be arbitrary. By the previous part we can find 
n with ullan = 0 and U2laQ = f. Then M(CUI + u2) &#x3E; F

for c big enough, which completes the proof. D
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