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1. Basic definitions and properties

Bergman kernel. Let Ω be a bounded domain in Cn (we will assume it through-
out, unless otherwise stated). By H2(Ω) we will denote the space L2-integrable
holomorphic functions in Ω. For such an f the function |f |2 is in particular sub-
harmonic and thus for B(z, r) ⊂ Ω

|f(z)|2 ≤ 1
λ(B(z, r))

∫

B(z,r)

|f |2dλ.

Therefore

(1.1) |f(z)| ≤ cn

(dist (z, ∂Ω))n
||f ||

and
sup
K
|f | ≤ C(K, Ω) ||f ||, K b Ω,

where by ||f || we denote the L2-norm of f . It follows that the L2-convergence in
H2(Ω) implies locally uniform convergence, and thus H2(Ω) is a closed subspace of
L2(Ω).

Hence, H2(Ω) is a separable Hilbert space with the scalar product

〈f, g〉 =
∫

Ω

fḡ dλ.

By (1.1), for a fixed w ∈ Ω, the functional

H2(Ω) 3 f 7−→ f(w) ∈ C
Typeset by AMS-TEX
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is continuous. Therefore there is a unique element in H2(Ω), which we denote by
KΩ(·, w), such that

f(w) = 〈f, KΩ(·, w)〉,
or equivalently

f(w) =
∫

Ω

f(z)KΩ(z, w) dλ(z),

for every f ∈ H2(Ω). The function

KΩ : Ω× Ω → C

is called the Bergman kernel for the domain Ω.
In particular, for f = KΩ(·, z) we get

KΩ(w, z) = 〈KΩ(·, z),KΩ(·, w)〉 = KΩ(z, w).

It follows that KΩ(z, w) is holomorphic in z and antiholomorphic in w. By the
Hartogs theorem on separate analyticity the function KΩ(·, ·̄) is holomorphic (where
it is defined) and therefore in particular KΩ ∈ C∞(Ω× Ω).

If F : Ω → D is a biholomorphism then the mapping

H2(D) 3 f 7−→ f ◦ F JacF ∈ H2(Ω)

is an isomorphism of the Hilbert spaces and

f(F (w)) =
∫

D

f KD(·, F (w)) dλ =
∫

Ω

f ◦ F KD(·, F (w)) ◦ F |Jac F |2 dλ.

Therefore

(1.2) KΩ(z, w) = KD(F (z), F (w)) Jac F (z) JacF (w).

Example. In the unit disc ∆ we have

f(0) =
1

πr2

∫

∆(0,r)

f dλ, f ∈ H2(∆), r < 1.

Therefore
f(0) =

1
π

∫

∆

f dλ,

that is
K∆(·, 0) =

1
π

.

For arbitrary w ∈ ∆ we use automorphisms of ∆

Tw(z) =
z − w

1− zw̄
,

so that T−1
w = T−w and

T ′w(z) =
1− |w|2

(1− zw̄)2
.
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Then by (1.2)

K∆(z, w) = K∆(z, T−w(0)) = K∆(Tw(z), 0)T ′w(z)T ′w(w) =
1

π(1− zw̄)2
.

More generally, for the unit ball B in Cn, we similarly have

KB(·, 0) =
1
λn

,

where λn = λ(B) = πn/n!. For w ∈ B we can use the automorphism of B

Tw(z) =

(
〈z,w〉
1+sw

− 1
)

w + swz

1− 〈z, w〉 ,

where sw =
√

1− |w|2 (see e.g. [Ru]). Then T−1
w = T−w and

Jac Tw(z) =
(1− |w|2)(n+1)/2

(1− 〈z, w〉)n+1
.

Therefore

KB(z, w) =
1
λn

JacTw(z) JacTw(w) =
n!

πn(1− 〈z, w〉)n+1
.

If {φk} is an orthonormal system in H2(Ω) then

f =
∑

k

〈f, φk〉φk, f ∈ H2(Ω),

and the convergence is also locally uniform. Therefore

KΩ(z, w) =
∑

k

〈KΩ(·, w), φk〉φk(z) =
∑

k

φk(z)φk(w)

and
KΩ(z, z) =

∑

k

|φk(z)|2.

Exercise 1. Find an orthonormal system for H2(B) and use it to compute in
another way the Bergman kernel for B.

Example. For the annulus P = {r < |ζ| < 1} we have for j, k ∈ Z

〈ζj , ζk〉 =
∫ 2π

0

ei(j−k)tdt

∫ 1

r

ρj+k+1dρ =





0, j 6= k
π

j+1 (1− r2j+2), j = k 6= −1

−2π log r, j = k = −1.

Therefore {ζj}j∈Z is an orthogonal system and we will get

(1.3) KP (z, w) =
1

πzw̄


 1

2 log(1/r)
+

∑

j∈Z

j(zw̄)j

1− r2j


 .
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More examples can be obtained from the product formula:

KΩ1×Ω2

(
(z1, z2), (w1, w2)

)
= KΩ1(z

1, w1) KΩ2(z
2, w2)

which easily follows directly from the definition (here Ω1 ⊂ Cn and Ω2 ⊂ Cm).
On the diagonal we have

KΩ(z, z) = ||KΩ(·, z)||2 = sup{|f(z)|2 : f ∈ H2(Ω), ||f || ≤ 1}.

It follows that log KΩ(z, z) is a smooth plurisubharmonic function in Ω. We will
show below that in fact it is strongly plurisubharmonic.

Bergman metric. By B2
Ω we will denote the Levi form of log KΩ(z, z), that is

B2
Ω(z; X) : =

∂2

∂ζ∂ζ̄
log KΩ(z + ζX, z + ζX)

∣∣∣∣
ζ=0

=
n∑

j,k=1

∂2(log KΩ(z, z))
∂zj∂z̄k

XjX̄k, z ∈ Ω, X ∈ Cn.

Theorem 1.1. We have

BΩ(z; X) =
1√

KΩ(z, z)
sup{|fX(z)| : f ∈ H2(Ω), ||f || ≤ 1, f(z) = 0},

where

fX =
n∑

j=1

∂f

∂zj
Xj .

Proof. Fix z0 ∈ Ω, X ∈ Cn and set H := H2(Ω),

H ′ : = {f ∈ H : f(z0) = 0}
H ′′ : = {f ∈ H ′ : fX(z0) = 0}.

Then H ′′ ⊂ H ′ ⊂ H and in both cases the codimension is 1 (note in particular that
〈· − z0, X〉 ∈ H ′′ \ H ′). Let φ0, φ1, . . . be an orthonormal system in H such that
φ1 ∈ H ′ and φk ∈ H ′′ for k ≥ 2. Since kΩ =

∑
p≥0 |φk|2, we have

B2
Ω(·, X) = (

∑
p

|φp|2)−1
∑

p

|φp,X |2 − (
∑

p

|φp|2)−2

∣∣∣∣∣
∑

p

φp,X φ̄p

∣∣∣∣∣

2

.

Therefore

KΩ(z0, z0) = |φ0(z0)|2, B2
Ω(z0, X) =

|φ1,X(z0)|2
|φ0(z0)|2 .

This gives ≤. For the reverse inequality take f ∈ H ′ with ||f || ≤ 1. Then 〈f, φ0〉 = 0
and

f =
∑

p≥1

〈f, φp〉φp.
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Therefore
|fX(z0)| = |〈f, φ1〉φ1,X(z0)| ≤ |φ1,X(z0)|

and the result follows. ¤
It follows that BΩ(z; X) > 0 and hence log kΩ is strongly plurisubhamonic. It is

thus a potential of a Kähler metric which we call the Bergman metric. Length of a
curve γ ∈ C1([0, 1], Ω) in this metric is given by

l(γ) =
∫ 1

0

BΩ(γ(t), γ′(t)) dt

and the Bergman distance by

dist B
Ω (z, w) = inf{l(γ) : γ ∈ C1([0, 1],Ω), γ(0) = z, γ(1) = w}.

If F : Ω → D is a biholomorphism then

BΩ(z; X) = BD(F (z); F ′(z).X)

and
dist B

Ω (z, w) = dist B
D(F (z), F (w)),

that is the Bergman metric is biholomorphically invariant.

Kobayashi’s construction. Define a mapping

ι : Ω 3 w 7−→ [KΩ(·, w)] ∈ P(H2(Ω)).

It is well defined since KΩ(·, w) 6≡ 0. One can easily show that ι is one-to-one.
For any Hilbert space H one can define the Fubini-Study metric on P(H) as

follows: FSP(H) := π∗P , where

π : H∗ 3 f 7−→ [f ] ∈ P(H),

H∗ = H \ {0} and

P 2(f ; F ) :=
∂2

∂ζ∂ζ̄
log ||f + ζF ||2

∣∣∣∣
ζ=0

=
||F ||2
||f ||2 −

|〈F, f〉|2
||f ||4 , f ∈ H∗, F ∈ H.

One can show that FSP(H) is well defined.
We have the following result of Kobayashi [K]:

Theorem 1.2. BΩ = ι∗FSP(H2(Ω)).

Proof. We have to show that BΩ = A∗P , where

A : Ω 3 w 7−→ KΩ(·, w) ∈ H2(Ω),

that is that BΩ(w;X) = P (f ;F ), where f = KΩ(·, w) and F = DXKΩ(·, w) with
DX being the derivative in direction X ∈ Cn w.r.t. w. Let φ0, φ1, . . . be an
orthonormal system chosen as in the proof of Theorem 1.1. Then

f = φ0(w)φ0, F = φ0,X(w)φ0 + φ1,X(w)φ1
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and one can easily show that

P 2(f ;F ) =
|φ1,X(z0)|2
|φ0(z0)|2 = B2

Ω(w; X)

by the proof of Theorem 1.1. ¤
The mapping ι embeds Ω equipped with the Bergman metric into infinitely

dimensional manifold P(H2(Ω)) equipped with the Fubini-Study metric. In partic-
ular, it must be distance decreasing. Since the distance in P(H) is given by

d([f ], [g]) = arccos
|〈f, g〉|
||f || ||g|| ,

we have thus obtained the following:

Theorem 1.3. dist B
Ω (z, w) ≥ arccos

|KΩ(z, w)|√
KΩ(z, z)KΩ(w, w)

. ¤

Corollary 1.4. If KΩ(z, w) = 0 then dist B
Ω (z, w) ≥ π/2.

The constant π/2 in Corollary 1.4 turns out to be optimal, it was shown for the
annulus in [Di2].

Curvature. The sectional curvature of the Bergman metric is given by

RΩ(z; X) := − (log B)ζζ̄

B

∣∣∣∣
ζ=0

, z ∈ Ω, X ∈ Cn,

where B(ζ) = B2
Ω(z + ζX; X).

Theorem 1.5. We have

RΩ(z;X) = 2− sup{|fXX(z)|2 : f ∈ H2(Ω), ||f || ≤ 1, f(z) = 0, fX(z) = 0}
KΩ(z, z)B4

Ω(z; X)
.

Proof. Fix z0 ∈ Ω, X ∈ Cn and let φ0, φ1, . . . be as in the proof of Theorem 1.1,
satisfying in addition that φk ∈ H ′′′ for k ≥ 3. Denoting K(ζ) := KΩ(z + ζX) we
will get

−
(
log(log K)ζζ̄

)
ζζ̄

(log K)ζζ̄

= 2−
(
log(KKζζ̄ − |Kζ |2)

)
ζζ̄

(log K)ζζ̄

= 2− KKζζ̄ζζ̄ − |Kζζ |2
K2((log K)ζζ̄)2

+
|KKζζ̄ζ −Kζ̄Kζζ |2

K4((log K)ζζ̄)3
.

Denoting ϕp(ζ) = φp(z + ζX) we have K =
∑

p≥0 |ϕp|2 and, for ζ = 0,

K = |ϕ0|2, Kζ = ϕ′0ϕ0, Kζζ̄ = |ϕ′0|2 + |ϕ′1|2, Kζζ = ϕ′′0ϕ0,

Kζζ̄ζ = ϕ′′0ϕ′0 + ϕ′′1ϕ′1, Kζζ̄ζζ̄ = |ϕ′0|2 + |ϕ′1|2 + |ϕ′2|2.
We will get, for ζ = 0,

KΩ(z0, z0) = |ϕ0|2, B2
Ω(z0; X) =

|ϕ′1|2
|ϕ0|2 , RΩ(z0; X) = 2− |ϕ0|2|ϕ′′2 |2

|ϕ′1|4
.

We thus obtain ≤ and the reverse inequality can be obtained the same way as in
the proof of Theorem 1.1. ¤

We conclude in particular that always RΩ(z; X) < 2. This estimate is in fact
optimal, as can be shown for the annulus {r < |ζ| < 1} with r → 0, see [Di1] (and
a simplification in [Z2]).

The following result will be useful:
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Theorem 1.6. Assume that Ωj is a sequence of domains increasing to Ω (that is
Ωj ⊂ Ωj+1 and

∑
j Ωj = Ω). Then we have locally uniform convergences KΩj

→
KΩ (in Ω × Ω), BΩj

(·, X) → BΩ(·, X), RΩj
(·, X) → RΩ(·, X) (in Ω), for every

X ∈ Cn.

Proof. It is enough to prove the first convergence as the other will then be a conse-
quence of it using the following elementary result: if hj is a sequence of harmonic
functions converging locally uniformly to h then Dαhj → Dαh locally uniformly
for any multi-index α.

For Ω′ b Ω by the Schwarz inequality for j sufficiently big we have

|KΩj
(z, w)|2 ≤ KΩj

(z, z)KΩj
(w, w) ≤ KΩ′(z, z)KΩ′(w,w), z, w ∈ Ω′,

and thus the sequence KΩj
is locally uniformly bounded in Ω× Ω. By the Montel

theorem (applied to holomorphic functions KΩj (·, ·̄)) there is a subsequence of KΩj

converging locally uniformly. Therefore, to conclude the proof it is enough to show
that if KΩ → K locally uniformly then K = KΩ.

Fix w ∈ Ω. We have

||K(·, w)||2L2(Ω′) = lim
j→∞

||KΩj (·, w)||2L2(Ω′)

≤ lim inf
j→∞

||KΩj (·, w)||2L2(Ωj)

= lim inf
j→∞

KΩj (w, w)

= K(w, w).

Therefore ||K(·, w)||2 ≤ K(w, w), in particular K(·, w) ∈ H2(Ω) and it remains to
show that for any f ∈ H2(Ω)

f(w) =
∫

Ω

f K(·, w)dλ.

For j big enough we have

f(w)−
∫

Ω

f K(·, w)dλ =
∫

Ωj

f KΩj (·, w)dλ−
∫

Ω

f K(·, w)dλ

=
∫

Ω′
f
(
KΩj (·, w)−K(·, w)

)
dλ +

∫

Ωj\Ω′
f KΩj (·, w)dλ

−
∫

Ω\Ω′
f K(·, w)dλ.

The first integral converges to 0, whereas the other two are arbitrarily small if Ω′

is chosen to be sufficiently close to Ω. ¤

2. The one dimensional case

We assume that Ω is a bounded domain in C. We first show that in this case
the Bergman kernel can be obtained as a solution of the Dirichlet problem:
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Theorem 2.1. Assume that Ω is regular. Then for w ∈ Ω we have

KΩ(·, w) =
∂v

∂z
,

where v is a complex-valued harmonic function in Ω, continuous on Ω̄, such that

v(z) =
1

π(z − w)
, z ∈ ∂Ω.

Proof. We have to show that for f ∈ H2(Ω)

f(w) =
∫

Ω

fv̄z̄dλ.

By Theorem 1.6 we may assume that ∂Ω is smooth and f is defined in a neighbor-
hood of Ω̄. Then we have

∫

Ω

fv̄z̄ dλ = − i

2

∫

Ω

d(fv̄ dz) =
1

2πi

∫

∂Ω

f(z)
z − w

dz = f(w). ¤

The Green function of Ω with pole at w ∈ Ω can be defined as

GΩ(·, w) := sup{v ∈ SH−(Ω) : lim sup
ζ→w

(v(ζ)− log |ζ − w|) < ∞}.

Then GΩ(·, w) is a negative subharmonic function in Ω such that GΩ(z, w)−log |z−
w| is harmonic in z. The Green function GΩ is symmetric. If Ω is regular then
GΩ(·, w) is continuous on Ω̄ \ {w} and vanishes on ∂Ω.

We have the following relation due to Schiffer:

Theorem 2.2. Away from the diagonal of Ω× Ω we have

KΩ =
2
π

∂2GΩ

∂z∂w̄
.

Proof. We may assume that ∂Ω is smooth. The function

ψ(z, w) := GΩ(z, w)− log |z − w|

is then smooth in Ω̄× Ω. For a fixed w0 ∈ Ω set

u :=
∂ψ

∂w̄
(·, w0).

Then u is harmonic in Ω, continuous on Ω̄ and

u(z) =
1

2(z − w)
, z ∈ ∂Ω.
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Therefore by Theorem 2.1

KΩ(·, w0) =
2
π

∂u

∂z
=

2
π

∂2GΩ

∂z∂w̄
(·, w0). ¤

On the diagonal we have the following formula due to Suita [Su]:

Theorem 2.3. We have

KΩ(z, z) =
1
π

∂2ρΩ

∂z∂z̄
,

where
ρΩ(w) = lim

z→w
(GΩ(z, w)− log |z − w|)

is the Robin function for Ω.

Proof. This in fact follows easily from the previous result: we have

ρΩ(ζ) = ψ(ζ, ζ),

where ψ is as in the proof of Theorem 2.2. We will get

∂2ρΩ

∂ζ∂ζ̄
= ψzz̄ + 2ψzw̄ + ψww̄.

The result now follows from Theorem 2.2, since ψ is harmonic in both z and w. ¤

Suita metric. Assume for a moment that M is a Riemann surface such that the
Green function GM exists. (This is equivalent to the existence of a nonconstant
bounded subharmonic function on M .) Then for w ∈ M the Robin function

ρM (w) = lim
z→w

(
GM (z, w)− log |z − w|)

is ambiguously defined: it depends on the choice of local coordinates. In fact, if
change local coordinates by z = f(ζ), where f is a local biholomorphism with
f(w) = w, then it is easy to check that

ρM (w) = ρ̃M (w) + log |f ′(w)|,

where ρ̃M (w) is the Robin constant w.r.t. the new coordinates. It follows that the
metric

eρM |dz|
is invariantly defined on M , we call it the Suita metric.

We will analyze the curvature of the Suita metric:

SM := KeρM |dz| = −2
(ρM )zz̄

e2ρM
,

which is of course also invariantly defined. Coming back to the case when Ω is a
bounded domain in C, by Theorem 2.3 we have

SΩ(z) = −2π
KΩ(z, z)
e2ρΩ(z)

.
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Exercise 3. i) Show that if F : Ω → D is a biholomorphism then

ρΩ = ρD ◦ F + log |F ′|.

ii) Prove that if Ω is simply connected then SΩ ≡ −2.
iii) Set D := ∆∩∆(1, r). For w ∈ D let Fw : D → ∆ be biholomorphic and such

that Fw(w) = w. Show that
lim
w→1
w∈D

|F ′w(w)| = 1.

iv) Prove that if Ω has a C2 boundary then

lim
z→∂Ω

SΩ(z) = −2.

The case of annulus is less trivial and we have the following result of Suita [Su]:

Theorem 2.4. For the annulus P = {r < |ζ| < 1} we have SP < −2 in P .

To prove this we will use the theory of elliptic functions.

3.Weierstrass elliptic functions

For ω1, ω2 ∈ C, linearly independent over R, let Λ := {2jω1 +2kω2 : (j, k) ∈ Z2}
be the lattice in C. We define the Weierstrass elliptic function P by

P(z) = P(z; ω1, ω2) :=
1
z2

+
∑

ω∈Λ∗

(
1

(z − ω)2
− 1

ω2

)
,

Since
1

(z − ω)2
− 1

ω2
=
−z2 + 2ωz

ω2(z − ω)2
= O(|ω|−3),

it follows that P is holomorphic in C \ Λ. From

1
(z − ω)2

+
1

(z + ω)2
= 2

z2 + ω2

(z2 − ω2)2
,

it follows that
P(−z) = P(z).

We further have
P ′(−z) = −P ′(z),

P ′(z) = −2
∑

ω∈Λ

1
(z − ω)3

,

so that
P ′(z + 2ω1) = P ′(z) = P ′(z + 2ω2).

It follows that P(z + 2ω1) = P(z) + A for some constant A, but since P(−ω1) =
P(ω1), we have in fact A = 0, that is

P(z + 2ω1) = P(z) = P(z + 2ω2).
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The differential equation for P. Write

P = z−2 + az2 + bz4 + O(|z|6)
and

P ′ = −2z−3 + 2az + 4bz3 + O(|z|5).
Then

P3 =
(
z−2 + az2 + bz4

)3 + O(|z|2) = z−6 + 3az−2 + 3b + O(|z|2)
and

(P ′)2 =
(− 2z−3 + 2az + 4bz3

)2 + O(|z|2) = 4z−6 − 8az−2 − 16b + O(|z|2).
Therefore

(P ′)2 − 4P3 + 20aP + 28b = O(|z|2).
The left-hand side is an entire holomorphic function with periods 2ω1 and 2ω2. It
is thus bounded and hence, by the Liouville theorem, constant. We thus obtained
the following result:

Theorem 3.1. We have

(P ′)2 = 4P3 − g2P − g3,

where
g2 = 60

∑

ω∈Λ∗

1
ω4

, g3 = 140
∑

ω∈Λ∗

1
ω6

. ¤

Remark. The function P can be also defined using the constants g2, g3 instead of
the half-periods ω1, ω2 by the relation

z =
∫ ∞

P(z)

1√
4t3 − g2t− g3

dt.

The Weierstrass function ζ is determined by

ζ ′ = −P, ζ(z) =
1
z

+ O(|z|).

One can easily compute that

ζ(z) =
1
z
−

∑

ω∈Λ∗

(
1

z − ω
+

z

ω2
+

1
ω

)
.

Again, adding any pair from Λ∗ with opposite signs we easily get

ζ(−z) = −ζ(z).

Since ζ ′(z + 2ω1) = ζ ′(z) = ζ ′(z + 2ω2), we have

(3.1) ζ(z + 2ω1) = ζ(z) + 2η1, ζ(z + 2ω2) = ζ(z) + 2η2

where η1 = ζ(ω1), η2 = ζ(ω2).
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Exercise 4. Show that

(3.2) η1ω2 − η2ω1 =
πi

2
.

We can also define the Weierstrass elliptic function σ by

σ′/σ = ζ, σ(z) = z + O(|z|2).

One can easily show that

σ(z) = z
∏

ω∈Λ∗

[(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)]
.

It follows that
σ(−z) = −σ(z).

From the definition of σ and from (3.1) we infer σ(z + 2ω1) = Be2η1zσ(z) for some
constant B. Substituting z = −ω1 we will get B = −e2η1ω1 , so that

σ(z + 2ω1) = −e2η1(z+ω1)σ(z),

and, similarly,
σ(z + 2ω2) = −e2η2(z+ω1)σ(z).

The following formula will allow to express ρP , where P is an annulus, in terms
of σ.

Theorem 3.2. Assume that Im (ω2/ω1) > 0. Then

(3.3) σ(z) =
2ω1

π
exp

η1z
2

2ω1
sin

πz

2ω1

∞∏
n=1

cos(2nπω2/ω1)− cos(πz/ω1)
cos(2nπω2/ω1)− 1

and

(3.4) P(z) = − η1

ω1
+

π2

4ω2
1

∑

j∈Z
sin−2 π(z + 2jω2)

2ω1
.

Proof. On one hand we have

(3.5)
cos(2nπω2/ω1)− cos(πz/ω1)

cos(2nπω2/ω1)− 1
=

1− 2q2n cos πz
ω1

+ q4n

(1− q2n)2
,

where q := exp(πiω2/ω1). Since |q| < 1, it follows that the infinite product is
convergent. On the other hand,

(3.6) 1− 2q2n cos
πz

ω1
+ q4n = 4q2n sin

π(z + 2nω2)
2ω1

sin
π(z − 2nω2)

2ω1
.
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Denote the r.h.s. of (3.3) by σ̃. We see that both σ and σ̃ are entire holomorphic
functions with simple zeros at Λ. It is straightforward that

σ̃(z + 2ω1) = −e2η1(z+ω1)σ̃(z).

Since σ̃(z) = z + O(|z|2), to finish the proof of (3.3) it is therefore enough to show
that

σ̃(z + 2ω2) = −e2η2(z+ω2)σ̃(z)

and use the Liouville theorem for the function σ/σ̃. We have, denoting A =
exp(πiz/2ω1) and using (3.2)

σ̃(z + 2ω2)
σ̃(z)

= exp
2η1ω2(z + ω2)

ω1
lim

N→∞
sin π(z+2(N+1)ω2)

2ω1

sin π(z−2Nω2)
2ω1

= A2qe2η2(z+ω2) lim
N→∞

A2q2(N+1) − 1
A2q − q2N+1

and thus (3.3) follows.
To prove (3.4) it is enough to combine (3.3) with (3.5) and (3.6) plus the fact

that P = −(log σ)′′. ¤
Proof of Theorem 2.4. We first want to express ρP in terms of σ. By Myrberg’s
theorem we have

GΩ(z, w) =
∑

j

log

∣∣∣∣∣
ϕ0(w)− ϕj(z)
1− ϕ0(w)ϕj(z)

∣∣∣∣∣ ,

where ϕj = (p|Vj )
−1, p : ∆ → Ω is a covering, p−1(U) =

⋃
j Vj , U is a small

neighborhood of w, Vj are disjoint and ϕ0(w) ∈ V0. Then

ρΩ = log
|ϕ′0|

1− |ϕ0|2 +
∑

j 6=0

log
∣∣∣∣

ϕj − ϕ0

1− ϕ̄0ϕj

∣∣∣∣ .

For Ω = P we can take a covering ∆ → P given by

p(ζ) = exp
(

log r

πi
Log

(
i
1 + ζ

1− ζ

))
.

Its inverses defined in a neighborhood of the interval (r, 1) are given by

ϕj(z) =
eπi(Log z+2jπi)/ log r − i

eπi(Log z+2jπi)/ log r + i
, j ∈ Z,

It is clear that ρP (z) depends only on |z|. We will get

(3.7) e−ρP (z) =
2|z| log(1/r)

π
sin

π log |z|
log r

∞∏
n=1

cosh 2π2n
log r − cos 2π log |z|

log r

cosh 2π2n
log r − 1

.

Now choose ω1 = − log r and ω2 = πi. By Theorem 3.2 we will obtain

ρP (z) =
t

2
− log σ(t) +

c

2
t2 =: γ(t),
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where t = −2 log |z| ∈ (0, 2ω1) and c = η1/ω1. By Theorem 2.3

(3.8) KP (z, z) =
γ′′

π|z|2 =
1
π

(P + c)et.

Combining this with (1.3)

P(t) =
1

2ω1
− c +

∞∑

j=−∞

je−jt

1− r2j
.

One can easily check that P(0) = ∞ and P decreases in (0, ω1). We also have
P(2ω1 − t) = P(t) and P ′(ω1) = 0. Set

F := log
πKP

e2ρP
= log(P + c) + 2 log σ − ct2.

Then F (2ω1 − t) = F (t) and

F ′ =
P ′
P + c

+ 2ζ − 2ct.

Since P = t−2 +O(t2), ζ = t−1 +O(t), we get F ′(0) = 0. We also have F ′(ω1) = 0.
Theorem 3.1 gives (P ′)2 = 4P3 − g2P − g3, and thus P ′′ = 6P2 − g2/2. Therefore

(3.9) F ′′ =
(g2 − 12c2)P − cg2 + 2g3 − 4c3

2(P + c)2
.

By (3.8) P + c > 0. We also have F (0) = 0 and we claim that

(3.10) F (ω1) > 0.

This will finish the proof because from (3.9) and F ′(0) = F ′(ω1) = 0 we will
conclude that F ′′ has precisely one zero in (0, ω1) and thus F ′ > 0 there. It thus
remains to show (3.10).

Using (3.7) we may write

γ = log
π

2ω1
+

t

2
− log sin

πt

2ω1
+ log

∞∏
n=1

an − 1
an − cos(πt/ω1)

,

where an = cosh(2π2n/ω1). Then

(3.11) γ′′ =
π2

4ω2
1 sin2(πt/2ω1)

+
π2

ω2
1

∞∑
n=1

1− an cos(πt/ω1)
(an − cos(πt/ω1))2

and

F = log γ′′ + t− 2γ

= log

(
1 + 4 sin2 πt

2ω1

∞∑
n=1

1− an cos(πt/ω1)
(an − cos(πt/ω1))2

)
+ 2

∞∑
n=1

log
an − cos(πt/ω1)

an − 1
.
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We will obtain

F (ω1) = log

(
1 + 4

∞∑
n=1

1
an + 1

)
+ 2

∞∑
n=1

log
an + 1
an − 1

> 0. ¤

In the proof of Theorem 2.4 we showed in particular that

KP (z, z) =
1

π|z|2
(P(2 log |z|) +

η1

ω1

)
,

where P is the Weierstrass function with half-periods ω1 = − log r and ω2 = πi. In
fact, we can show a similar formula also away from the diagonal and characterize
precisely the zeros of KP (compare with [R] and [Sk]):

Theorem 3.4. We have

KP (z, w) =
h(zw̄)
πzw̄

,

where

(3.12) h(λ) = P(log λ) +
η1

ω1
.

The function h has exactly two simple zeros in the annulus {r2 < |λ| < 1}, both on
the interval (−r2,−1).

Proof. Let ϕj be as in the proof of Theorem 2.4. After some calculations we will
get

GP (z, w) =
∑

j∈Z
log

∣∣∣∣
1− fj(w/z)
1− fj(zw̄)

∣∣∣∣ ,

where

fj(ζ) = exp
πi(Log ζ + 2jπi)

log r
.

By Theorem 2.2 we will get (also after some calculations)

KP (z, w) = − π

λ log2 r

∑

j∈Z

fj(λ)
(1− fj(λ))2

,

where λ = zw̄. Since
eα

(1− eα)2
= − 1

4 sin2(iα/2)
,

we will get

(3.13) h(λ) =
π2

4 log2 r

∑

j∈Z
sin−2 π(Logλ + 2jπi)

2 log r

and (3.12) follows from Theorem 3.2.
By (1.3) we have

h(λ) =
1

2ω1
+

∑

j∈Z

jλj

1− r2j
.
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It follows in particular that h is real-valued for real λ and that h(r2/λ) = h(λ).
We also have fj(−r) = −q−(2j+1) and fj(−1) = q−(2j+1), where q = eπ2/ log r.
Therefore by (3.13)

h(−r) =
π2

log2 r

∑

j∈Z

q2j+1

(1 + q2j+1)2
> 0,

h(−1) = h(−r2) = − π2

log2 r

∑

j∈Z

q2j+1

(1− q2j+1)2
< 0.

This implies that there are two simple zeros on the interval (−1,−r2). The following
result guarantees that there are no more than two in the annulus {r2 < |λ| < 1}:

Proposition 3.5. In the parallelogram {2tω1 +2sω2 : s, t ∈ [0, 1)} the Weierstrass
function P attains every value exactly twice (counting with multiplicities).

Proof. For any complex number w let C be an oriented contour given by the bound-
ary of this parallelogram moved slightly, so that it doesn’t contain neither zeros nor
poles of P − w. Then

1
2πi

∫

C

P ′(z)
P(z)− w

dz = Z − P,

where Z is the number of zeros an P the number of poles of P inside C. We have
P = 2 because P has precisely one double pole inside C. On the other hand, since
the function under the sign of integration is doubly periodic with periods 2ω1 and
2ω2, it follows easily that the integral must vanish. ¤

4. Suita conjecture

The Suita conjecture [Su] asserts that SΩ ≤ −2, that is that

e2ρΩ(z) ≤ πKΩ(z, z).

By approximation it is enough to prove the estimate for domains with smooth
boundary. The conjecture is still open. Ohsawa [O] showed, using the theory of
the ∂̄-equation, that

e2ρΩ(z) ≤ 750πKΩ(z, z).

We want to prove the following improvement from [BÃl3]:

Theorem 4.1. We have
e2ρΩ(z) ≤ 2πKΩ(z, z),

that is SΩ ≤ −1.

We may assume that Ω has smooth boundary. We will use the weighted ∂̄-
Neumann operator and an approach of Berndtsson [B1]. Denote

∂α =
∂α

∂z
, ∂̄α =

∂α

∂z̄
.
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If ϕ is smooth in Ω̄ then the formal adjoint to ∂̄ with respect to the scalar product
in L2(Ω, e−ϕ) is given by

∂̄∗α = −eϕ∂(e−ϕα) = −∂α + α∂ϕ.

The complex Laplacian in L2(Ω, e−ϕ) is defined by

¤α = −∂̄ ∂̄∗α = ∂∂̄α− ∂ϕ∂̄α− α∂∂̄ϕ.

The following formula relating ¤ to the standard Laplacian can be proved by direct
computation:

Proposition 4.2.

∂∂̄(|α|2e−ϕ) =
(
2Re (ᾱ ¤α) + |∂̄α|2 + |∂̄∗α|2 + |α|2∂∂̄ϕ

)
e−ϕ. ¤

We may assume that 0 ∈ Ω. If ϕ is subharmonic (which we assume from now
on) then by PDEs we can find N ∈ C∞(Ω̄ \ {0}) ∩ L1(Ω) such that

¤N =
π

2
eϕ(0)δ0, N = 0 on ∂Ω.

(The constant π/2 is chosen so that N = G, where G = GΩ(·, 0), if ϕ ≡ 0.)
The key in the proof of Theorem 4.1 will be the following estimate of Berndtsson

[B1]:

Theorem 4.3. |N |2 ≤ eϕ+ϕ(0)G2.

Proof. Set
u := |α|2e−ϕ + ε.

Then
|∂u| =

∣∣∣α∂̄α + ᾱ∂̄∗α
∣∣∣ e−ϕ ≤ |α|(|∂̄α|+ |∂̄∗α|)e−ϕ

and by Proposition 4.2

∂∂̄(u1/2) =
1
2
u−1/2∂∂̄u− 1

4
u−3/2|∂u|2

≥ 1
2
u−3/2|α|2[2Re (ᾱ¤α) + |∂̄α|2 + |∂̄∗α|2 − 1

2
(|∂̄α|+ |∂̄∗α|)2]e−2ϕ

≥ −u−3/2|α|3e−2ϕ|¤α|
≥ −|¤α|e−ϕ/2.

Now approximating N by smooth functions and letting ε → 0 we will get

∂∂̄
(
−|N |e−(ϕ+ϕ(0))/2

)
≤ π

2
δ0 = ∂∂̄G

and the theorem follows. ¤
Proof of Theorem 4.1. Set

ϕ := 2(log |z| −G).
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Then ϕ is harmonic in Ω, smooth on Ω̄ and

ϕ(0) = −2ρΩ(0).

For harmonic weights the operators ∂̄ and its adjoint commute

¤ = −∂̄ ∂̄∗ = −∂̄∗∂̄.

Therefore
∂̄(e−ϕ∂N̄) = ∂̄(−e−ϕ(0)∂̄∗N) =

π

2
δ0.

It follows that the function
f := ze−ϕ∂N̄

is holomorphic in Ω, smooth on Ω̄, and, since ∂̄(2f/z − 1/z) = 0, f(0) = 1/2.
Using the fact that both |N |2e−ϕ and its derivative vanish on ∂Ω, integration

by parts and Proposition 4.1 give

∫

Ω

|N |2e−ϕ∂∂̄(|z|2e−ϕ)dλ =
∫

Ω

|z|2(|∂̄N |2 + |∂̄∗N |2)e−2ϕdλ ≥
∫

Ω

|f |2dλ.

On the other hand, we have |z|2e−ϕ = e2G and by Theorem 4.3

∫

Ω

|N |2e−ϕ∂∂̄(|z|2e−ϕ)dλ ≤ eϕ(0)

∫

Ω

G2∂∂̄e2Gdλ.

We need the following simple lemma.

Lemma 4.4. For every integrable γ : (−∞, 0) → R we have

∫

Ω

γ ◦G |∇G|2dλ = 2π

∫ 0

−∞
γ(t)dt.

Proof. Let χ : (−∞, 0) → R be such that χ′ = γ and χ(−∞) = 0. Then

∫

Ω

γ ◦G |∇G|2dλ =
∫

Ω

〈∇(χ ◦G),∇G〉dλ =
∫

∂Ω

χ(0)
∂G

∂n
dσ = 2πχ(0). ¤

End of proof of Theorem 4.1. It follows that

∫

Ω

G2∂∂̄e2Gdλ =
∫

Ω

G2e2G|∇G|2dλ =
π

2

and thus ∫

Ω

|f |2dλ ≤ π

2
eϕ(0),

from which the required estimate immediately follows. ¤
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5. Hörmander’s L2-estimate for the ∂̄-equation

We will first sketch the classical theory of the ∂̄-equation from [Hö] in the special
case p = q = 0, namely we consider the equation

∂̄u = α,

where

α =
n∑

j=1

αjdz̄j

is a (0, 1)-form satisfying the necessary condition

∂̄α = 0.

We will first show how to slightly modify the proof of Lemma 4.4.1 in [Hö] to
obtain the following slight improvement:

Theorem 5.1. Assume that Ω is a pseudoconvex domain in Cn (not necessar-
ily bounded). Let ϕ be a C2 strongly plurisubharmonic function in Ω and α ∈
L2

loc,(0,1)(Ω) with ∂̄α = 0. Then there exists u ∈ L2
loc(Ω) with ∂̄u = α and such that

(5.1)
∫

Ω

|u|2e−ϕdλ ≤
∫

Ω

|α|2i∂∂̄ϕe−ϕdλ,

where

|α|2i∂∂̄ϕ =
n∑

j,k=1

ϕjk̄ᾱjαk

is the length of the form α w.r.t. the Kähler metric i∂∂̄ϕ (here (ϕjk̄) is the inverse
transposed of (∂2ϕ/∂zj∂z̄k)).

Sketch of proof. If the right hand-side of (5.1) is not finite it is enough to apply
Theorem 4.2.2. in [Hö], we may thus assume that it is finite and even equal to
1. We follow the proof of Lemma 4.4.1 in [Hö] and its notation: the function s is
smooth, strongly plurisubharmonic in Ω and such that Ωa := {s < a} b Ω for every
a ∈ R. We fix a > 0 and choose ην ∈ C∞0 (Ω), ν = 1, 2, . . . , such that 0 ≤ ην ≤ 1
and Ωa+1 ⊂ {ην = 1} ↑ Ω as ν ↑ ∞. Let ψ ∈ C∞(Ω) vanish in Ωa and satisfy
|∂ην |2 ≤ eψ, ν = 1, 2, . . . , and let χ ∈ C∞(R) be convex and such that χ = 0 on
(−∞, a), χ ◦ s ≥ 2ψ and χ′ ◦ s i∂∂s ≥ (1 + a)|∂ψ|2i∂∂|z|2. This implies that with
ϕ′ := ϕ + χ ◦ s we have in particular

(5.2) i∂∂ϕ′ ≥ i∂∂ϕ + (1 + a)|∂ψ|2i∂∂|z|2.
The ∂-operator gives the densely defined operators T and S between Hilbert spaces:

L2(Ω, ϕ1)
T−→ L2

(0,1)(Ω, ϕ2)
S−→ L2

(0,2)(Ω, ϕ3),

where ϕj := ϕ′ + (j − 3)ψ, j = 1, 2, 3. (Recall that, if

F =
∑

|J|=p
|K|=q

′
FJKdzJ ∧ dzK ∈ L2

loc,(p,q)(Ω),
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then
|F |2 =

∑

J,K

′|FJK |2,

L2
(p,q)(Ω, ϕ) = {F ∈ L2

loc,(p,q)(Ω) : ||F ||2ϕ :=
∫

Ω

|F |2e−ϕdλ < ∞},

〈F,G〉ϕ :=
∫

Ω

∑

J,K

′
FJKGJKe−ϕdλ, F,G ∈ L2

(p,q)(Ω, ϕ).)

For f =
∑

j fjdzj ∈ C∞0,(0,1)(Ω) one can then compute

(5.3) |Sf |2 =
∑

j<k

∣∣∣∣
∂fj

∂zk
− ∂fk

∂zj

∣∣∣∣
2

=
∑

j,k

∣∣∣∣
∂fj

∂zk

∣∣∣∣
2

−
∑

j,k

∂fj

∂zk

∂fk

∂zj

and
eψT ∗f = −

∑

j

δjfj −
∑

j

fj
∂ψ

∂zj
,

where

δjw := eϕ′ ∂

∂zj
(we−ϕ′) =

∂w

∂zj
− w

∂ϕ′

∂zj
.

Therefore

(5.4) |
∑

j

δjfj |2 ≤ (1 + a−1)e2ψ|T ∗f |2 + (1 + a)|f |2|∂ψ|2.

Integrating by parts we get

∫

Ω

|
∑

j

δjfj |2e−ϕ′dλ =
∫

Ω

∑

j,k

(
∂2ϕ′

∂zj∂zk

fjfk +
∂fj

∂zk

∂fk

∂zj

)
e−ϕ′dλ.

Combining this with (5.2)-(5.4) we arrive at

(5.5)
∫

Ω

∑

j,k

∂2ϕ′

∂zj∂zk

fjfke−ϕ′dλ ≤ (1 + a−1)||T ∗f ||2ϕ1
+ ||Sf ||2ϕ3

.

We have

(5.6) |
∑

j

αjfj |2 ≤ |α|2i∂∂̄ϕ

∑

j,k

∂2ϕ

∂zj∂zk

fjfk.

Hence, from the Schwarz inequality, (5.5) and from the fact that ϕ − 2ϕ2 ≤ −ϕ′

we obtain

(5.7) |〈α, f〉ϕ2 |2 ≤ (1 + a−1)||T ∗f ||2ϕ1
+ ||Sf ||2ϕ3

for all f ∈ C∞0,(0,1)(Ω) and thus also for all f ∈ DT∗ ∩ DS (recall that we have
assumed that the right hand-side of (5.1) is 1).
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If f ′ ∈ L2
(0,1)(Ω, ϕ2) is orthogonal to the kernel of S then it is also orthogonal

to the range of T and thus T ∗f ′ = 0. Moreover, since Sα = 0, we then also have
〈α, f ′〉ϕ2 = 0. Therefore by (5.7)

|〈α, f〉ϕ2 | ≤
√

1 + a−1||T ∗f ||ϕ1 , f ∈ DT∗ .

By the Hahn-Banach theorem there exists ua ∈ L2(Ω, ϕ1) with ||ua||ϕ1 ≤
√

1 + a−1

and
〈α, f〉ϕ2 = 〈ua, T ∗f〉ϕ1 , f ∈ DT∗ .

This means that Tua = α and, since ϕ1 ≥ ϕ with equality in Ωa, we have

∫

Ωa

|ua|2e−ϕdλ ≤ 1 + a−1.

We may thus find a sequence aj ↑ ∞ and u ∈ L2
loc(Ω) such that uaj

converges
weakly to u in L2(Ωa, ϕ) = L2(Ωa) for every a. ¤

It will be convenient to have a version of Theorem 5.1 for nonsmooth ϕ. Note
that (5.6) holds pointwise for every f precisely when

iᾱ ∧ α ≤ |α|2i∂∂̄ϕi∂∂̄ϕ.

This observation allows to formulate the following generalization of Theorem 5.1:

Theorem 5.1’. Assume that Ω is pseudoconvex and ϕ plurisubharmonic in Ω. Let
α ∈ L2

loc,(0,1)(Ω) be such that ∂α = 0 and

(5.8) iα ∧ α ≤ hi∂∂ϕ

for some nonnegative function h ∈ L1
loc(Ω) such that the right hand-side of (5.8)

makes sense as a current of order 0 (that is the coefficients of hi∂∂ϕ are complex
measures; this is always the case if h is locally bounded). Then there exists u ∈
L2

loc(Ω) with ∂u = α and

∫

Ω

|u|2e−ϕdλ ≤
∫

Ω

he−ϕdλ.

Proof. First assume that ϕ is strongly plurisubharmonic (but otherwise arbitrary,
that is possibly even not locally bounded). By the Radon-Nikodym theorem there
exists β =

∑
j,k βjkidzj ∧ dzk ∈ L1

loc,(1,1)(Ω) such that 0 < β ≤ i∂∂ϕ and iᾱ ∧ α ≤
hβ. For ε > 0 let a(ε) be such that ϕε := ϕ∗ρε ∈ C∞(Ωa(ε)) (where Ωa is as in the
proof of Theorem 5.1). Set hε := |α|2

i∂∂̄ϕε
, so that hε is the least function satisfying

iᾱ∧α ≤ hεi∂∂ϕε. By Theorem 5.1 we can find uε ∈ L2
loc(Ωa(ε)) such that ∂uε = α

in Ωa(ε) and

∫

Ωa(ε)

|uε|2e−ϕεdλ ≤
∫

Ωa(ε)

hεe
−ϕεdλ ≤

∫

Ωa(ε)

hεe
−ϕdλ.
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We have βε := β ∗ ρε ≤ i∂∂ϕε and the coefficients of βε converge pointwise almost
everywhere to the respective coefficients of β. Therefore

lim
ε→0

hε ≤ lim
ε→0

∑

j,k

βjk
ε αjαk =

∑

j,k

βjkαjαk ≤ h,

where (βjk) and (βjk
ε ) denote the inverse matrices of (βjk) and (βjk ∗ ρε), respec-

tively. By the Fatou lemma we thus have

lim
ε→0

∫

Ωa(ε)

|uε|2e−ϕεdλ ≤
∫

Ω

he−ϕdλ.

Since ϕε is decreasing as decreases to 0, we see that the L2(Ωa, ϕε̃) norm of uε is
bounded for every ε ≤ ε̃ and fixed a and ε̃. Therefore, we can find a subsequence
uεl

converging weakly in Ωa for every a to u ∈ L2
loc(Ω). Moreover, for every δ > 0,

and l sufficiently big we then have
∫

Ωa

|u|2e−ϕεl dλ ≤ δ +
∫

Ω

he−ϕdλ

and thus by the Lebesgue monotone convergence theorem we can conclude the proof
for strongly plurisubharmonic ϕ.

If ϕ is not necessarily strongly plurisubharmonic then we may approximate it by
functions of the form ϕ+ ε|z|2. Note that iᾱ∧α ≤ h i∂∂(ϕ+ ε|z|2) and the general
case easily follows along the same lines as before. ¤

The next result is due to Berndtsson [B2] (see also [B3]).

Theorem 5.2. Let Ω, ϕ, α and h be as in Theorem 5.1’. Fix r ∈ (0, 1) and
assume in addition that −e−ϕ/r ∈ PSH(Ω). Then for any ψ ∈ PSH(Ω) we can
find u ∈ L2

loc(Ω) with ∂u = α and
∫

Ω

|u|2eϕ−ψdλ ≤ 1
(1−√r)2

∫

Ω

heϕ−ψdλ.

Proof. Approximating −e−ϕ/r and ψ in the same way as in the proof of Theorem
5.1’ we may assume that ϕ and ψ are smooth up to the boundary. Then we have
in particular L2(Ω) = L2(Ω, aϕ + bψ) for real a, b and −e−ϕ/r ∈ PSH(Ω) means
precisely that

i∂ϕ ∧ ∂ϕ ≤ r i∂∂ϕ.

Let u be the solution to ∂u = α which is minimal in the L2(Ω, ψ) norm. This means
that ∫

Ω

ufe−ψdλ = 0, f ∈ H2(Ω).

Set v := eϕu. Then ∫

Ω

vfe−ϕ−ψdλ = 0, f ∈ H2(Ω),

thus v is the minimal solution in the L2(Ω, ϕ + ψ) norm to ∂v = β, where

β = ∂(eϕu) = eϕ(α + u∂ϕ).
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For every t > 0 we have

iβ ∧ β ≤ e2ϕ[(1 + t−1)iα ∧ α + (1 + t)|u|2i∂∂ϕ]

≤ e2ϕ[(1 + t−1)h + (1 + t)r|u|2]i∂∂ϕ

≤ e2ϕ[(1 + t−1)h + (1 + t)r|u|2]i∂∂(ϕ + ψ).

Therefore by Theorem 5.1
∫

Ω

|u|2eϕ−ψdλ =
∫

Ω

|v|2e−ϕ−ψdλ ≤ (1 + t−1)
∫

Ω

heϕ−ψdλ + (1 + t)r
∫

Ω

|u|2eϕ−ψdλ.

For t = r−1/2 − 1 we obtain the required result. ¤
Applying Theorem 5.2 with r = 1/4 and ϕ,ψ replaced with ϕ/4, ψ+ϕ/4, respec-

tively, we obtain the following estimate essentially due to Donnelly and Fefferman
[DF].

Theorem 5.3. Let Ω, ϕ, α and h satisfy the assumptions of Theorem 5.1’. Assume
moreover that −e−ϕ ∈ PSH(Ω). Then for any ψ ∈ PSH(Ω) we can find u ∈
L2

loc(Ω) with ∂u = α and

∫

Ω

|u|2e−ψdλ ≤ 16
∫

Ω

he−ψdλ. ¤

One can improve the constants in Theorems 5.2 and 5.3 to 4r/(1 − r)2 and 4,
respectively (see [BÃl1]).

Exercise 5. Let n = 1 and ϕ = − log(− log |z|). Show that u = z̄ is the minimal
solution in L2(∆, ϕ) of the equation ∂̄u = dz̄. Prove that

∫

∆

|u|2dλ = 2
∫

∆

|∂̄u|2i∂∂̄ϕdλ

and conclude that the constant in Theorem 5.3 cannot be better than 2.

6. Bergman completeness

Domains complete w.r.t. the Bergman metric are called Bergman complete.

Proposition 6.1. Every Bergman complete domain is pseudoconvex.

Proof. If Ω is not pseudoconvex then by the definition of a domain of holomorhpy
there are domains Ω1,Ω2 such that ∅ 6= Ω1 ⊂ Ω ∩ Ω2, Ω2 6⊂ Ω and for every f

holomorphic in Ω there exists f̃ holomorphic in Ω2 such that f = f̃ on Ω1. We may
assume that Ω1 is a connected component of Ω∩Ω2 such that the set Ω2∩∂Ω∩∂Ω1

is nonempty. Since KΩ(·, ·̄) is holomorphic in Ω × Ω∗, it follows that there exists
K̃ ∈ C∞(Ω2 × Ω2) such that K̃(·, ·̄) is holomorphic in Ω2 × Ω∗2 and K̃ = KΩ in
Ω1×Ω1. This means that every sequence zk → Ω2∩∂Ω∩∂Ω1 is a Cauchy sequence
with respect to dist Ω, which contradicts the completeness of Ω. ¤
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The converse is not true as the following exercise shows:

Exercise 6. Show that every function from H2(∆ \ {0}) extends to a function in
H2(∆). Conclude that ∆ \ {0} is not Bergman complete.

The main tool for the Bergman completeness is the following criterion of Koba-
yashi [K] (from now on we again assume that Ω is a bounded domain in Cn):

Theorem 6.2. Assume that

(6.1) lim
z→∂Ω

|f(z)|2
KΩ(z, z)

= 0, f ∈ H2(Ω).

Then Ω is Bergman complete.

Proof. Let zk be a Cauchy sequence in Ω (with respect to the Bergman metric).
Suppose that zk has no accumulation point in Ω. It is easy to check that this is
equivalent to the fact that zk → ∂Ω. By Theorem 1.2 ι(zk) is a Cauchy sequence in
P(H2(Ω)) which is a complete metric space. It follows that there is f ∈ H2(Ω)\{0}
such that ι(zk) → 〈f〉. Therefore

|f(zk)|2
KΩ(zk, zk)

=
∣∣〈f,

KΩ(·, zk)√
KΩ(zk, zk)

〉∣∣2 → ||f ||2

as k →∞, which contradicts the assumption of the theorem. ¤
Zwonek [Z1] (see also [J]) showed that there exists a Bergman complete domain

in C which does not satisfy (6.1). On the other hand, from the above proof it is
clear that one can weaken (6.1) to

(6.1’) lim sup
z→∂Ω

|f(z)|2
KΩ(z, z)

< ||f ||2, f ∈ H2(Ω) \ {0}.

It is not known if there exists a Bergman complete domain not satisfying (6.1’).
Similarly as in the one-dimensional case one defines the pluricomplex Green

function of Ω with pole at w ∈ Ω as

GΩ(·, w) := supFw,

where
Fw := {v ∈ PSH−(Ω) : lim sup

ζ→w
(v(ζ)− log |ζ − w|) < ∞}.

Then GΩ(·, w) ∈ Fw but GΩ is not symmetric in general. We have the following
estimate due to Herbort [H]:

Theorem 6.3. For f ∈ H2(Ω) and w ∈ Ω, where Ω is pseudoconvex, we have

|f(w)|2
KΩ(w, w)

≤ cn

∫

{GΩ(·,w)<−1}
|f |2dλ.

Proof. We will use Theorem 5.3 with ϕ := − log(−g) and ψ := 2ng, where g :=
GΩ,w. Since g is a locally bounded plurisubharmonic function in Ω \ {w}, it follows
that ∂g ∈ L2

loc,(0,1)(Ω \ {w}). Set

α := ∂(f · γ ◦ g) = f · γ′ ◦ g ∂g ∈ L2
loc,(0,1)(Ω),
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where γ ∈ C∞(R) is such that γ(t) = 0 for t ≥ −1, γ(t) = 1 for t ≤ −3 and
−1 ≤ γ′ ≤ 0. We have

iᾱ ∧ α = |f |2(γ′ ◦ g)2i∂g ∧ ∂g ≤ |f |2(γ′ ◦ g)2g2i∂∂ψ.

By Theorem 5.3 we can find u ∈ L2
loc(Ω) with ∂̄u = α and

∫

Ω

|u|2e−2ngdλ ≤ 16
∫

Ω

|f |2(γ′ ◦ g)2g2e−2ngdλ.

Therefore
||u||L2(Ω) ≤ 12e3n||f ||L2({g<−1}).

The function f ·γ ◦g−u is equal almost everywhere to a holomorphic f̃ . Moreover,
since e−ϕ is not locally integrable near w it follows that f̃(w) = f(w). Therefore

|f(w)|√
KΩ(w, w)

≤ ||f̃ || ≤ (1 + 12e3n)||f ||L2({g<−1}). ¤

From Theorems 6.2 and 6.3 we easily deduce the following (see [C1], [BP], [H]):

Corollary 6.4. If pseudoconvex Ω satisfies

(6.1) lim
w→∂Ω

λ({GΩ(·, w) < −1}) = 0

then it is Bergman complete. ¤
One can show that hyperconvex domains (that is domains admitting bounded

plurisubharmonic exhaustion function) satisfy (6.1), and thus are Bergman com-
plete (see [C1], [BP] and [H]).

For f ≡ 1 Theorem 6.3 gives

KΩ(w, w) ≥ 1
cnλ({GΩ(·, w) < −1})

and thus in particular

(6.2) lim
w→∂Ω

KΩ(w, w) = ∞

for hyperconvex Ω (this is originally due to Ohsawa [O]).
The following result was proved in [C2]:

Theorem 6.5. If n = 1 and Ω satisfies (6.2) then it is Bergman complete.

Exercise 7. Using the Hartogs triangle {(z, w) ∈ C2 : 0 < |z| < |w| < 1} show
that Theorem 6.5 does not hold for n > 1.

For the proof of Theorem 6.5 we will need the following:

Lemma 6.6. Assume that f ∈ H2(Ω) and let U ⊂ B(z0, r) be such that Ω ∪ U is
a pseudoconvex domain contained in B(z0, R). Then there exists F ∈ H2(Ω ∪ U)
such that

(6.3) ||F − f ||L2(Ω) ≤
(
1 +

4
log 2

)||f ||
L2(Ω∩B(z0,R

√
r/R)

.
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Proof. Assume for simplicity that z0 = 0. We will use Theorem 5.3 with ϕ =
− log(− log(|z|/R)), ψ = 0 and

α = ∂̄(f γ ◦ ϕ) = f γ′ ◦ ϕ ∂̄ϕ,

where

γ(t) =





0, t ≤ − log(− log(r/R))
t+log(− log(r/R))

log 2 , − log(− log(r/R)) < t < − log(− log(r/R)) + log 2

1, t ≥ − log(− log(r/R)) + log 2.

Then γ ◦ ϕ = 0 in B(0, r) and thus α is well defined in Ω ∪ U . We also have

iᾱ ∧ α = |f |2(γ′ ◦ ϕ)2i∂ϕ ∧ ∂̄ϕ ≤ |f |2(γ′ ◦ ϕ)2i∂∂̄ϕ.

From Theorem 5.3 we obtain u with ∂̄u = α and
∫

Ω∪U

|u|2dλ ≤ 16
∫

Ω

|f |2(γ′ ◦ ϕ)2dλ.

For F := f γ ◦ ϕ− u the desired estimate now easily follows. ¤
The point in Lemma 6.6 is that Ω ∪ U is pseudoconvex and that the r.h.s. con-

verges to 0 as r → 0. For z0 ∈ ∂Ω one can always find an appropriate neighborhood
basis provided that n = 1.

Proof of Theorem 6.5. Fix f ∈ H2(Ω), z0 ∈ ∂Ω and ε > 0. By Lemma 6.6 we can
find f̃ ∈ H2(Ω) which is bounded near z0 and such that ||f̃ − f || ≤ ε. For z ∈ Ω
we have

|f(z)|√
KΩ(z, z)

≤ ||f̃ − f ||+ |f̃(z)|√
KΩ(z, z)

and thus by (6.2)

lim sup
z→z0

|f(z)|√
KΩ(z, z)

≤ ε.

It is now enough to use Theorem 6.2. ¤
Our next goal is to prove the following relation between the Bergman distance

and the Green function from [BÃl2]:

Theorem 6.7. Assume that w1, w2 ∈ Ω, where Ω is pseudoconvex, are such that
{GΩ(·, w1) < −1} ∩ {GΩ(·, w2) < −1} = ∅. Then dist B

Ω (w1, w2) ≥ bn > 0.

Proof. Set f := KΩ(·, w2)/
√

KΩ(w2, w2) (so that ||f || = 1), ϕ := − log(−GΩ(·, w1))
and ψ := 2n(GΩ(·, w1) + GΩ(·, w2)). Let γ ∈ C∞(R) be such that γ = 0 for t ≥ 0,
γ = 1 for t ≤ −2 and −1 ≤ γ′ ≤ 0. Then by Theorem 5.3 we can find u with
∂̄u = ∂̄(f γ ◦ ϕ) and

∫

Ω

|u|2e−ψdλ ≤ 16
∫

Ω

|f |2(γ′ ◦ ϕ)2e−ψdλ ≤ 16e20n,

where the last inequality follows from the assumption, since on {γ′ ◦ ϕ 6= 0} ⊂
{−2 ≤ ϕ ≤ 0} we have ψ ≥ −2n(e2 + 1). Therefore u(w1) = u(w2) = 0 and
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F := f γ ◦ ϕ − u is holomorphic with F (w1) = f(w1), F (w2) = 0. We also have
||F || ≤ 1 + 4e10n.

Note that 〈F, f〉 = F (w2)/
√

KΩ(w2, w2) = 0. We can therefore find an or-
thonormal basis ϕ0, ϕ1, . . . such that ϕ0 = f and ϕ1 = F/||F ||. It follows that

KΩ(z, z) ≥ |f(z)|2 +
|F (z)|2
||F ||2 .

Now by Theorem 1.3

dist B
Ω (w1, w2) ≥ arccos

|F (w1)|√
KΩ(w1, w1)

≥ arccos
||F ||√

1 + ||F ||2 . ¤

7.Ohsawa-Takegoshi extension theorem

The Ohsawa-Takegoshi extension theorem [OT] turned out to be one of the main
tools in complex analysis:

Theorem 7.1. Let Ω be a bounded pseudoconvex domain and H a complex hyper-
plane in Cn. Set Ω′ := Ω ∩ H and assume that ϕ is a plurisubharmonic function
in Ω. Then for every holomorphic f in Ω′ there exists a holomorphic F in Ω such
that F |Ω′ = f and ∫

Ω

|F |2e−ϕdλ ≤ C

∫

Ω′
|f |2e−ϕ′dλ′,

where ϕ′ = ϕ|Ω′ , dλ′ is the Lebesgue measure on Ω′ and C depends only on n and
the diameter of Ω.

Sketch of proof. We follow Berndtsson [B4] (see also [B2]). Without loss of gener-
ality we may assume that H = {z1 = 0} and Ω ⊂ {|z1| < 1}. By approximating Ω
from inside and ϕ from above we may assume that Ω is a strongly pseudoconvex
domain with smooth boundary, ϕ is smooth up to the boundary, and f is defined
in a neighborhood of Ω′ in H. Then it follows that f extends to some holomorphic
function in Ω (we may use Hörmander’s estimate with α = ∂(χ(z1)f(z′)), χ = 1
near 0 but with support sufficiently close to 0, ϕ = 2 log |z1| will ensure that u = 0
on H).

Let F ∈ H2(Ω, e−ϕ) := O(Ω) ∩ L2(Ω, e−ϕ) be the function satisfying F = f on
H with minimal norm in L2(Ω, e−ϕ). Then F is perpendicular to functions from
H2(Ω, e−ϕ) vanishing on H, and it is thus perpendicular to the space z1H

2(Ω, e−ϕ).
This means that z1F is perpendicular to H2(Ω, e−ϕ). Since (H2(Ω, e−ϕ))⊥ =
(ker ∂)⊥ is equal to the range of ∂

∗
, we have ∂

∗
α = z1F for some α ∈ L2

(0,1)(Ω, e−ϕ).

Choose such α with the minimal norm. Then α is perpendicular to ker ∂
∗
, and thus

∂α = 0. We have
∫

Ω

|F |2e−ϕdλ =
〈
F/z1, ∂

∗
α
〉

e−ϕ =
〈
∂(F/z1), α

〉
e−ϕ =

〈
F∂(1/z1), α

〉
e−ϕ

= π

∫

Ω′
fα1e

−ϕdλ′ ≤ π

(∫

Ω′
|f |2e−ϕdλ′

)1/2 (∫

Ω′
|α1|2e−ϕdλ′

)1/2

.
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It is thus enough to estimate
∫
Ω′ |α1|2e−ϕdλ′. We will use the Bochner-Kodaira

technique (terminology of Siu [S2], see [B2] for details). One may compute that

∑
(αjαke−ϕ)jk̄

=
(
−2Re (∂ ∂

∗
α · α) + |∂∗α|2 +

∑
|αj,k̄|2 − |∂α|2 +

∑
ϕjk̄αjαk

)
e−ϕ.

Integrating by parts and computing further one can show that for any (sufficiently
regular) function w

∫

Ω

∑
wjk̄αjαke−ϕ dλ−

∫

∂Ω

∑
ρjk̄αjαke−ϕw

dσ

|∂ρ|
=

∫

Ω

(
−2Re (∂ ∂

∗
α · α) + |∂∗α|2 +

∑
|αj,k̄|2 − |∂α|2 +

∑
ϕjk̄αjαk

)
e−ϕw dλ,

where ρ is a defining function or Ω. In our case we have ∂α = 0, ∂
∗
α = z1F , and

if we take negative w depending only on z1, then

(7.1)
∫

Ω

w11̄|α1|2e−ϕdλ ≤ −2Re
∫

Ω

Fα1e
−ϕw dλ

(since we may choose plurisubharmonic ρ). Set

w := 2 log |z1|+ |z1|2δ − 1,

where 0 < δ < 1. Then w11̄ = πδ′0 + δ2|z1|2δ−2 and for t > 0

π

∫

Ω′
|α1|2e−ϕdλ′ + δ2

∫

Ω

|α1|2|z1|2δ−2e−ϕdλ ≤

t

∫

Ω

|F |2e−ϕdλ +
1
t

∫

Ω

|α1|2w2e−ϕdλ.

Choosing t with w2 ≤ δ2t|z1|2δ−2 in {|z1| ≤ 1} and combining this with (7.1) we
arrive at ∫

Ω

|F |2e−ϕdλ ≤ tπ

∫

Ω′
|f |2e−ϕdλ′. ¤

It is clear that iterating Theorem 7.1 we may take H to be an arbitrary complex
affine subspace in Cn, even a point.

The original motivation behind [OT] was the following estimate:

Theorem 7.2. Assume that Ω is a bounded pseudoconvex domain with C2 bound-
ary. Then

(7.2) KΩ ≥ 1
Cdist (z, ∂Ω)2

,

where C is a constant depending on Ω.

Proof. It follows almost immediately from Theorem 1.1. For let r > 0 be such that
for any w ∈ ∂Ω there exists w∗ ∈ Cn \ Ω such that Ω ∩ B(w∗, r) = {w}. If z ∈ Ω,
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w ∈ ∂Ω is such that dist (z, ∂Ω) = |z − w|, and w∗ is as above then z, w, and w∗

lie on the same line (normal to ∂Ω at w). For the corresponding complex line H
and Ω′ = Ω ∩H we obtain

KΩ(z) ≥ 1
CΩ

KΩ′(z) ≥ 1
CΩ

KC\∆(0,r)(r + |z − w|)

=
r2

πCΩdist (z, ∂Ω)2(2r + dist (z, ∂Ω))2
. ¤

The exponent 2 in (7.2) is optimal (for example it cannot be improved for a
domain whose boundary near the origin is given by |z1 − 1| = 0). Previously a
weaker form of (7.2) was proved by Pflug [P] using Hörmander’s estimate (with
arbitrary exponent lower than 2).

Demailly approximation. In the proof of Theorem 7.2 we used Theorem 7.1
only with ϕ ≡ 0. The fact that the weight may be an arbitrary plurisubharmonic
function was used by Demailly [D] to introduce a new type of regularization of
plurisubharmonic functions: by smooth plurisubharmonic functions with analytic
singularities (that is functions that locally can be written in the form log(|f1|2+· · ·+
|fk|2) + u, where f1, . . . , fk are holomorphic and u is C∞ smooth) which have very
similar singularities to the initial function. The Demailly approximation turned out
to be an important tool in complex geometry, see e.g. [D], [DPS] or [DP]. Demailly
[D] presented also a simple proof of the Siu theorem on analyticity of level sets
of Lelong numbers of plurisubharmonic functions ([S1], see also [Hö]). As we will
see below, the Demailly approximation shows that the Siu theorem follows rather
easily from Theorem 7.1 applied when H is just a point.

Recall that the Lelong number of ϕ ∈ PSH(Ω) at z0 ∈ Ω is defined by

νϕ(z0) = lim
z→z0

ϕ(z)
log |z − z0| = lim

r→0+

ϕr(z0)
log r

,

where for r > 0 we use the notation

ϕr(z) := max
B(z,r)

ϕ, z ∈ Ωr := {δΩ > r}.

One can show that ϕr is a plurisubharmonic continuous function in Ωr, decreasing
to ϕ as r decreases to 0. Now we are in position to prove a result from [D]:

Theorem 7.3. For a plurisubharmonic function ϕ in a bounded pseudoconvex do-
main Ω in Cn and m = 1, 2 . . . set

ϕm :=
1

2m
log KΩ,e−2mϕ =

1
2m

log sup{|f |2 : f ∈ O(Ω),
∫

Ω

|f |2e−2mϕ ≤ 1}.

Then there exist C1, C2 > 0 depending only on Ω such that

(7.3) ϕ− C1

m
≤ ϕm ≤ ϕr +

1
m

log
C2

rn
in Ωr.

In particular, ϕm → ϕ pointwise and in L1
loc(Ω). Moreover,

(7.4) νϕ − n

m
≤ νϕm

≤ νϕ in Ω.
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Proof. First note that (7.4) is an easy consequence of (7.3): by the first inequality
in (7.3) we get νϕm

≤ νϕ−C1/m = νϕ, and by the second one

ϕr
m ≤ ϕ2r +

1
m

log
C2

rn
,

thus νϕ − n/m ≤ νϕm
.

By Theorem 7.1 for every z ∈ Ω there exists f ∈ O(Ω) with f(z) 6= 0 and
∫

Ω

|f |2e−2mϕdλ ≤ CΩ|f(z)|2e−2mϕ(z).

We may choose f so that the right-hand side is equal to 1. Then

ϕm(z) ≥ 1
m

log |f(z)| = ϕ(z)− 1
2m

log CΩ

and we get the first inequality in (7.3).
To get the second one we observe that for any holomorphic f the function |f |2

is in particular subharmonic and thus for z ∈ Ωr

|f(z)|2 ≤ 1
λ(B(z, r))

∫

B(z,r)

|f |2dλ ≤ n!
πnr2n

e2mϕr(z)

∫

B(z,r)

|f |2e−2mϕdλ.

Taking the logarithm and multiplying by 1/(2m) we will easily get the second
inequality in (7.3). ¤

By (7.4) for any real c we have

(7.5) {νϕ ≥ c} =
⋂
m

{νϕm ≥ c− n

m
}.

If {σj} is an orthonormal basis in H2(Ω, e−2mϕ) then

(7.6) KΩ,e−2mϕ =
∑

j

|σj |2

and one can show that

{νϕm ≥ c− n

m
} =

⋂

|α|<mc−n

⋂

j

{∂ασj = 0}.

Therefore (7.5) is an analytic subset of Ω, which gives the Siu theorem [S1]:

Theorem 7.4. For any plurisubharmonic function ϕ and a real number c the set
{νϕ ≥ c} is analytic. ¤

The following sub-additivity property was proved in [DPS]. It also relies on the
extension theorem, here however we will be using it for the diagonal of Ω× Ω.

Theorem 7.5. With the notation of Theorem 4.1 there exists C3 > 0, depending
only on Ω, such that

(m1 + m2)ϕm1+m2 ≤ C3 + m1ϕm1 + m2ϕm2 .
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Proof. Take f ∈ H2(Ω, e−2(m1+m2)ϕ) with norm ≤ 1. If we embed Ω in Ω × Ω as
the diagonal then by Theorem 7.1 there exists F holomorphic in Ω × Ω such that
F (z, z) = f(z), z ∈ Ω, and

(7.7)
∫

Ω×Ω

|F (z, w)|2e−2m1ϕ(z)−2m2ϕ(w)dλ(z)dλ(w) ≤ C(= CΩ×Ω).

If {σj} is an orthonormal basis in H2(Ω, e−2m1ϕm1 ) and {σ′k} an orthonormal basis
in H2(Ω, e−2m1ϕm2 ) then one can easily check that {σj(z)σ′k(w)} is an orthonormal
basis in H2(Ω× Ω, e−2m1ϕm1 (z)−2m2ϕm2 (w)). We may write

F (z, w) =
∑

j,k

cjkσj(z)σ′k(w)

and by (7.7) ∑

j,k

|cjk|2 ≤ C.

Therefore by the Schwarz inequality

|f(z)|2 = |F (z, z)|2 ≤ C
∑

j

|σj(z)|2
∑

k

|σ′k(z)|2 = Ce2m1ϕm1 (z)e2m2ϕm2 (z)

(using (7.6)). Since f was arbitrary, the theorem follows with C3 = (log C)/2. ¤
Corollary 7.6. The sequence ϕ2k + C3/2k+1 is decreasing. ¤

It is an open problem if the whole sequence ϕm from Theorem 7.3 (perhaps
modified by constants as in Corollary 7.6) is decreasing.
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