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Abstract. We study the C1,1 and Lipschitz regularity of the solutions of
the degenerate complex Monge-Ampère equation on compact Kähler man-
ifolds. In particular, in view of the local regularity for the complex Monge-
Ampère equation, the obtainedC1,1 regularity is a generalization of the Yau
theorem which deals with the nondegenerate case.

1. Introduction

Let M be a compact Kähler manifold of the complex dimension n, n ≥ 2,
with the Kähler form ω. We will say that a function ϕ onM is admissible if
it is upper semi-continuous, locally integrable and such that ddcϕ+ω ≥ 0,
where d = ∂ + ∂̄ and dc =

√−1(∂̄ − ∂). The complex Monge-Ampère
equation on M takes the form

(ddcϕ+ ω)n = fωn,(1.1)

where ωn = ω ∧ . . . ∧ ω. We shall normalize ϕ by∫
M
ϕωn = 0.(1.2)

A necessary condition for f is∫
M
fωn =

∫
M
ωn.(1.3)
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In his famous paper [Y] Yau proved that for every positiveC∞ function f on
M satisfying (1.3) there exists the unique C∞ admissible ϕ satisfying (1.1)
and (1.2) (the uniqueness had been earlier shown by Calabi). This result
implies the Calabi conjecture.

The degenerate equation was recently studied by Koĺ odziej in [K1] and
[K2]. By [BT] it is known that the left hand-side of (1.1) makes sense as a
nonnegative Borel measure for bounded admissible ϕ. Throughout the rest
of the paper we will assume that f is a nonnegative function onM satisfying
(1.3) which belongs to Lq(M) for some q > 1 and that ϕ is a continuous
admissible solution of (1.1)-(1.2). The reason is that in this case, as shown
in [K1], such a solution indeed exists and by [K2] (see also [B2]) it is in fact
unique among all locally bounded admissible functions on M .

In this paper we study the regularity of (1.1) in the degenerate case. We
will say that ϕ is almost C1,1 if ∆ϕ is bounded. This is equivalent to the
fact that the mixed complex derivatives ϕij̄ = ∂2ϕ/∂zi∂z̄j are bounded
for i, j = 1, . . . , n. Every almost C1,1 function belongs to W 2,p for all
p < ∞, and thus to C1,α for all α < 1. But it does not necessarily belong
to W 2,∞ = C1,1.

Our main result is the following:

Theorem 1.1. If f1/(n−1) is C1,1 then ϕ is almost C1,1. Moreover, we have

sup
M

|∆ϕ| ≤ C,

where C depends only on M and on an upper bound for ||f1/(n−1)||C1,1 .

The exponent 1/(n−1) appears naturally in the study of the real degener-
ate Monge-Ampère equation, see [G] and [GTW]. Theorem 1.1 generalizes
the Yau theorem in view of the local regularity of the complex Monge-
Ampère equation (see [B1, Theorem 2.6]).

We also get a result on Lipschitz regularity of the solutions of (1.1).
However, we have been able to prove it only if either M has nonnegative
bisectional curvature or ϕ is closed to a constant in the L∞ norm:

Theorem 1.2. Assume that M has nonnegative bisectional curvature. If
f1/n is Lipschitz continuous then so is ϕ. Moreover,

sup
M

|Dϕ| ≤ C,

where C depends only on M and on upper bound for ||f1/n||C0,1 .

Theorem 1.3. There exists a positive constant δ depending only onM such
that if ||ϕ||L∞ ≤ δ and f1/n is Lipschitz continuous then ϕ is Lipschitz
continuous. Moreover,

sup
M

|Dϕ| ≤ C,
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where C depends only on M and on an upper bound for ||f1/n||C0,1 .

By [K2, Corollary 4.4] it follows that there exists another positive con-
stant δ′ depending only onM such that if ||f−1||L1 ≤ δ′ then ||ϕ||L∞ ≤ δ.

The proofs of Theorems 1.1-1.3 will proceed as follows. First, smoothing
f in a right way and using the stability result from [K2] (or another one from
[B2]) we reduce the problem to proving the estimate in the case when f > 0
and f is C∞. In such a case the Yau theorem implies that ϕ must be C∞.
When showing these estimates we will use the following L∞-estimate for
the solutions of (1.1)-(1.2) (see [K1] or [T, p. 49-51]):

||ϕ||L∞ ≤ C,(1.4)

where C depends only on M and on ||f ||L∞ .

2. Preliminaries

By c1, c2, . . .we will denote positive constants depending only onM . Since
dω = 0, it follows that locally there exists a smooth plurisubharmonic
function g with ω = ddcg = 2

√−1∂∂g. Then

ω = 2
∑
i,j

gij̄

√−1dzi ∧ dz̄j .

We can find a finite number of coordinate systems covering M where such
a g exists,

(gij̄) ≥ 1
c1

(δij)(2.1)

and

||g||C3,1 =
∑

0≤k≤4

||Dkg||L∞ ≤ c2.(2.2)

In what follows we will only use this finite number of charts and there we will
always choose orthonormal coordinates, so that in particular the inequalities
(2.1) and (2.2) will not be affected.

The condition that ϕ is admissible reads that the function

u := ϕ+ g

is plurisubharmonic. We will say that ϕ is strongly admissible if there exists
ε > 0 such that ddcϕ+ω ≥ εω. This is of course equivalent to the fact that
u is strongly plurisubharmonic. If ϕ is in addition smooth then the equation
(1.1) takes the form

det(uij̄) = f det(gij̄).
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Differentiating it with respect to zp and z̄q gives

uij̄uij̄p = (log f)p + (log det(gij̄))p,(2.3)

uij̄uij̄pq̄ = (log f)pq̄ + (log det(gij̄))pq̄ + uil̄ukj̄uij̄pukl̄q̄,(2.4)

where (uij̄) denotes the inverse transposed matrix of (uij̄).
When proving an a priori estimate byC1, C2, . . .we will denote constants

that depend only on the desired quantities and will say that they are under
control.

3. The C1,1 regularity

Proof of Theorem 1.1. The partition of unity gives a finite number of smooth
functions {γk} on M such that

∑
k γk = 1, 0 ≤ γk ≤ 1, and the support of

every γk is contained in a chart. For ε > 0 set

gε :=
∑

k

(
γkf

1/(n−1)
)

∗ ρk
ε + ε,

where ρk
ε is a standard regularizing kernel in a chart. We can find suitable

constants µε such that the functions

fε := µεg
n−1
ε

are positive, C∞, satisfy (1.2), tend uniformly to f and

||f1/(n−1)
ε ||C1,1 ≤ C1.

Now, ifϕε are the corresponding solutions of (1.1) given by the Yau theorem,
then [K2, Corollary 4.4] implies that ϕε → ϕ uniformly as ε → 0 (by [B2,
Theorem 3] we have the convergence in L2n/(n−1) which is also sufficient).
We may therefore assume that ϕ is C∞ and strongly admissible.

Note that

∆ϕ =
1
2
gij̄ϕij̄ > −n

2
and it is therefore enough to estimate ∆ϕ from above. Denote G := (gij̄),
U := (uij̄) and set

V := G−1/2UG−1/2.

Then V is a positive hermitian matrix and one can easily show that the
eigenvalues of V do not depend on the choice of holomorphic coordinates
and thus they are the same in every chart. By λmax(V ) denote the maximal
eigenvalue of V . Set

α := log λmax(V ) − ϕ.
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The function α is continuous on M and thus attains maximum at some
O ∈ M . We have

λmax(V ) = max
{
ζ

T
V ζ : ζ ∈ C

n, |ζ| = 1
}

= max
{
ζ

T
Uζ : ζ ∈ C

n, ζ
T
Gζ = |G1/2ζ|2 = 1

}
= max

{
uζζ̄

gζζ̄

: ζ ∈ C
n \ {0}

}
,

where uζζ̄ = ζ
T
Uζ =

∑
i,j uij̄ζiζj . There exists w ∈ C

n with |w| = 1
such that

λmax(V (O)) =
uww̄(O)
gww̄(O)

.

We may assume that at O U is diagonal and u11̄ ≥ u22̄ ≥ . . . ≥ unn̄.
In a neighborhood of O define

α̃ := log
uww̄

gww̄
−Aϕ,

where A will be specified later. We have α̃ ≤ α ≤ α(O) = α̃(O), so that α̃
also has a maximum at O and thus for p = 1, . . . , n we have there

0 ≥ α̃pp̄ =
uww̄pp̄

uww̄
− |uww̄p|2

u2
ww̄

− gww̄pp̄

gww̄
+

|gww̄p|2
g2
ww̄

−Aϕpp̄.

Hence by (2.4)

0 ≥
∑

p

α̃pp̄

upp̄
=

(log f)ww̄

uww̄
+

(log det(gpq̄))ww̄

uww̄

+
1
uww̄

∑
p,q

|uwpq̄|2
upp̄uqq̄

− 1
u2

ww̄

∑
p

|uww̄p|2
upp̄

− 1
gww̄

∑
p

gww̄pp̄

upp̄
+

1
g2
ww̄

∑
p

|gww̄p|2
upp̄

+A
∑

p

gpp̄

upp̄
− nA.

We shall now use an idea from the proof of [GTW, Lemma 2.1]. We will
need an elementary lemma:

Lemma 3.1. LetΩ be a domain in R
m and letψ ∈ C1,1(Ω) be nonnegative.

Then
√
ψ ∈ C0,1(Ω) and

|(D
√
ψ)(x)| ≤ max

{ |Dψ(x)|
2dist(x, ∂Ω)

,
1 + supΩ λmax(D2ψ)

2

}
for almost all x ∈ Ω.
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Proof. We may assume thatψ > 0 and thatg is smooth. Set r := dist(x, ∂Ω).
If ψ(x) ≥ r2 then

|(D
√
ψ)(x)| =

|Dψ(x)|
2
√
ψ(x)

≤ |Dψ(x)|
2r

.

We may thus assume that ψ(x) ≤ r2. For fixed ζ ∈ R
m with |ζ| = 1 and

t ∈ R with |t| ≤ √
r set h(t) := ψ(x+ tζ). We may assume that h′(0) ≤ 0

(otherwise consider −ζ instead of ζ). Set y :=
√
ψ(x) =

√
h(0). Then

0 < h(y) = y2 +
∫ y

0
h′(t)dt.

We can thus find t ∈ [0, y] such that h′(t) ≥ −h(0)/y = −y. There exists
s ∈ [0, t] with

h′′(s) =
h′(t) − h′(0)

t
≥ −1 − h′(0)

y
.

Therefore

|(Dζ

√
ψ)(x)| =

|h′(0)|
2
√
h(0)

≤ 1 + h′′(s)
2

and the lemma follows. 	

Remark. One cannot expect that

√
ψ ∈ C0,1(Ω) in the assertion of Lemma

3.1. For let for example Ω be the interval (0, 1) in R and ψ(x) = x.

Proof of Theorem 1.1 continued. Denoting f̃ := f1/(n−1), by Lemma 3.1
we get

(log f)ww̄ = (n− 1)

(
f̃ww̄

f̃
− |f̃w|2

f̃2

)
≥ −C2

f̃
.(3.1)

By (2.1) and (2.2)

(log det(gpq̄))ww̄

uww̄
− 1
gww̄

∑
p

gww̄pp̄

upp̄
+A

∑
p

gpp̄

upp̄
(3.2)

≥ − c3
uww̄

+ (−c4 +
A

c1
)
∑

p

1
upp̄

= − c3
uww̄

+ c4
∑

p

1
upp̄

if we chooseA := 2c1c4. From (2.1), the inequality between geometric and
arithmetic means and since uww̄ ≤ u11̄ at O, we also obtain

c4
∑

p

1
upp̄

≥ c4
n− 1

(u22̄ . . . unn̄)1/(n−1) ≥ u
1/(n−1)
ww̄

c5f̃
(3.3)
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The Schwartz inequality for every p gives

|uww̄p|2 ≤ uww̄

∑
q

|uwpq̄|2
uqq̄

,

thus

1
uww̄

∑
p,q

|uwpq̄|2
upp̄uqq̄

− 1
u2

ww̄

∑
p

|uww̄p|2
upp̄

≥ 0.(3.4)

Combining (3.2)–(3.5) and multiplying (3.1) by c5f̃uww̄ we get

u
n/(n−1)
ww̄ − C3uww̄ − C4 ≤ 0

at O. Therefore uww̄ ≤ C5 at O and by (1.4)

max
M

α ≤ α̃(O) ≤ C6

from which the theorem easily follows. 	


4. The Lipschitz regularity

Proof of Theorem 1.3. By a similar argument as at the beginning of the proof
of Theorem 1.1 we may assume that ϕ is C∞ and strongly admissible. Set
s := ||ϕ||L∞ and

α :=
βa

ϕ+ 2s
,

where
β := |Dϕ|2 = gij̄ϕiϕj

and a > 1 will be specified later. The function α attains its maximum at
some O ∈ M . We may assume that the matrix (uij̄) is diagonal at O. At O
we have for p = 1, . . . , n

0 = αp =
a βa−1βp

ϕ+ 2s
− βaϕp

(ϕ+ 2s)2
,(4.1)

and, by (4.1),

0 ≥ αpp̄ =
a βa−1βpp̄

ϕ+ 2s
− βaϕpp̄

(ϕ+ 2s)2
+

(a− 1)βa|ϕp|2
a(ϕ+ 2s)3

.(4.2)

We have

βpp̄ = (gij̄)pp̄ϕiϕj̄ + 2Re((gij̄)pϕip̄ϕj̄) + 2Re((gij̄)pϕiϕj̄p̄)(4.3)

+ 2Re(gij̄ϕipp̄ϕj̄) + gij̄ϕip̄ϕj̄p + gij̄ϕipϕj̄p̄

≥ −c6β + 2Re(gij̄ϕipp̄ϕj̄) +
1
c7
gij̄ϕip̄ϕj̄p
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by (2.1) and (2.2). From (2.3) we get∑
p

2Re(gij̄ϕipp̄ϕj̄)
upp̄

≥ −c8
√
β

(
1 + |∇(log f)| +

∑
p

1
upp̄

)
.(4.4)

Note that, by the inequality between arithmetic and geometric means,

|D(log f)| ≤ |D(f1/n)|
∑

p

1
upp̄

.(4.5)

Moreover,∑
p

gij̄ϕip̄ϕj̄p

upp̄
=
∑

p

(
gpp̄upp̄ +

gpp̄

upp̄

)
− 2n ≥ 1

c9
∆u− 2n.(4.6)

We also have

−
∑

p

ϕpp̄

upp̄
≥ 1
c1

∑
p

1
upp̄

− n(4.7)

and ∑
p

|ϕp|2
upp̄

≥ β

c10∆u
.(4.8)

Since

∆u

c7c9
+

(a− 1)β2

c10a2(ϕ+ 2s)2∆u
≥

√
a− 1β

c11a(ϕ+ 2s)
.(4.9)

Combining (4.2)–(4.9) we get

0 ≥ ϕ+ 2s
a βa−1

∑
p

αpp̄

upp̄

≥ −c6β
∑

p

1
upp̄

− c8
√
β

(
1 + C1

∑
p

1
upp̄

)
+

√
a− 1β

c11a(ϕ+ 2s)

−2n
c7

+
β

a(ϕ+ 2s)

(
1
c1

∑
p

1
upp̄

− n

)
.(4.10)

If we now choose a so that √
a− 1
c11

= 2n

and δ so small that
1

3δ a c1
− c6 ≥ 1
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then

(β − c8C1
√
β)
∑

p

1
upp̄

+
β

C2
− c8

√
β − 2n

c7
≤ 0.

Therefore β ≤ C3 at O and the theorem follows. 	

Proof of Theorem 1.2. The proof is almost the same to the proof of Theorem
1.3. To improve (4.3) we compute

(gij̄)pp̄ = −gil̄gkj̄gkl̄pp̄ + git̄gsl̄gkj̄gkl̄pgst̄p̄ + gil̄gkt̄gsj̄gkl̄pgst̄p̄

= gil̄gkj̄Rkl̄pp̄ + gil̄gkt̄gsj̄gkl̄pgst̄p̄.

Therefore the nonnegative bisectional curvature implies that

(gij̄)pp̄ϕiϕj̄ ≥ 0

and we may assume that c6 = 0 in (4.3) and thus also in (4.10). By (1.4) we
have s ≤ C4. Hence(

β

3c1C4a
− c8C1

√
β

)∑
p

1
upp̄

+
√
a− 1β

3c11C4a
− c8

√
β − 2n

c7
≤ 0.

It now suffices to choose an arbitrary a > 1 to get the required estimate. 	
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