A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L^2 -estimates for the $\bar{\partial}$ -operator

by ZBIGNIEW BŁOCKI (Kraków)

Abstract. We give upper and lower bounds for constants appearing in the L^2 estimates for the $\bar{\partial}$ -operator due to Donnelly–Fefferman and Berndtsson.

1. Introduction. Let Ω be a pseudoconvex domain in \mathbb{C}^n and suppose that a form

$$\alpha = \sum_{j=1}^{n} \alpha_j d\overline{z}_j \in L^2_{\text{loc},(0,1)}(\Omega)$$

is $\overline{\partial}$ -closed (that is, $\overline{\partial}\alpha = 0$, which means that $\partial \alpha_j / \partial \overline{z}_k = \partial \alpha_k / \partial \overline{z}_j$, $j, k = 1, \ldots, n$). The equation

(1)
$$\overline{\partial}u = \alpha$$

(which is equivalent to the system of equations $\partial u/\partial \overline{z}_j = \alpha_j$, j = 1, ..., n) always has a solution $u \in L^2_{loc,(0,1)}$ and the difference of any two solutions of (1) is a holomorphic function in Ω (see [6]). A slight modification of the proof of Hörmander's estimate [6, Lemma 4.4.1] (see e.g. [4, Théorème 4.1]) shows that for every smooth, strongly plurisubharmonic function φ in Ω we can find a solution to (1) satisfying

(H)
$$\int_{\Omega} |u|^2 e^{-\varphi} \, d\lambda \le \int_{\Omega} |\alpha|^2_{i\partial\bar{\partial}\varphi} e^{-\varphi} \, d\lambda.$$

By $|\alpha|_{i\partial\overline{\partial}\varphi}$ we understand the pointwise norm of α with respect to the Kähler metric $i\partial\overline{\partial}\varphi$, that is,

$$|\alpha|_{i\partial\overline{\partial}\varphi}^2 = \sum_{j,k=1}^n \varphi^{j\overline{k}}\overline{\alpha}_j\alpha_k,$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 32W05.

Key words and phrases: $\overline{\partial}$ -equation, plurisubharmonic function, L^2 -estimate. Partially supported by KBN Grant #2P03A03726.

where $(\varphi^{j\overline{k}})$ is the inverse transposed matrix of $(\partial^2 \varphi / \partial z_j \partial \overline{z}_k)$. The function $|\alpha|^2_{i\partial\overline{\partial}\varphi}$ is the least function H satisfying

(2)
$$i\overline{\alpha} \wedge \alpha \leq Hi\partial\overline{\partial}\varphi,$$

and one can obtain the estimate (H) for an arbitrary plurisubharmonic function φ in Ω , where instead of $|\alpha|^2_{i\partial\overline{\partial}\varphi}$ we take a function H satisfying (2) (see [3] for the approximation argument based on the proof of [6, Theorem 4.4.2]).

A very useful variation of the Hörmander estimate (H) was proved by Donnelly and Fefferman [5]. Let in addition ψ be a plurisubharmonic function in Ω satisfying

$$i\partial\psi\wedge\overline{\partial}\psi\leq i\partial\overline{\partial}\psi.$$

This is equivalent to the fact that the function $-e^{-\psi}$ is plurisubharmonic, that is,

$$\psi = -\log(-v)$$

for a certain negative plurisubharmonic function v in Ω . Then one can find a solution to (1) with

(DF)
$$\int_{\Omega} |u|^2 e^{-\varphi} \, d\lambda \le C \int_{\Omega} |\alpha|^2_{i\partial \overline{\partial} \psi} e^{-\varphi} \, d\lambda,$$

where C is an absolute constant.

Berndtsson [1] showed that for any δ with $0 < \delta < 1$ one can find a solution to (1) with

(B)
$$\int_{\Omega} |u|^2 e^{-\varphi + \delta\psi} \, d\lambda \le \frac{4}{\delta(1-\delta)^2} \int_{\Omega} |\alpha|^2_{i\partial\overline{\partial}\psi} e^{-\varphi + \delta\psi} \, d\lambda,$$

where φ and ψ are as above. The Berndtsson estimate easily implies the Donnelly–Fefferman estimate—it is enough to consider the function $\varphi + \delta \psi$ instead of φ . The best choice for δ is then $\delta = 1/3$, one then gets C = 27 in the Donnelly–Fefferman estimate. In [2] Berndtsson showed that the estimate (B) follows easily from the Hörmander estimate (H). Using his arguments it was shown in [3] that the constant in the Berndtsson estimate can be improved to $1/\delta(1 - \sqrt{\delta})^2$. From this with $\delta = 1/4$ one gets C = 16 in (DF).

By $C_{\rm B}(\delta)$ denote the best constant in the Berndtsson estimate. Then $C_{\rm DF} = C_{\rm B}(0)$ is the best constant in the Donnelly–Fefferman estimate. The goal of this note is to show the following result.

PROPOSITION. We have

$$\frac{4}{(1-\delta)(2-\delta)} \le C_{\mathrm{B}}(\delta) \le \frac{4}{(1-\delta)^2}, \quad 0 \le \delta < 1$$

Corollary. $2 \le C_{\rm DF} \le 4$.

Note that

$$\frac{4}{(1-\delta)^2} < \frac{1}{\delta(1-\sqrt{\delta})^2} < \frac{4}{\delta(1-\delta)^2}, \quad 0 < \delta < 1,$$

so the upper bound is an improvement of the constants from [1] and [3]. Concerning the lower bound, it was noted already in [1] that the best constant cannot be better than $C/(1-\delta)$, so that in particular the Berndtsson estimate does not hold for $\delta = 1$.

2. Proofs. Using the Berndtsson argument (see the proof of [2, Lemma 2.2]) we first prove the estimate

(3)
$$\int_{\Omega} |u|^2 e^{-\varphi + \delta\psi} \, d\lambda \le \frac{4}{(1-\delta)^2} \int_{\Omega} H e^{-\varphi + \delta\psi} \, d\lambda$$

where $i\overline{\alpha} \wedge \alpha \leq Hi\partial\overline{\partial}\psi$, that is, the upper bound in the proposition. We will just choose the constants more carefully than in [2]. Due to the approximation argument from [3] we may assume that Ω is bounded and φ, ψ are smooth and continuous up to the boundary. Then for any real a we have the equality of sets

$$L^2(\Omega, e^{-\varphi - a\psi}) = L^2(\Omega).$$

Let u be the minimal solution to (1) in the $L^2(\Omega, e^{-\varphi - a\psi})$ -norm (a will be specified later). This means that u is perpendicular to the subspace $H^2(\Omega)$ of square integrable holomorphic functions in Ω in the Hilbert space $L^2(\Omega, e^{-\varphi - a\psi})$, that is,

$$\int_{\Omega} u \overline{f} e^{-\varphi - a\psi} \, d\lambda = 0, \quad f \in H^2(\Omega).$$

Let $v := e^{b\psi}u$, where $b \in \mathbb{R}$ will be specified later. Then

$$\int_{\Omega} v \bar{f} e^{-\varphi - (a+b)\psi} \, d\lambda = 0, \quad f \in H^2(\Omega).$$

This means that v is a minimal solution to the equation

$$\overline{\partial}v = \beta$$

in the $L^2(\Omega, e^{-\varphi - (a+b)\psi})$ -norm, where

$$\beta = \overline{\partial}(e^{b\psi}u) = e^{b\psi}(\alpha + bu\overline{\partial}\psi).$$

If P, Q are any (1, 0)-forms then for any t > 0 we have

$$\begin{split} i(P+Q) \wedge (\overline{P} + \overline{Q}) \\ &= (1+t)iP \wedge \overline{P} + (1+t^{-1})iQ \wedge \overline{Q} - ti(P - t^{-1}Q) \wedge (\overline{P} - t^{-1}\overline{Q}) \\ &\leq (1+t)iP \wedge \overline{P} + (1+t^{-1})iQ \wedge \overline{Q}. \end{split}$$

Therefore

$$\begin{split} i\overline{\beta} \wedge \beta &\leq e^{2b\psi}[(1+t)i\overline{\alpha} \wedge \alpha + (1+t^{-1})b^2|u|^2i\partial\psi \wedge \overline{\partial}\psi] \\ &\leq e^{2b\psi}[(1+t)H + (1+t^{-1})b^2|u|^2]i\partial\overline{\partial}\psi \\ &\leq \frac{e^{2b\psi}}{a+b}\left[(1+t)H + (1+t^{-1})b^2|u|^2\right]i\partial\overline{\partial}(\varphi + (a+b)\psi) \end{split}$$

provided that a + b > 0. From the Hörmander estimate (H) applied to the form β and the function $\varphi + (a + b)\psi$ we obtain

$$\int_{\Omega} |v|^2 e^{-\varphi - (a+b)\psi} \, d\lambda \le \frac{1}{a+b} \int_{\Omega} [(1+t)H + (1+t^{-1})b^2 |u|^2] e^{-\varphi + (b-a)\psi} \, d\lambda.$$

Thus, taking $b = a + \delta$, we get

$$\int_{\Omega} |u|^2 e^{-\varphi + \delta\psi} d\lambda \le \frac{1+t}{2a+\delta} \int_{\Omega} H e^{-\varphi + \delta\psi} d\lambda + \frac{(1+t^{-1})(a+\delta)^2}{2a+\delta} \int_{\Omega} |u|^2 e^{-\varphi + \delta\psi} d\lambda.$$

We now only have to minimize the positive values of the function

$$\frac{\frac{1+t}{2a+\delta}}{1-\frac{(1+t^{-1})(a+\delta)^2}{2a+\delta}} = \frac{t(1+t)}{t(2a+\delta) - (1+t)(a+\delta)^2}$$

for t > 0 and $a > -\delta/2$. The minimum is easily shown to be attained for $a = -\delta + t/(1+t)$ and $t = (1+\delta)/(1-\delta)$ (then $a = (1-\delta)/2$). For these values of a and t we obtain (3).

To get the lower bound in the proposition we will use the following lemma.

LEMMA. Let $\Omega = \Delta$ be the unit disc in \mathbb{C} . Set $\alpha = d\overline{z}$ and assume that F is a nonnegative, continuous, radially symmetric (that is, $F(z) = \gamma(|z|)$) function in Δ . Then the function $u(z) = \overline{z}$ is the minimal solution to (1) in the $L^2(\Delta, F)$ -norm (provided that u belongs to $L^2(\Delta, F)$, that is, $\int_0^1 r^3 \gamma(r) dr < \infty$).

Proof. We have to show that

$$\int f \overline{u} F \, d\lambda = 0, \qquad f \in \mathcal{O}(\Delta) \cap L^2(\Delta, F).$$

Write

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \Delta,$$

90

where the convergence is uniform on every circle in Δ . Therefore

$$\int f\overline{u}F\,d\lambda = 2\pi \int_0^1 \sum_{n=0}^\infty a_n r^{n+2} \gamma(r) \int_0^{2\pi} e^{i(n+1)t}\,dt\,dr = 0. \quad \blacksquare$$

We now consider the estimate (B) with n = 1, $\Omega = \Delta$, $\varphi = 0$ and $\psi(z) = -\log(-\log|z|)$. In this case the least value of the left-hand side of (B) is attained for $u(z) = \overline{z}$. Then

$$\int_{\Delta} |u|^2 e^{-\varphi + \delta \psi} \, d\lambda = 2\pi \int_{0}^{1} r^3 (-\log r)^{-\delta} \, dr$$

and

$$\int_{\Delta} \frac{|\alpha|^2}{\psi_{z\bar{z}}} e^{-\varphi + \delta\psi} d\lambda = 8\pi \int_{0}^{1} r^3 (-\log r)^{2-\delta} dr = \pi \frac{(2-\delta)(1-\delta)}{2} \int_{0}^{1} r^3 (-\log r)^{-\delta} dr$$

after double integration by parts.

References

- B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083–1094.
- [2] —, Weighted estimates for the ∂-equation, in: Complex Analysis and Geometry (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ. 9, de Gruyter, 2001, 43–57.
- [3] Z. Błocki, *The Bergman metric and the pluricomplex Green function*, Trans. Amer. Math. Soc., to appear.
- [4] J.-P. Demailly, Estimations L² pour l'opérateur ∂ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982), 457–511.
- H. Donnelly and C. Fefferman, L²-cohomology and index theorem for the Bergman metric, Ann. of Math. 118 (1983), 593-618.
- [6] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. van Nostrand, Princeton, 1966.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: blocki@im.uj.edu.pl

Reçu par la Rédaction le 3.6.2004

(1523)