A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L^{2}-estimates for the $\bar{\partial}$-operator

by ZBigniew BŁocki (Kraków)

Abstract

We give upper and lower bounds for constants appearing in the L^{2} estimates for the $\bar{\partial}$-operator due to Donnelly-Fefferman and Berndtsson.

1. Introduction. Let Ω be a pseudoconvex domain in \mathbb{C}^{n} and suppose that a form

$$
\alpha=\sum_{j=1}^{n} \alpha_{j} d \bar{z}_{j} \in L_{\mathrm{loc},(0,1)}^{2}(\Omega)
$$

is $\bar{\partial}$-closed (that is, $\bar{\partial} \alpha=0$, which means that $\partial \alpha_{j} / \partial \bar{z}_{k}=\partial \alpha_{k} / \partial \bar{z}_{j}, j, k=$ $1, \ldots, n)$. The equation

$$
\begin{equation*}
\bar{\partial} u=\alpha \tag{1}
\end{equation*}
$$

(which is equivalent to the system of equations $\partial u / \partial \bar{z}_{j}=\alpha_{j}, j=1, \ldots, n$) always has a solution $u \in L_{\text {loc,(0,1) }}^{2}$ and the difference of any two solutions of (1) is a holomorphic function in Ω (see [6]). A slight modification of the proof of Hörmander's estimate [6, Lemma 4.4.1] (see e.g. [4, Théorème 4.1]) shows that for every smooth, strongly plurisubharmonic function φ in Ω we can find a solution to (1) satisfying

$$
\begin{equation*}
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \varphi}^{2} e^{-\varphi} d \lambda . \tag{H}
\end{equation*}
$$

By $|\alpha|_{i \partial \bar{\partial} \varphi}$ we understand the pointwise norm of α with respect to the Kähler metric $i \partial \bar{\partial} \varphi$, that is,

$$
|\alpha|_{i \partial \bar{\partial} \varphi}^{2}=\sum_{j, k=1}^{n} \varphi^{j \bar{k}} \bar{\alpha}_{j} \alpha_{k}
$$

2000 Mathematics Subject Classification: Primary 32W05.
Key words and phrases: $\bar{\partial}$-equation, plurisubharmonic function, L^{2}-estimate. Partially supported by KBN Grant \#2P03A03726.
where $\left(\varphi^{j \bar{k}}\right)$ is the inverse transposed matrix of $\left(\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}\right)$. The function $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}$ is the least function H satisfying

$$
\begin{equation*}
i \bar{\alpha} \wedge \alpha \leq H i \partial \bar{\partial} \varphi \tag{2}
\end{equation*}
$$

and one can obtain the estimate (H) for an arbitrary plurisubharmonic function φ in Ω, where instead of $|\alpha|_{i \partial \bar{\partial} \varphi}^{2}$ we take a function H satisfying (2) (see [3] for the approximation argument based on the proof of [6, Theorem 4.4.2]).

A very useful variation of the Hörmander estimate (H) was proved by Donnelly and Fefferman [5]. Let in addition ψ be a plurisubharmonic function in Ω satisfying

$$
i \partial \psi \wedge \bar{\partial} \psi \leq i \partial \bar{\partial} \psi
$$

This is equivalent to the fact that the function $-e^{-\psi}$ is plurisubharmonic, that is,

$$
\psi=-\log (-v)
$$

for a certain negative plurisubharmonic function v in Ω. Then one can find a solution to (1) with

$$
\begin{equation*}
\int_{\Omega}|u|^{2} e^{-\varphi} d \lambda \leq C \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi} d \lambda \tag{DF}
\end{equation*}
$$

where C is an absolute constant.
Berndtsson [1] showed that for any δ with $0<\delta<1$ one can find a solution to (1) with

$$
\begin{equation*}
\int_{\Omega}|u|^{2} e^{-\varphi+\delta \psi} d \lambda \leq \frac{4}{\delta(1-\delta)^{2}} \int_{\Omega}|\alpha|_{i \partial \bar{\partial} \psi}^{2} e^{-\varphi+\delta \psi} d \lambda, \tag{B}
\end{equation*}
$$

where φ and ψ are as above. The Berndtsson estimate easily implies the Donnelly-Fefferman estimate-it is enough to consider the function $\varphi+\delta \psi$ instead of φ. The best choice for δ is then $\delta=1 / 3$, one then gets $C=$ 27 in the Donnelly-Fefferman estimate. In [2] Berndtsson showed that the estimate (B) follows easily from the Hörmander estimate (H). Using his arguments it was shown in [3] that the constant in the Berndtsson estimate can be improved to $1 / \delta(1-\sqrt{\delta})^{2}$. From this with $\delta=1 / 4$ one gets $C=16$ in (DF).

By $C_{\mathrm{B}}(\delta)$ denote the best constant in the Berndtsson estimate. Then $C_{\mathrm{DF}}=C_{\mathrm{B}}(0)$ is the best constant in the Donnelly-Fefferman estimate. The goal of this note is to show the following result.

Proposition. We have

$$
\frac{4}{(1-\delta)(2-\delta)} \leq C_{\mathrm{B}}(\delta) \leq \frac{4}{(1-\delta)^{2}}, \quad 0 \leq \delta<1
$$

Corollary. $2 \leq C_{\mathrm{DF}} \leq 4$.

Note that

$$
\frac{4}{(1-\delta)^{2}}<\frac{1}{\delta(1-\sqrt{\delta})^{2}}<\frac{4}{\delta(1-\delta)^{2}}, \quad 0<\delta<1
$$

so the upper bound is an improvement of the constants from [1] and [3]. Concerning the lower bound, it was noted already in [1] that the best constant cannot be better than $C /(1-\delta)$, so that in particular the Berndtsson estimate does not hold for $\delta=1$.
2. Proofs. Using the Berndtsson argument (see the proof of [2, Lemma 2.2]) we first prove the estimate

$$
\begin{equation*}
\int_{\Omega}|u|^{2} e^{-\varphi+\delta \psi} d \lambda \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega} H e^{-\varphi+\delta \psi} d \lambda \tag{3}
\end{equation*}
$$

where $i \bar{\alpha} \wedge \alpha \leq H i \partial \bar{\partial} \psi$, that is, the upper bound in the proposition. We will just choose the constants more carefully than in [2]. Due to the approximation argument from [3] we may assume that Ω is bounded and φ, ψ are smooth and continuous up to the boundary. Then for any real a we have the equality of sets

$$
L^{2}\left(\Omega, e^{-\varphi-a \psi}\right)=L^{2}(\Omega)
$$

Let u be the minimal solution to (1) in the $L^{2}\left(\Omega, e^{-\varphi-a \psi}\right)$-norm (a will be specified later). This means that u is perpendicular to the subspace $H^{2}(\Omega)$ of square integrable holomorphic functions in Ω in the Hilbert space $L^{2}\left(\Omega, e^{-\varphi-a \psi}\right)$, that is,

$$
\int_{\Omega} u \bar{f} e^{-\varphi-a \psi} d \lambda=0, \quad f \in H^{2}(\Omega)
$$

Let $v:=e^{b \psi} u$, where $b \in \mathbb{R}$ will be specified later. Then

$$
\int_{\Omega} v \bar{f} e^{-\varphi-(a+b) \psi} d \lambda=0, \quad f \in H^{2}(\Omega)
$$

This means that v is a minimal solution to the equation

$$
\bar{\partial} v=\beta
$$

in the $L^{2}\left(\Omega, e^{-\varphi-(a+b) \psi}\right)$-norm, where

$$
\beta=\bar{\partial}\left(e^{b \psi} u\right)=e^{b \psi}(\alpha+b u \bar{\partial} \psi)
$$

If P, Q are any $(1,0)$-forms then for any $t>0$ we have

$$
\begin{aligned}
& i(P+Q) \wedge(\bar{P}+\bar{Q}) \\
& \quad=(1+t) i P \wedge \bar{P}+\left(1+t^{-1}\right) i Q \wedge \bar{Q}-t i\left(P-t^{-1} Q\right) \wedge\left(\bar{P}-t^{-1} \bar{Q}\right) \\
& \quad \leq(1+t) i P \wedge \bar{P}+\left(1+t^{-1}\right) i Q \wedge \bar{Q}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
i \bar{\beta} \wedge \beta & \leq e^{2 b \psi}\left[(1+t) i \bar{\alpha} \wedge \alpha+\left(1+t^{-1}\right) b^{2}|u|^{2} i \partial \psi \wedge \bar{\partial} \psi\right] \\
& \leq e^{2 b \psi}\left[(1+t) H+\left(1+t^{-1}\right) b^{2}|u|^{2}\right] i \partial \bar{\partial} \psi \\
& \leq \frac{e^{2 b \psi}}{a+b}\left[(1+t) H+\left(1+t^{-1}\right) b^{2}|u|^{2}\right] i \partial \bar{\partial}(\varphi+(a+b) \psi)
\end{aligned}
$$

provided that $a+b>0$. From the Hörmander estimate (H) applied to the form β and the function $\varphi+(a+b) \psi$ we obtain

$$
\int_{\Omega}|v|^{2} e^{-\varphi-(a+b) \psi} d \lambda \leq \frac{1}{a+b} \int_{\Omega}\left[(1+t) H+\left(1+t^{-1}\right) b^{2}|u|^{2}\right] e^{-\varphi+(b-a) \psi} d \lambda
$$

Thus, taking $b=a+\delta$, we get

$$
\begin{aligned}
\int_{\Omega}|u|^{2} e^{-\varphi+\delta \psi} d \lambda \leq & \frac{1+t}{2 a+\delta} \int_{\Omega} H e^{-\varphi+\delta \psi} d \lambda \\
& +\frac{\left(1+t^{-1}\right)(a+\delta)^{2}}{2 a+\delta} \int_{\Omega}|u|^{2} e^{-\varphi+\delta \psi} d \lambda .
\end{aligned}
$$

We now only have to minimize the positive values of the function

$$
\frac{\frac{1+t}{2 a+\delta}}{1-\frac{\left(1+t^{-1}\right)(a+\delta)^{2}}{2 a+\delta}}=\frac{t(1+t)}{t(2 a+\delta)-(1+t)(a+\delta)^{2}}
$$

for $t>0$ and $a>-\delta / 2$. The minimum is easily shown to be attained for $a=-\delta+t /(1+t)$ and $t=(1+\delta) /(1-\delta)$ (then $a=(1-\delta) / 2)$. For these values of a and t we obtain (3).

To get the lower bound in the proposition we will use the following lemma.

Lemma. Let $\Omega=\Delta$ be the unit disc in \mathbb{C}. Set $\alpha=d \bar{z}$ and assume that F is a nonnegative, continuous, radially symmetric (that is, $F(z)=$ $\gamma(|z|))$ function in Δ. Then the function $u(z)=\bar{z}$ is the minimal solution to (1) in the $L^{2}(\Delta, F)$-norm (provided that u belongs to $L^{2}(\Delta, F)$, that is, $\left.\int_{0}^{1} r^{3} \gamma(r) d r<\infty\right)$.

Proof. We have to show that

$$
\int f \bar{u} F d \lambda=0, \quad f \in \mathcal{O}(\Delta) \cap L^{2}(\Delta, F)
$$

Write

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad z \in \Delta,
$$

where the convergence is uniform on every circle in Δ. Therefore

$$
\int f \bar{u} F d \lambda=2 \pi \int_{0}^{1} \sum_{n=0}^{\infty} a_{n} r^{n+2} \gamma(r) \int_{0}^{2 \pi} e^{i(n+1) t} d t d r=0
$$

We now consider the estimate (B) with $n=1, \Omega=\Delta, \varphi=0$ and $\psi(z)=-\log (-\log |z|)$. In this case the least value of the left-hand side of (B) is attained for $u(z)=\bar{z}$. Then

$$
\int_{\Delta}|u|^{2} e^{-\varphi+\delta \psi} d \lambda=2 \pi \int_{0}^{1} r^{3}(-\log r)^{-\delta} d r
$$

and
$\int_{\Delta} \frac{|\alpha|^{2}}{\psi_{z \bar{z}}} e^{-\varphi+\delta \psi} d \lambda=8 \pi \int_{0}^{1} r^{3}(-\log r)^{2-\delta} d r=\pi \frac{(2-\delta)(1-\delta)}{2} \int_{0}^{1} r^{3}(-\log r)^{-\delta} d r$ after double integration by parts.

References

[1] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Don-nelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083-1094.
[2] -, Weighted estimates for the $\bar{\partial}$-equation, in: Complex Analysis and Geometry (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ. 9, de Gruyter, 2001, 43-57.
[3] Z. Błocki, The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc., to appear.
[4] J.-P. Demailly, Estimations L^{2} pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982), 457-511.
[5] H. Donnelly and C. Fefferman, L^{2}-cohomology and index theorem for the Bergman metric, Ann. of Math. 118 (1983), 593-618.
[6] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. van Nostrand, Princeton, 1966.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: blocki@im.uj.edu.pl

