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Abstract We will discuss two main cases where the complex Monge–Ampère
equation (CMA) is used in Käehler geometry: the Calabi–Yau theorem which boils
down to solving nondegenerate CMA on a compact manifold without boundary
and Donaldson’s problem of existence of geodesics in Mabuchi’s space of Käehler
metrics which is equivalent to solving homogeneous CMA on a manifold with
boundary. At first, we will introduce basic notions of Käehler geometry, then derive
the equations corresponding to geometric problems, discuss the continuity method
which reduces solving such an equation to a priori estimates, and present some of
those estimates. We shall also briefly discuss such geometric problems as Käehler–
Einstein metrics and more general metrics of constant scalar curvature.

1 Introduction

We present two situations where the complex Monge–Ampère equation (CMA)
appears in Kähler geometry: the Calabi conjecture and geodesics in the space of
Kähler metrics. In the first case the problem is to construct, in a given Kähler class,
a metric with prescribed Ricci curvature. It turns out that this is equivalent to finding
a metric with prescribed volume form, and thus to solving nondegenerate CMA on
a manifold with no boundary. This was eventually done by Yau [47], building up on
earlier work by Calabi, Nirenberg and Aubin. On the other hand, to find a geodesic
in a Kähler class (the problem was posed by Donaldson [20]) one has to solve a
homogeneous CMA on a manifold with boundary (this was observed independently
by Semmes [39] and Donaldson [20]). Existence of weak geodesics was proved
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by Chen [18] but Lempert and Vivas [33] showed recently that these geodesics do
not have to be smooth. Their partial regularity is nevertheless of interest from the
geometric point of view.

In Sects. 2–6 we discuss mostly geometric aspects, whereas Sects. 7–13 concen-
trate on the PDE part, mostly a priori estimates. We start with a very elementary
introduction to Kähler geometry in Sect. 2, assuming the reader is familiar with
Riemannian geometry. The Calabi conjecture and its equivalence to CMA are
presented in Sect. 3, where the problem of extremal metrics is also briefly discussed.
Basic properties of the Riemannian structure of the space of Kähler metrics
(introduced independently by Mabuchi [35] and Donaldson [20]) are presented in
Sect. 4. The Aubin–Yau functional and the Mabuchi K-energy as well as relation to
constant scalar curvature metrics are discussed there as well. The Lempert–Vivas
example is described in Sect. 5. Assuming Sects. 7–13, where appropriate results on
CMA are shown, in Sect. 6 we present a theorem due to Chen [18] that a Kähler
class with the distance defined by this Riemannian structure is a metric space.

The fundamental results on CMA are formulated in Sect. 7, where also basic
uniqueness results as well as the comparison principle are showed. The continuity
method, used to prove existence of solutions, is described in Sect. 8. It reduces
the problem to a priori estimates. Yau’s proof of the L1-estimate using Moser’s
iteration is presented in Sect. 9, whereas Sects. 10–12 deal with the first and second
order estimates (Sects. 11–12 are not needed in the empty boundary case, that is
in the proof of the Calabi conjecture). Higher order estimates then follow from the
general, completely real Evans–Krylov theory, this is explained in Sect. 13. A slight
novelty of this approach in the proof of Yau’s theorem is the use of Theorem 25
below which enables us to use directly this real Evans–Krylov theory, instead of
proving its complex version (compare with [10, 40] or [13]).

The author would like to thank the organizers of the CIME school in Pluripo-
tential Theory, Filippo Bracci and John Erik Fornæss, for the invitation and a very
good time he had in Cetraro in July 2011.

2 Basic Notions of Kähler Geometry

Let M be a complex manifold of dimension n and by J W TM ! TM denote its
complex structure. We start with a Hermitian metric h on M and set

hX; Y i WD Re h.X; Y /; !.X; Y / WD �Im h.X; Y /; X; Y 2 TM:

Then h�; �i is a Riemannian metric on M , ! a real 2-form on M and

hJX; Y i D !.X; Y /; hJX; J Y i D hX; Y i: (1)

The Riemannian metric h�; �i determines unique Levi–Civita connection r.
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By TCM denote the complexification of TM (treated as a real space) and extend
J , h�; �i, !, and r to TCM in a C-linear way. In local coordinates zj D xj C iyj

the vector fields @=@xj , @=@yj span TM over R. We also have

J.@=@xj / D @=@yj ; J.@=@yj / D �@=@xj :

The vector fields

@j WD @

@zj
; @ Nj WD @

@Nzj ;
span TCM over C and

J.@j / D i@j ; J.@ Nj / D �i@ Nj :

Set
gj Nk WD h@j ; @ Nki

� D h@ Nk; @j i�:
Then gj Nk D gk Nj and by (1)

h@j ; @ki D h@ Nj ; @ Nki D 0:

If X D Xj @j C NXj@ Nj then X 2 TM and it follows that

jX j2 D 2gj NkX
j NXk;

thus .gj Nk/ > 0. By (1)

! D igj Nkd zj ^ d Nzk (2)

(we see in particular that ! is a form of type .1; 1/).

Proposition 1. For a Hermitian metric h the following are equivalent

(i) rJ D 0;
(ii) d! D 0;

(iii) ! D i@N@g locally for some smooth real-valued function g.

Proof. (i))(ii) By (1)

3 d!.X; Y;Z/ D X!.Y;Z/C Y!.Z;X/CZ!.X; Y /

� !.ŒX; Y �; Z/ � !.ŒY;Z�;X/ � !.ŒZ;X�; Y /
D h.rXJ /Y;Zi C h.rY J /Z;Xi C h.rZJ /X; Y i:

(ii))(i) Similarly one can show that

3 d!.X; Y;Z/� 3 d!.X; J Y; JZ/ D 2 h.rXJ /Y;Zi C hX;N.Y; JZ/i;
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where
N.X; Y / D ŒX; Y �C J ŒJX; Y �C J ŒX; J Y � � ŒJX; J Y �

is the Nijenhuis tensor (in our case it vanishes, because J is integrable).
(ii))(iii) Locally we can find a real 1-form � such that ! D d� . We may write

� D Ň C ˇ, where ˇ is a .0; 1/-form. Then, since d D @C @,

! D @ Ň C @̌ C N@ Ň C N@ˇ:

It follows that N@ˇ D 0, because ! is a .1; 1/-form. Therefore we can find (locally) a
complex-valued, smooth function f with ˇ D @f and

! D @̌ C N@ Ň D 2i@N@.Imf /:

We can thus take g D 2Imf .
(iii))(ii) is obvious. ut
The metric satisfying equivalent conditions in Proposition 1 is called Kähler. It is

thus a Hermitian metric on a complex manifold for which the Riemannian structure
is compatible with the complex structure. The corresponding form ! is also called
Kähler, it is characterized by the following properties: ! is a smooth, real, positive,
closed .1; 1/-form.

From now on we will use the lower indices to denote partial differentiation
w.r.t. zj and Nzk , so that for example @2g=@zj @Nzk D gj Nk and (2) is compatible with

! D i@N@g.

Volume form. Since h@j ; @ Nki D gj Nk and h@j ; @ki D 0, we can easily deduce that

˝ @
@xj

;
@

@xk

˛ D ˝ @
@yj

;
@

@yk

˛ D 2Re gj Nk;
˝ @
@xj

;
@

@yk

˛ D �˝ @
@xk

;
@

@yj

˛ D 2Imgj Nk:

From this, using the notation xjCn D yn,

r

det
�˝ @
@xj

;
@

@xk

˛�
1�j;k�2n D 2n det.gj Nk/:

It follows that the volume form on M is given by

2n det.gj Nk/ d� D !n

nŠ
;

where d� is the Euclidean volume form and !n D ! ^ � � � ^ !. In the Kähler case
it will be however convenient to get rid of the constant and define the volume as

dV WD !n:
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Christoffel symbols. From now on we assume that ! is a Kähler form on M and
h�; �i is the associated metric. Write

r@j @k D �ljk@l C �
Nl
jk@Nl ; r@

Nj
@k D �lNjk@l C �

NlNj k@Nl :

Since rJ D 0, we have for example ir@j @k D r@j .J @k/ D Jr@j @k and it follows

that � Nl
jk D 0. Similarly we show that �lNj k D �

NlNjk D 0, so the only non-vanishing

Christoffel symbols are �ljk D �
Nl
Nj Nk . Denoting further gj D @g=@zj , g Nk D @g=@Nzk

(which by Proposition 1(iii) is consistent with the previous notation) we have

gj Nkl D @l h@l ; @ Nki D �
p

lj gp Nq ;

which means that
�ljk D �

Nl
Nj Nk D gl Nqgj Nqk; (3)

where gp Nq is determined by
gj Nqgk Nq D ıjk: (4)

Riemannian curvature. Recall that it is defined by

R.X; Y / D rXrY � rY rX � rŒX;Y �

(we extend it to TCM ) and

R.X; Y;Z;W / D hR.X; Y /Z;W i: (5)

The classical properties are

R.Y;X/ D �R.X; Y /;
R.X; Y;Z;W / D �R.Y;X;Z;W / D �R.X; Y;W;Z/ D R.Z;W;X; Y /; (6)

R.X; Y /Z CR.Y;Z/X CR.Z;X/Y D 0

(the latter is the first Bianchi identity). From rJ D 0 it follows that

R.X; Y /J D JR.X; Y /

and from (6) we infer

R.X; Y;Z;W / D R.X; Y; JZ; JW / D R.JX; J Y;Z;W /:

It follows that
R.JX; J Y / D R.X; Y /;
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thus
R.@j ; @k/ D R.@ Nj ; @ Nk/ D 0:

We have
R.@j ; @ Nk/@p D �r@

Nk
r@j @p D �@ Nk.�

l
jp/@l

and
R.@j ; @ Nk/@ Nq D r@j r@

Nk
@ Nq D @j .�

l
kq/@Nl :

Therefore, if we write

R.@j ; @ Nk/@p D Rl
j Nkp@l ; R.@j ; @ Nk/@ Nq D R

Nl
j Nk Nq@Nl ;

then
Rl
j Nkp D �R Nl

k Nj Np D �.gl Nt gj Ntp/ Nk:

The relevant coefficients for (5) are

Rj Nkp Nq WD R.@j ; @ Nk; @p; @ Nq/ D gl NqRlj Nkp

by (3). Applying a first-order differential operator (with constant coefficients) D to
both sides of (4) we get

Dgp Nq D �gp Nt gs NqDgs Nt (7)

and thus
Rj Nkp Nq D �gj Nkp Nq C gs Nt gj Ntpgs Nk Nq:

Ricci curvature. Recall that the Ricci curvature is defined by

Ric.X; Y / WD t r.Z 7! R.Z;X/Y /:

We extend it to TCM . If we write Z D Zp@p C QZq@ Nq then

R.Z; @j /@k D � QZqRlj Nqk@l ; R.Z; @ Nj /@ Nk D ZpR
Nl
p Nj Nk@Nl ;

R.Z; @j /@ Nk D � QZqR
Nl
j Nqk@Nl ; R.Z; @ Nk/@j D ZpRl

p Nkj @l :

It follows that
Ric.@j ; @k/ D Ric.@ Nj ; @ Nk/ D 0

and
Ricj Nk WD Ric.@j ; @ Nk/ D R

p

p Nj k D �.gp Nqgp Nq Nk/j :

Since
D det.gp Nq/ D Mp NqDgp Nq ;

where .Mp Nq/ D det.gs Nt /.gp Nq/ is the adjoint matrix to .gp Nq/, we have
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D
�

log det.gp Nq/
� D gp NqDgp Nq : (8)

Therefore
Ricj Nk D �.log det.gp Nq//j Nk: (9)

From the proceeding calculations we infer in particular

Ric.JX; J Y / D Ric.X; Y /:

The associated Ricci 2-form is defined by

Ric!.X; Y / WD Ric.JX; Y /

(since Ric is symmetric, Ric! is antisymmetric). We then have

Ric! D iRicj Nkd zj ^ d Nzk D �i@N@.log det.gp Nq//:

An important consequence of this formula is the following: if Q! is another Kähler
form on M then

Ric! � Ric Q! D i@N@ log
Q!n
!n
: (10)

In particular, Ric! and Ric Q! are @N@-cohomologous.

Scalar curvature. It is the trace of the mapping Ric W TCM ! TCM defined by
the relation

hRicX; Y i D Ric.X; Y /:

Since
Ric @j D gp NqRicj Nq@p;

we will obtain

S D 2gp NqRicp Nq D 2n
Ric! ^ !n�1

!n
:

Bisectional curvature. It is defined by

�.X; Y / D R.X; JX; Y; J Y / D R.X; Y;X; Y /CR.X; J Y;X; J Y /;

where the last equality is a consequence of the first Bianchi identity. If we write
X D Xj @j C QXk@ Nk , Y D Y p@p C QY q@ Nq , then

�.X; Y / D �2iXj QXkR.@j ; @ Nk; Y; J Y / D 4Rj Nkp NqX
j QXkY p QY q:

An upper bound for the bisectional curvature is a positive constant C > 0 satisfying

�.X; Y / � C jX j2jY j2; X; Y 2 TM: (11)
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Since jXj@j C NXk@ Nkj2 D 2gj NkXj NXk , it follows that (11) is equivalent to

Rj Nkp Nqa
j Nakbp Nbq � Cgj Nka

j Nakgp Nqbp Nbq; a; b 2 C
n: (12)

Similarly we can define a lower bound.

Gradient. For a real-valued function ' on M its gradient r' is defined by the
relation

hr';Xi D X':

Therefore
r' D gj

Nk.' Nk@j C 'j @ Nk/

and
jr'j2 D 2gj

Nk'j ' Nk:

Laplacian. It is given by

�' WD t r.X 7! rXr'/:

For X D Xj@j C QXk@ Nk we have

rXr' D Xj
�
.gp Nq' Nq/j @p C gp Nq' Nq�kjp@k C .gp Nq'p/j @ Nq

�

C QXk
�
.gp Nq' Nq/ Nk@p C .gp Nq'p/ Nk@ Nq C gp Nq'p�jkq@ Nj

�
:

From (3) and (7) we will get

�' D 2gj
Nk'j Nk:

Lichnerowicz operator. For a real-valued function ' we can write

r' D r 0' C r 0';

where
r 0' D gj

Nk' Nk@j 2 T 1;0M:
The Lichnerowicz operator is defined by

L' WD N@r 0' D �
gj

Nk' Nk
�

Nq@j ˝ d Nzq;

so that r' is a holomorphic vector field iff L' D 0.

Proposition 2. L�L' D �2' C hRic!; i@N@'i C hrS;r'i.

Proof. Since
jL'j2 D 4gp Nqgj Nt

�
gj

Nk' Nk
�

Nq
�
gs Nt 's

�
p
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and �
gp Nq det.gj Nk/

�
p

D 0

for every q, it follows that

L�L' D 4Re

�
gs Nt

�
gp Nq

�
gj Nt
�
gj

Nk' Nk
�

Nq
	

p




s

�
:

We can compute that

gp Nq �gj Nt
�
gj

Nk' Nk
�

Nq
	

p
D .gp Nq'p Nq/Nt � gp Nq.ga NkgaNt Nq/p' Nk

and thus

1

4
L�L' D gs Nt .gp Nq'p Nq/s Nt � gs Nt gp Nq.ga NkgaNt Nq/p's Nk � Re

�
gs Nt
�
gp Nq.ga NkgaNt Nq/p

�
s
' Nk
�
:

One can check that

�gs Nt gp Nq.ga NkgaNt Nq/p D gs Nqgp NkRicp Nq

�gs Nt �gp Nq.ga NkgaNt Nq/p
�
s

D 1

2
gj

NkSj

and the result follows. ut
Poisson bracket. It is defined by the relation

f'; g!n D nd' ^ d ^ !n�1

or, in local coordinates,

f'; g D igj
Nk.' Nk j � 'j Nk/:

If one of '; ; � has a compact support then

Z

M

f'; g�!n D
Z

M

'f ; �g!n:

dc-operator. It is useful to introduce the operator dc WD i
2
.N@� @/. It is real (in the

sense that it maps real forms to real forms) and ddc D i@N@. One can easily show
that

ddc' ^ !n�1 D 1

2n
�' !n

and

d' ^ dc ^ !n�1 D 1

2n
hr';r i!n:
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The operator dc clearly depends only on the complex structure. In the Kähler case
we have however the formula

dc' D �1
2
ir'! (13)

(where iX!.Y / D !.X; Y /).

Normal coordinates. Near a fixed point we can holomorphically change coor-
dinates in such a way that gj Np D ıjk and gj Nkl D gj Nklm D 0. By a linear
transformation we can obtain the first condition. Then consider the mapping

Fm.z/ WD zm C 1

2
amjkzj zk C 1

6
bmjklz

j zkzl

(the origin being our fixed point), where amjk is symmetric in j; k and bmjkl symmetric
in j; k; l . Then for Qg D g ı F we have

Qgj Nkl .0/ D gj Nkl .0/C akjl

Qgj Nklm.0/ D gj Nklm.0/C 3gj Nkp.0/a
p

lm C bkjlm

and we can choose the coefficients of F in such a way that the left-hand sides vanish.

3 Calabi Conjecture and Extremal Metrics

A complex manifold is called Kähler if it admits a Kähler metric. We will be
particularly interested in compact Kähler manifolds. If ! is a Kähler form on a
compact complex manifold M then the .p; p/-form !p is not exact, because if
!p D d˛ for some ˛, then

Z

M

!n D
Z

M

d.˛ ^ !p/ D 0

which is a contradiction. Since !p is a real closed 2p-form, it follows that for
compact Kähler manifoldsH2p.M;R/ ¤ 0.

Example. Hopf surface M WD .C2 n f0g/=f2n W n 2 Zg is a compact complex
surface, topologically equivalent to S1 � S3. ThereforeH2.M;R/ D 0 and thusM
is not Kähler. ut
ddc-lemma. It follows from (10) that for two Kähler forms !; Q! on M the
.1; 1/-forms Ric! , Ric Q! are ddc-cohomologous, in particular d -cohomologous. The
following result, called a ddc-lemma, shows that these two notions are in fact
equivalent for .1; 1/-forms on a compact manifold:
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Theorem 3. If a (1,1)-form on a compact Kähler manifold is d -exact then it is
ddc-exact.

We will follow the proof from [44]. Theorem 3 will be an easy consequence of
the following:

Lemma 4. Assume that ˇ is a (0,1)-form on a compact Kähler manifold such that
N@ˇ D 0. Then @̌ D @N@f for some f 2 C1.M;C/.

Proof. Let ! be a Kähler form on M . Since

Z

M

@̌ ^ !n�1 D
Z

M

dˇ ^ !n�1 D
Z

M

d.ˇ ^ !n�1/ D 0;

we can find f 2 C1.M;C/ solving

@N@f ^ !n�1 D @̌ ^ !n�1:

Set � WD ˇ � N@f , we have to show that @� D 0. Since N@� D 0,

Z

M

@� ^ @� ^ !n�2 D
Z

M

d.� ^ d� ^ !n�2/ D 0:

Locally we may write
� D � Nkd Nzk

and
@� D � Nkj d zj ^ d Nzk:

One can then show that

@� ^ @� ^ !n�2 D 1

n.n � 1/

�
gj

Nkgp Nq� Nkp� Njq � ˇ
ˇgj Nk� Nkj

ˇ
ˇ2�!n:

Now @� ^ !n�1 D 0 means that gj Nk� Nkj D 0 and it follows that �k Nj D 0. ut
Proof of Theorem 3. Write ˛ D ˇ1 C ˇ2, where ˇ1 is a .1; 0/, and ˇ2 a .0; 1/-form.
Then

d˛ D @̌ 1 C @̌ 2 C N@ˇ1 C N@ˇ2:
Since d˛ is of type (1,1), it follows that N@ Ň

1 D N@ˇ2 D 0. By Lemma 4 we have
@ Ň

1 D @N@f1 and @̌ 2 D @N@f2 for some f1; f2 2 C1.M;C/. Therefore

d˛ D @̌ 2 C N@ˇ1 D @N@.f2 � Nf1/: ut
From now on we assume that M is a compact Kähler manifold. For a Kähler

form ! on M by c1.M/ we denote the cohomology class fRic!g. By (10) it is
independent of the choice of !; in fact c1.M/ D c1.M/R=2	 , where c1.M/R is the
first Chern class.
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Calabi conjecture ([17]). Let QR be a (1,1)-form on M cohomologous to Ric! (we
write R � Ric!). Then we ask whether there exists another, unique Kähler form
Q! � ! on M such that QR D Ric Q! . In other words, the question is whether the
mapping

f!g 3 Q! 7�! Ric Q! 2 c1.M/

is bijective.

Derivation of the Monge–Ampère equation. By ddc-lemma we have Ric! D
QR C ddc� for some � 2 C1.M/. We are thus looking for ' 2 C1.M/ such that
!' WD ! C ddc' > 0 and

ddc
�

log
!n'

!n
� �

� D 0;

that is

log
!n'

!n
� � D c;

a constant. This means that
!n' D ecC�!n:

Since !n' � !n is exact, from the Stokes theorem we infer

Z

M

!n' D
Z

M

!n DW V:

Therefore the constant c is uniquely determined. It follows that to solve the
Calabi conjecture is equivalent to solve the following Dirichlet problem for the
complex Monge–Ampère operator on M : for f 2 C1.M/, f > 0, satisfyingR
M
f!n D V , there exists, unique up to an additive constant, ' 2 C1.M/ such

that ! C ddc' > 0 and
.! C ddc'/n D f!n: (14)

This problem was solved by Yau [47], the proof will be given in Sects. 7–13.
The solution of Calabi conjecture has many important consequences (see e.g. [48]).
The one which is particularly interesting in algebraic geometry is that for a compact
Kähler manifold M with c1.M/ D 0 there exists a Kähler metric with vanishing
Ricci curvature. Except for the torus Cn=ƒ such a metric can never be written down
explicitly.

Kähler–Einstein metrics. A Kähler form ! is called Kähler–Einstein if Ric! D
�! for some � 2 R. A necessary condition for M is thus that c1.M/ is definite
which means that it contains a definite representative. There are three possibilities:
c1.M/ D 0, c1.M/ < 0 and c1.M/ > 0. Assume that it is the case, we can then
find a Kähler metric ! with �! 2 c1.M/, that is Ric! D �! C ddc� for some
� 2 C1.M/. We are looking for ' 2 C1.M/ such that Ric!' D �!' which,
similarly as before, is equivalent to
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.! C ddc'/n D e��'C�Cc!n: (15)

If c1.M/ D 0 then � D 0 and (15) is covered by (14). If c1.M/ < 0 one can solve
(15) in a similar way as (14). It was done by Aubin [1] and Yau [47], in fact, the
L1-estimate in this case is very simple.

The case c1.M/ > 0 (such manifolds are called Fano) is the most difficult.
The first obstruction to the existence of Kähler–Einstein metrics is a result of
Matsushima [36] which says that in this case the Lie algebra of holomorphic vector
fields must be reductive (that is it must be a complexification of a compact real
subalgebra). By the result of Tian [41] this is the only obstruction in dimension 2 but
in [43] he constructed a 3-dimensional Fano manifold with no holomorphic vector
fields and no Kähler–Einstein metric. In fact, the Fano surfaces can be classified:
they are exactly P2, P1 � P1 or P2 blown up at k points in general position, where
1 � k � 8. Among those only P2 blown up at one or two points have non-reductive
algebras of holomorphic vector fields, and thus all the other surfaces admit Kähler–
Einstein metrics—see [43] or a recent exposition of Tosatti [45].

Uniqueness of Kähler–Einstein metrics in a given Kähler class f!g (satisfying
the necessary condition �f!g � c1.M/) for c1.M/ D 0 and c1.M/ < 0

follows quite easily from the equation (15). In the Fano case c1.M/ > 0 it holds
up to a biholomorphism—it was proved by Bando and Mabuchi [3] (see also
[6, 7]).

Constant scalar curvature metrics. Given a compact Kähler manifold .M;!/
we are interested in a metric in f!g with constant scalar curvature (csc). With the
notation S' D S!' we are thus looking for ' satisfying S' D NS , where NS is a
constant. First of all we note that NS is uniquely determined by the Kähler class:

NS
Z

M

!n D
Z

M

S'!
n
' D 2n

Z

M

Ric' ^ !n�1
' D 2n

Z

M

Ric! ^ !n�1: (16)

Secondly, the csc problem is more general than the Kähler–Einstein problem. For if
�f!g � c1.M/, that is Ric! D �! C ddc� for some � 2 C1.M/, and !' is a csc
metric then NS D 2n� and Ric' ^ !n�1

' D �!n' . But since

Ric' � �!' D ddcŒ� � log
!n'

!n
� �'�;

it follows that Ric' D �!' .
The equation S' D NS is of order 4 and therefore very difficult to handle directly.

The question of uniqueness of csc metrics was treated in [19]. A general conjecture
links existence of csc metrics with stability in the sense of geometric invariant
theory. So far it has been fully answered only in the case of toric surfaces (Donaldson
[21]). See [37] for an extensive survey on csc metrics.
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4 The Space of Kähler Metrics

We consider the class of Kähler potentials w.r.t. a Kähler form !:

H WD f' 2 C1.M/ W !' > 0g:

It is an open subset of C1.M/ and thus has a structure of an infinite dimensional
differential manifold (its differential structure is determined by the relation

C1.U; C1.M// D C1.M � U /

for any region U in Rm). For ' 2 H the tangent space T'H may be thus identified
with C1.M/. On T'H, following Mabuchi [M], we define a scalar product:

hh ; �ii WD 1

V

Z

M

 �!n' ;  ; � 2 T'H:

Also by ' D '.t/ denote a smooth curve Œa; b� ! H (which is an element
of C1.M � Œa; b�/). For a vector field  on ' (which we may also treat as an
element of C1.M � Œa; b�/) we want to define a connection r P' (where we denote
P' D d'=dt), so that

d

dt
hh ; �ii D hhr P' ; �ii C hh ;r P'�ii (17)

(where � is another vector field on '). Since

d

dt
!n' D nddc P' ^ !n�1

' D 1

2
� P' !n' ; (18)

where� denotes the Laplacian w.r.t. !' , we have

d

dt
hh ; �ii D 1

V

Z

M

� P �C  P�C 1

2
 �� P'�!n'

D 1

V

Z

M

�
P �C  P� � 1

2
hr. �/;r P'i



!n'

D 1

V

Z

M

��
P � 1

2
hr ;r P'i



�C  

�
P�� 1

2
hr�;r P'i


�
!n' :

This shows that the right way to define a connection on H is

r P' WD P � 1

2
hr ;r P'i;
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where r on the right-hand side denotes the gradient w.r.t. !' . A curve ' in H is
therefore a geodesic if r P' P' D 0, that is

R' � 1

2
jr P'j2 D 0: (19)

Curvature.

Theorem 5 (Mabuchi [35], Donaldson [20]). We have the following formula for
the curvature of hh�; �ii

R. ; �/� D �1
4

ff ; �g; �g;  ; �; � 2 T'H; ' 2 H:

In particular, the sectional curvature is given by

K. ; �/ D �1
4

jjf ; �gjj2 � 0:

Proof. Without loss of generality we may evaluate the curvature at 0 2 H. Let
' 2 C1.Œ0; 1� � Œ0; 1�;H/ be such that '.0; 0/ D 0 and at s D t D 0 we have
's.D d'=ds/ D  , 't D �. Take � 2 C1.Œ0; 1�2; C1.M// D C1.M � Œ0; 1�2/.
We have

r'sr't � � r'tr's � D r's

�
�t � 1

2
hr't ;r�i� � r't

�
�s � 1

2
hr's;r�i�

D �1
2

d

ds
hr't ;r�i � 1

2
hr's;r�t i C 1

4
hr's;rhr't ;r�ii

C 1

2

d

dt
hr's;r�i C 1

2
hr't ;r�si � 1

4
hr't ;rhr's;r�ii:

Denoting u D g C ' we get

d

dt
hr's;r�i D d

dt

h
uj

Nk ��j 's Nk C � Nk'sj
�i

D �1
4

hi@N@�; i@ ^ N@� C i@� ^ N@ i C hr's;r�ti C hr'st ;r�i

where in the last line we have evaluated at s D t D 0. Therefore at s D t D 0 we
have

r'sr't � � r'tr's � D 1

4
hr ;rhr�;r�ii � 1

4
hr�;rhr ;r�ii

C 1

8
hi@N@ ; i@� ^ N@� C i@� ^ N@�i

� 1

8
hi@N@�; i@ ^ N@� C i@� ^ N@ i:
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We can now show, using for example normal coordinates, that the right-hand side is
equal to � 1

4
ff ; �g; �g. ut

Derivation of the homogeneous complex Monge–Ampère equation. Writing
locally u D g C ', since g is independent of t , we can rewrite (19) as

Ru � up Nq Pup Pu Nq D 0:

Multiplying both sides by det.uj Nk/ (which is non-vanishing) we arrive at the
equation

det

0

B
BB
@

u1t

.uj Nk/
:::

unt
ut N1 : : : ut Nn ut t

1

C
CC
A

D 0:

This suggests to complexify the variable t , either simply by adding an imaginary
variable, or introducing the new one 
.D znC1/ 2 C�, so that t D log j
j. Then for
v.
/ D u.log j
j/ we have v
 D Pu=2
 and v
 N
 D Ru=4j
j2. We have thus obtained the
following characterization of geodesics in H:

Proposition 6 ((Semmes [39], Donaldson [20])). For '0; '1 2 H existence of a
geodesic in H joining '0 and '1 is equivalent to solving the following Dirichlet
problem for the homogeneous complex Monge–Ampère equation:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

' 2 C1.M � fe0 � j
j � e1g/
! C ddc'.�; 
/ > 0; e0 � j
j � e1

.! C ddc'/nC1 D 0

'.�; 
/ D 'j ; j
j D ej ; j D 0; 1:

ut
Although ! is a degenerate form on M � C, it is not a problem: write

! C ddc' D Q! C ddc.' � j
j2/; (20)

where Q! D ! C ddcj
j2 is a Kähler form on M � C, and consider the related
problem.

The existence of geodesic is thus equivalent to solving the homogeneous
Monge–Ampère equation on a compact Kähler manifold with boundary. From the
uniqueness of this equation (see e.g. the next section) it follows in particular that
given two potentials in H there exists at most one geodesic joining them.

As shown recently by Lempert and Vivas [33], it is not always possible to join
two metrics by a smooth geodesic (see Sect. 6). However, for " > 0we can introduce
a notion of an "-geodesic: instead of (19) it solves
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� R' � 1

2
jr P'j2�!n' D "!n

which is equivalent to the following non-degenerate complex Monge–Ampère
equation:

.! C ddc'/nC1 D "

4j
j2 .! C ddcj
j2/nC1: (21)

As shown by Chen [18] (see also [15]), smooth "-geodesics always exist (see
Theorem 19 below) and they approximate weak geodesics. Existence of "-geodesics
will be used in Sect. 6 below to show that H with a distance defined by its
Riemannian structure is a metric space (this result is due to Chen [18], see also [15]).

Normalization, Aubin–Yau functional. The Riemannian structure on H will
induce such a structure on the Kähler class f!g D H=R, which is independent
of the choice of !. For this we need a good normalization on H. The right tool for
this purpose is the Aubin–Yau functional (see e.g. [2])

I W H ! R

which is characterized by the following properties

I.0/ D 0; d'I: D 1

V

Z

M

 !n' ; ' 2 H;  2 C1.M/: (22)

This means that we are looking for I with dI D ˛, where the 1-form ˛ is given by

˛.'/: D 1

V

Z

M

 !n' : (23)

Such an I exists provided that ˛ is closed. But by (18)

d˛.'/:. ; Q / D d'.˛.'/: /: Q �d'.˛.'/: Q /: D n

V

Z

M

. � Q � Q � /!n' D 0

and it follows that there is I satisfying (22).
For any curve Q' in H joining 0 with ' we have

I.'/ D
Z 1

0

1

V

Z

M

PQ' !nQ' dt:

Taking Q'.t/ D t', since (with some abuse of notation)

d

dt

.! C t dd c'/nC1 � !nC1

.nC 1/ ddc'
D .! C t dd c'/n D !nt';

we obtain the formula
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I.'/ D 1

nC 1

nX

pD0

1

V

Z

M

' !p' ^ !n�p:

We also get
I.' C c/ D I.'/C c

for any constant c.
Now for any curve ' in H by (22) and (17) we have

�
d

dt


2
I.'/ D d

dt
hh P'; 1ii D hhr P' P'; 1ii

and it follows that I is affine along geodesics. Moreover, if ' is a geodesic then so is
'�I.'/. Therefore, by uniqueness of geodesics, H0 WD I�1.0/ is a totally geodesic
subspace of H. The bijective mapping

H0 3 ' 7�! !' 2 f!g

induces the Riemannian structure on f!g. By (22) we have

T'H0 D f 2 C1.M/ W
Z

M

 !n' D 0g:

One can easily show that this Riemannian structure on f!g is independent of the
choice of !.

Mabuchi K-energy [34]. It is defined by the condition

K.0/ D 0; d'K: D � 1

V

Z

M

 .S' � NS/!n' ; (24)

where NS is the average of scalar curvature S' (it is given by (16)). We are thus
looking for K satisfying dK D ˇ C NS˛, where ˛ is given by (23) and

ˇ.'/: D � 1

V

Z

M

 S' !
n
' D �2n

V

Z

M

 Ric' ^ !n�1
' ;

we have to show that dˇ D 0. We compute

d'.Ric'/: D d'
�
Ric! � ddc log

!n'

!n

�
: D �1

2
ddc� (25)

and thus

d'.ˇ.'/: /: Q D 1

V

Z

M

 
�1
2
�2 Q !n' � 2n.n � 1/ddc Q ^ Ric' ^ !n�2

'

�
:
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It is clear that the latter expression is symmetric in  and Q and therefore dˇ D 0.
To get a precise formula for K take as before Q' D t'. Similarly we have

d

dt

!nt' � !n

nddc'
D !n�1

t'

and
d

dt

��
log

!nQ'
!n

�
!nQ'
� D n

�
1C log

!nQ'
!n

�
ddc PQ' ^ !n�1

Q' :

Using this we will easily get (see also [37, 42])

K.'/ D 2

V

Z

M

2

4
�

log
!n'

!n

�
!n' � '

n�1X

pD0
Ric! ^ !p' ^ !n�p�1

3

5C NS I.'/:

The usefulness of the K-energy in some geometric problems becomes clear in
view of the following two results:

Proposition 7 (Mabuchi [35], Donaldson [20]). For any smooth curve ' in H we
have

�
d

dt


2
K.'/ D � 1

V

Z

M

r P' P'.S' � NS/!n' C 1

2V

Z

M

jL P'j2!n' :

In particular, the K-energy is convex along geodesics.

Proof. We have
d

dt
K.'/ D �hh P'; S' � NSii;

therefore �
d

dt


2
K.'/ D �hhr P' P'; S' � NSii � hh P';r P'S'ii:

Moreover

�h P';r P'S'i D 1

V

Z

M

P'
�
1

2
hrS';r P'i � d

dt
S'



!n' :

Write u D g C '. Then

S' D �2up Nq� log det.uj Nk/
�
p Nq

and, since Pg D 0,
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d

dt
S' D 2up Ntus Nq� log det.uj Nk/

�
p Nq P's Nt � 2up Nq�uj Nk P'j Nk

�
p Nq

D �1
2

hRic';r2 P'i � 1

2
�2 P':

The result now follows from Proposition 2. ut
Proposition 8 (Donaldson [20]). Let !'0 and !'1 be csc metrics. Assume more-
over that '0 and '1 can be joined by a smooth geodesic. Then there exists a
biholomorphism F of M such that !'0 D F �!'1 .

Proof. Let ' be this geodesic and set h WD K.'/. Then, since S'0 D S'1 D NS , we
have Ph.0/ D Ph.1/ D 0 and by Proposition 7 h is convex. Therefore Rh D 0 and, again
by Proposition 7, L P' D 0, that is r P' is a flow of holomorphic vector fields. By F
denote the flow of biholomorphisms generated by 1

2
r P' (so that PF D 1

2
r P' ı F ,

F jtD0 D id ).
We have to check that !'0 D F �!' , it will be enough to show that d

dt
F �!' D 0.

We compute

d

dt
F �!' D F ��L1

2r P'!' C ddc P'� D F �d
�1
2
irf !' C dc P'� D 0

by (13) (where LX D iX ı d C d ı iX is the Lie derivative). (This argument from
symplectic geometry is called a Moser’s trick.) ut

In view of the Lempert–Vivas counterexample Proposition 8 is not sufficient to
prove the uniqueness of csc metrics. For a more direct approach to this problem
see [19].

5 Lempert–Vivas Example

It is well known that in general one cannot expect C1-regularity of solutions of the
homogeneous Monge–Ampère equation. The simplest example is due to Gamelin
and Sibony [25]: the function

u.z;w/ WD �
maxf0; jzj2 � 1=2; jwj2 � 1=2g�2

satisfies ddcu � 0, .dd cu/2 D 0 in the unit ball B of C2,

u.z;w/ D �jzj2 � 1=2�2 D �jwj2 � 1=2�2 2 C1.@B/;

but u … C2.B/.
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For some time it was however an open problem whether there exists a smooth
geodesic connecting arbitrary two elements in H. In the special case of toric Kähler
manifolds it was in fact shown in [28] that it is indeed the case. This suggests that
a possible counterexample would have to be more complicated, as the Gamelin–
Sibony example from the flat case is toric.

The counterexample to the geodesic problem was found recently by Lempert
and Vivas [33]. It works on Kähler manifolds with a holomorphic isometry h W
M ! M satisfying h2 D id and having an isolated fixed point. We will consider
the simplest situation, that is the Riemann sphere P with the Fubini-Study metric
! D ddc.log.1C jzj2// and h.z/ D �z. The key is the following result:

Lemma 9 (Lempert–Vivas [33]). Take ' 2 H with

'.�z/ D '.z/ (26)

Assume that there is a geodesic of classC3 joining 0 with '. Then either 1C'zNz.0/ D
j1 � 'zz.0/j or j'zz.0/j � j'zNz.0/j, in particular

j'zz.0/j � 2C 'zNz.0/: (27)

Proof. By Q' denote the geodesic joining 0 with '. We can assume that it is a C3

function defined on P � NS , where S D f0 < Im w < 1g, and such that

Q'.z;w C �/ D Q'.z;w/; � 2 R:

Moreover, by uniqueness of the Dirichlet problem (see Theorem 21 below) by (26)
we have

Q'.�z;w/ D Q'.z;w/:
On C � NS set u WD g C Q'. Then u 2 C3.C � NS/,

uzNzuw Nw � juz Nwj2 D 0;

uzNz > 0, u is independent of � D Re w, u.�; 0/ D g, u.�; i / D g C '.
Since .uj Nk/ is of maximal rank, it is well known (see e.g. [4]) that there is a C1

foliation of C� NS by holomorphic discs (with boundary) which are tangent to ddcu.
This foliation is also invariant under the mapping .z;w/ 7! .�z;w/ and thus f0g� NS
is one of the leaves. The neighboring leaves are graphs of functions defined on NS :
there exists f 2 C1.U � NS/, where U is a neighborhood of 0, f .z; �/ holomorphic
in S and f.f .z;w/;w/ W w 2 NSg is the leaf passing through .z; 0/. Since this leaf is
tangent to ddcu, it follows that

uzNz.f .z;w/;w/fw.z;w/C uz Nw.f .z;w/;w/ D 0

which is equivalent to the fact that uz.f .z;w/;w/ is holomorphic in w. Set
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ˆ.w/ WD d

dt

ˇ
ˇ
ˇ̌
tD0

f .t;w/

and

‰.w/ WD d

dt

ˇ
ˇ̌
ˇ
tD0

uz.f .t;w/;w/ D uzz.0;w/ˆ.w/C uzNz.0;w/ˆ.w/:

Then ˆ;‰ are holomorphic in S , ˆ is C1 on NS , and ‰ is continuous on NS .
Since u is independent of Re w, we can write

‰.w/ D
(
ˆ.w/; Im w D 0

P ˆ.w/CQˆ.w/; Im w D 1;

where P D gzNz.0/C 'zNz.0/ D 1 C 'zNz.0/ > 0 and Q D gzz.0/C 'zz.0/ D 'zz.0/.
Since ‰ Nw D 0,

uzz Nw.0;w/ˆ.w/C uzNz Nw.0;w/ˆ.w/C uzNz.0;w/ˆ0.w/ D 0:

On fIm w D 0g we thus have

(
ˆ0.�/ D Aˆ.�/C Bˆ.�/

ˆ.0/ D 1;

where
A D �uzNzw.0; 0/; B D �uNzNzw.0; 0/:

Thereforeˆ on fIm w D 0g is of the form

ˆ.�/ D xe�� C Nye N�� ;

where �
A B
NB NA


�
x

y



D �

�
x

y




and x C Ny D 1. Note that A 2 iR (because u� D 0), and thus either � 2 R or
� 2 iR.

By the Schwarz reflection principle and analytic continuation we obtain

ˆ.w/ D xe�w C Nye N�w; w 2 NS:

Similarly, since
‰.�/ D ˆ.�/ D Nxe N�� C ye�� ;

we infer
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‰.w/ D Nxe N�w C ye�w; w 2 NS:
Therefore, using the fact that ‰.w/ D P ˆ.w/CQˆ.w/ on fIm w D 1g, we get

Nxe N�.�Ci / C ye�.�Ci / D P
�

Nxe N�.��i / C ye�.��i /	CQ
�
xe�.�Ci / C Nye N�.�Ci /	 :

We have to consider two cases. If � 2 R then

e�i D Pe��i CQe�i :

This means that
P D e2�i .1 �Q/;

in particular
P D j1 �Qj:

If � D i� 2 iR then we will get

( Nxe� D P Nxe�� CQ Nye�
ye�� D Pye� CQxe��:

Rewrite this as

� Nx�e2� � P � D NyQe2�
Ny�e�2� � P � D Nx NQe�2�:

Since at least one of x; y does not vanish, we will obtain

jQj2 D .e2� � P/.e�2� � P/ � .1 � P/2: ut

If ' is a smooth compactly supported function in C then ' 2 H provided that
gzNz C 'zNz > 0. The following lemma shows that there are such functions satisfying
(26) but not (27):

Lemma 10. For every real a and " > 0 there exists smooth ' with support in the
unit disc, satisfying (26), and such that 'zz.0/ D a, 'zNz.0/ D 0, j'zNzj � " in C.

Proof. We may assume that a > 0. The function we seek will be of the form

'.z/ D Re .z2/�.jzj2/;

where � 2 C1.RC/ is supported in the interval .0; 1/ and constant near 0. Then
'zz.0/ D �.0/, 'zNz.0/ D 0 and

'zNz D Re .z2/
�
3�0.jzj2/C jzj2�00.jzj2/�:
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We are looking for � of the form

�.t/ D f .� log t/;

where f 2 C1.RC/ is supported in .1;1/ and equal to a near 1. We have, with
t D jzj2,

j'zNzj � t
ˇ
ˇ3�0.t/C t�00.t/

ˇ
ˇ D ˇ

ˇ� 2f 0.� log t/C f 00.� log t/
ˇ
ˇ:

We can now easily arrange f in such a way that jf 0j and jf 00j are arbitrarily small.
ut

6 Metric Structure of H

Although smooth geodesics in H do not always exist, one can make a geometric use
of existence of "-geodesics. The Riemannian structure gives a distance on H:

d.'0; '1/ D inffl.'/ W ' 2 C1.Œ0; 1�;H/; '.0/ D '0; '.1/ D '1g; '0; '1 2 H;

where

l.'/ D
Z 1

0

j P'jdt D
Z 1

0

s
1

V

Z

M

P'2!n' dt

(note that the family in the definition of d is always nonempty, for example '.t/ D
.1 � t/'0 C t'1 is a smooth curve in H connecting '0 with '1). We will show the
following result of Chen [18] (see also [15]):

Theorem 11. .H; d / is a metric space.

The only problem with this result is to show that d.'0; '1/ > 0 if '0 ¤ '1.
The main tool in the proof will be existence of "-geodesics. In fact, making use of
results proved in Sects. 7–13 and the standard elliptic theory, we have the following
existence result for "-geodesics:

Theorem 12. For '0; '1 2 H and " > 0 there exists a unique "-geodesic '
connecting '0 with '1. Moreover, it depends smoothly on '0; '1, i.e. if '0; '1 2
C1.Œ0; 1�;H/ then there exists unique ' 2 C1.Œ0; 1� � Œ0; 1�;H/ such that
'.0; �/ D '0, '.1; �/ D '1, and '.�; t/ is an "-geodesic for every t 2 Œ0; 1�. In
addition,

�'; jr P'j; R' � C; (28)

(here � and r are taken w.r.t. !) where C is independent of " (if " is small).

We start with the following lemma:

Lemma 13. For an "-geodesic ' connecting '0; '1 2 H we have
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1

V

Z

M

P'2!n' � E.'0; '1/� 2" sup
Œ0;1�

jj P'jj;

where

E.'0; '1/ WD max
˚ 1
V

Z

f'0>'1g
.'0 � '1/2!n'0 ;

1

V

Z

f'1>'0g
.'1 � '0/2!n'1



:

In particular,
l.'/2 � E.'0; '1/ � 2" sup

Œ0;1�

jj P'jj:

Proof. For

E WD 1

V

Z

M

P'2!n'
we have

PE D 1

V

Z

M

.2 P' R' C 1

2
P'2� P'/!n' D 2

V

Z

M

P'. R' � 1

2
jr P'j2/!n' D 2"

V

Z

M

P'!n:

Thus j PEj � 2" supŒ0;1� jj P'jj which implies that

E.t/ � maxfE.0/;E.1/g � 2" sup
Œ0;1�

jj P'jj:

Since R' � 0,
P'.0/ � '.1/� '.0/ � P'.1/:

For z 2 M with '1.z/ > '0.z/ we thus have P'.z; 1/2 � .'1.z/� '0.z//2. Therefore

E.1/ � 1

V

Z

f'1>'0g
.'1 � '0/

2!n'1 :

Similarly

E.0/ � 1

V

Z

f'0>'1g
.'0 � '1/2!n'0

and the desired estimate follows. ut
Theorem 14. Suppose  2 C1.Œ0; 1�;H/ and Q 2 H n  .Œ0; 1�/. For " > 0 by
' denote an element of C1.Œ0; 1�� Œ0; 1�;H/ uniquely determined by the following
property: '.�; t/ is an "-geodesic connecting Q with  .t/. Then for " sufficiently
small

l.'.�; 0// � l. /C l.'.�; 1//C C";

where C > 0 is independent of ".

Proof. Without loss of generality we may assume that V D 1. Set
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l1.t/ WD
Z t

0

jj P jjd Qt; l2.t/ WD l.'.�; t//:

It is enough to show that l 01 C l 02 � �C" on Œ0; 1�. We clearly have

l 01 D jj P jj D
sZ

M

P 2!n :

On the other hand,

l2.t/ D
Z 1

0

p
E.s; t/ ds;

where

E D
Z

M

'2s !
n
'

(using the notation 's D @'=@s). We have

Es D 2

Z

M

'sr's's!
n
' D 2"

Z

M

's!
n

and

Et D
Z

M

�
2's'st C 1

2
'2s �'t

�
!n'

D 2

Z

M

's
�
'st � 1

2
hr's;r'ti

�
!n'

D 2

Z

M

'sr's't!
n
'

D 2
@

@s
hh's; 't ii � 2

Z

M

'tr's's!
n
'

D 2
@

@s

Z

M

's't!
n
' � 2"

Z

M

't!
n:

Therefore

l 02 D 1

2

Z 1

0

E�1=2Et ds

D
Z 1

0

E�1=2 @
@s

Z

M

's't!
n
' ds � "

Z 1

0

E�1=2
Z

M

't!
n ds;

and the first term is equal to
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�
E�1=2

Z

M

's't!
n
'

�sD1

sD0
C 1

2

Z 1

0

E�3=2Es
Z

M

's't!
n
' ds

D
�Z

M

�2!n'


�1=2 Z

M

� P !n' � "
Z 1

0

E�3=2
Z

M

's!
n

Z

M

's't!
n
' ds;

where � D 's.1; �/; we have used that 't .0; �/ D 0, 't .1; �/ D P , and

E.1; �/ D
Z

M

�2!n' :

From the Schwarz inequality it now follows that l 01 C l 02 � �R, where

R D "

Z 1

0

E�1=2
Z

M

't!
n ds C "

Z 1

0

E�3=2
Z

M

's!
n

Z

M

's't!
n
' ds:

By Lemma 13
E.s; t/ � E. Q ; .t// � 2" sup

Œ0;1�

jj's.�; t/jj:

Since E. Q ; .t// is continuous and positive for t 2 Œ0; 1�, it follows that for "
sufficiently small

E � c > 0

and thus R � C". ut
We are now in position to show that the geodesic distance is the same as d :

Theorem 15. Let '" be an "-geodesic connecting '0; '1 2 H. Then

d.'0; '1/ D lim
"!0C

l.'"/:

Proof. Let  2 C1.Œ0; 1�;H/ be an arbitrary curve connecting '0; '1 2 H. We
have to show that

lim
"!0C

l.'"/ � l. /:

Without loss of generality we may assume that '1 …  .Œ0; 1//. Extend '" to a
function from C1.Œ0; 1� � Œ0; 1/;H/ in such a way that '".0; �/ 	 '1, '".1; �/ 	  

on Œ0; 1/ and '".�; t/ is an "-geodesic for t 2 Œ0; 1/. By Theorem 14 for t 2 Œ0; 1/

we have
l.'".�; 0// � l. jŒ0;t �/C l.'".�; t//C C.t/":

Since clearly
lim
t!1�

l. jŒ0;t �/ D l. /;

it remains to show that
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lim
t!1�

lim
"!0C

l.'".�; t// D 0:

But it follows immediately from the following:

Lemma 16. For an "-geodesic ' connecting '0; '1 2 H we have

l.'/ � p
V
�
jj'0 � '1jjL1.M/ C "

2�n

	
;

where � > 0 is such that !'0 � �!, !'1 � �!.

Proof. Since R' � 0,
P'.0/ � P' � P'.1/:

So to estimate j P'j we need to bound P'.0/ from below and P'.1/ from above. The
function

v.
/ D 2b log2 j
j C .a � 2b/ log j
j � a
satisfies v
 N
 D bj
j�2, v D �a on j
j D 1, and v D 0 on j
j D e. We want to

choose a; b so that '1 C v � ' on QM WD M � f1 � j
j � eg.
On one hand, if a WD jj'0 � '1jjL1.M/ then '1 C v � ' on @ QM . On the other

one we have (if b > 0)

.! C ddc.'1 C v//nC1 � �
�! C b

j
j2 dd
cj
j2�nC1 D b�n

j
j2 .! C ddcj
j2/nC1:

Therefore, by (21) if b WD "=4�n we will get !nC1
'1Cv � !nC1

' and '1 C v � ' on QM
by comparison principle. We will obtain

P'.1/ � d

dt
.2bt2 C .a � 2b/t � a/ˇˇ

tD1 D jj'0 � '1jjL1.M/ C "

2�n
:

Similarly we can show the lower bound for P'.0/ and the estimate follows from the
definition of l.'/. ut

Combining Theorem 14 with Lemma 13 we get the following quantitative
estimate from which Theorem 11 follows:

Theorem 17. For '0; '1 2 H we have

d.'0; '1/ �
s

max
˚ Z

f'0>'1g
.'0 � '1/2!n'0 ;

Z

f'1>'0g
.'1 � '0/2!n'1



: ut

7 Monge–Ampère Equation, Uniqueness

We assume that M is a compact complex manifold with smooth boundary (which
may be empty) with a Kähler form !. Our goal will be to prove the following two
results:
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Theorem 18 (Yau [47]). Assume thatM has no boundary. Then for f 2 C1.M/,
f > 0 such that

R
M
f!n D V there exists, unique up to an additive constant,

' 2 C1.M/ with ! C ddc' > 0 satisfying the complex Monge–Ampère equation

.! C ddc'/n D f!n: (29)

Theorem 19. Assume thatM has smooth nonempty boundary. Take f 2 C1.M/,
f > 0, and let 2 C1.M/ be such that!Cddc > 0 and .!Cddc /n � f!n.
Then there exists ' 2 C1.M/, ! C ddc' > 0, satisfying (29) and ' D  on @M .

Theorem 19 can be rephrased as follows: the Dirichlet problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

' 2 C1.M/

! C ddc' > 0

.! C ddc'/n D f!n

' D  on @M

has a solution provided that it has a smooth subsolution. It is a combination of the
results proved in several papers [1, 15, 16, 18, 27, 47].

We will give a proof of Theorem 19 under additional assumption that the
boundary ofM is flat, that is near every boundary point, after a holomorphic change
of coordinates, the boundary is of the form fRe zn D 0g. We will use this assumption
only for the boundary estimate for second derivatives (see Theorem 27 below), but
the result is also true without it (see [27]).

This extra assumption is satisfied in the geodesic equation case, then M is of
the form M 0 � ND, where M 0 is a manifold without boundary and D is a bounded
domain in C with smooth boundary. This will immediately give existence of smooth
"-geodesics. (Note that by (20) the geodesic equation is covered here.)

The uniqueness in Theorems 18 and 19 is in fact very simple: if '; Q' are the
solutions then

0 D !n' � !nQ' D ddc.' � Q'/ ^ T;
where

T D
n�1X

pD0
!p' ^ !n�p�1

Q' :

Since T > 0, we will get '� Q' D const in the first case and ' D Q' in the second one.
This argument does not work anymore if we allow the solutions to be degenerate,

that is assuming only that !' � 0, ! Q' � 0. In fact, much more general results hold
here. We will allow continuous solutions given by the Bedford Taylor theory [5]
(see also [8]) – then !n' is a measure.

Theorem 20 ([12]). Assume that M has no boundary. If '; Q' 2 C.M/ are such
that !' � 0, ! Q' � 0 and !n' D !nQ' then ' � Q' D const.
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Proof. Assume n D 2, the general case is similar, for details see [12]. Write

0 D !2' � !2Q' D ddc
 ^ .!' C ! Q'/;

where 
 D ' � Q'. Therefore

0 D �
Z

M


ddc
 ^ .!' C ! Q'/ D
Z

M

d
 ^ dc
 ^ .!' C ! Q'/;

and thus
d
 ^ dc
 ^ !' D d
 ^ dc
 ^ ! Q' D 0: (30)

We have to show that
d
 ^ dc
 ^ ! D 0: (31)

By (30)
Z

M

d
 ^ dc
 ^ ! D �
Z

M

d
 ^ dc
 ^ ddc'

D
Z

M

d
 ^ dc' ^ ddc
 D
Z

M

d
 ^ dc' ^ .!' � ! Q'/:

By the Schwarz inequality and (30) again

ˇ
ˇ
ˇ
ˇ

Z

M

d
 ^ dc' ^ !'
ˇ
ˇ
ˇ
ˇ

2

�
Z

M

d
 ^ dc
 ^ !'
Z

M

d' ^ dc' ^ !' D 0:

Similarly we show that Z

M

d
 ^ dc' ^ ! Q' D 0

and (31) follows. ut
Theorem 21 ([15]). Let M have nonempty boundary. Assume that '; Q' 2 C.M/

are such that !' � 0, ! Q' � 0, !n' � !nQ' and ' � Q' on @M . Then ' � Q' in M .

Proof. For " > 0 set '" WD maxf' � "; Q'g, so that '" D Q' near @M . Since for
continuous plurisubharmonic functions we have

.dd c maxfu; vg/n � �fu�vg.dd cu/n C �fu<vg.dd cv/n

(it is a very simple consequence of the continuity of the Monge–Ampère operator,
see e.g. Theorem 3.8 in [8]), it follows that !n'" � !nQ' . Therefore, without loss of
generality, we may assume that ' � Q' in M , ' D Q' near @M , and we have to show
that ' D Q' in M .

Assume again n D 2. Then, since 
 WD ' � Q' vanishes near @M , we have

0 �
Z

M


.!2' � !2Q'/ D �
Z

M

d
 ^ dc
 ^ .!' C ! Q'/:
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We thus get (30) and the rest of the proof is the same as that of Theorem 20. ut
Assuming Theorem 19 and estimates proved in Sects. 8–13, we get Theorem 12.

From the comparison principle it follows that "-geodesics converge uniformly to a
weak geodesic which is almost C1;1 (that is it satisfies (28)). It is an open problem
if it has to be fully C1;1 (it was shown in [15] in case the bisectional curvature is
nonnegative).

8 Continuity Method

In order to prove existence in Theorems 18 and 19 we fix an integer k � 2 and ˛ 2
.0; 1/. Let f0 denote the r.h.s. of the equation for which we already know the solu-
tion: f0 D 1 in the first case and f0 D !n =!

n in the second one. For t 2 Œ0; 1� set

ft WD .1 � t/f0 C tf:

By S denote the set of those t 2 Œ0; 1� for which the problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

't 2 CkC2;˛.M/

! C ddc't > 0

.! C ddc't /
n D ft!

n

R
M 't !

n D 0;

resp. 8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

't 2 CkC2;˛.M/

! C ddc't > 0

.! C ddc't /
n D ft!

n

't D  on @M

has a solution (by the previous section it has to be unique). We clearly have 0 2 S

and we have to show that 1 2 S . For this it will be enough to prove that S is open
and closed.

Openness. The Monge–Ampère operator we treat as the mapping

M W A 3 ' 7�! !n'

!n
2 B;

where

A WD f' 2 CkC2;˛.M/ W !' > 0;
Z

M

' !n D 0g

B WD f Qf 2 Ck;˛.M/ W
Z

M

Qf !n D
Z

M

!ng;
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resp.
A WD f' 2 CkC2;˛.M/ W !' > 0; ' D  on @M g
B WD Ck;˛.M/:

Then A is an open subset of the Banach space

E WD f� 2 CkC2;˛.M/ W
Z

M

�!n D 0g;

resp. a hyperplane in the Banach space CkC2;˛.M/ with the tangent space

E WD f� 2 CkC2;˛.M/ W ' D 0 on @M g:

On the other hand, B is a hyperplane of the Banach space Ck;˛.M/ with the tangent
space

F WD f Qf 2 Ck;˛.M/ W
Z

M

Qf !n D 0g;

resp. B is a Banach space itself and F WD B. We would like to show that for every
' 2 A the differential

d'M W E ! F
is an isomorphism. But since

d'M:� D 1

2
��;

where the Laplacian is taken w.r.t. !' , it follows from the standard theory of the
Laplace equation on Riemannian manifolds. Therefore M is locally invertible, in
particular M.A/ is open in B and thus S is open in Œ0; 1�.

Closedness. Assume that we knew that

jj't jjkC2;˛ � C; t 2 S; (32)

for some uniform constant C , where jj � jjk;˛ D jj � jjCk;˛.M/. Then by the Arzela–
Ascoli theorem every sequence in f't W t 2 Sg would contain a subsequence whose
derivatives of order at most k C 1 converged uniformly.

The proof of existence of solutions in Theorems 18 and 19 is therefore reduced to
(32) for all k big enough. The first step (but historically the latest in the Calabi–Yau
case) is the L1-estimate, this is done in Sect. 9. The gradient and second derivative
estimates are presented in Sects. 10–12. They are all very specific for the complex
Monge–Ampère equation and most of them (except for Theorem 25) are applicable
also in the degenerate case, that is they do not depend on a lower positive bound
for f . Finally, in Sect. 13, we make use of the general Evans–Krylov theory for
nonlinear elliptic equations of second order (see e.g. [26], in the boundary case it is
due to Caffarelli et al. [16]). This gives a C2;˛ bound and then higher order estimates
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follow from the standard Schauder theory of linear elliptic equations of second order
with variable coefficients.

9 L1-Estimate

If @M ¤ ; then by the comparison principle, Theorem 21, for any ' 2 C.M/ with
!' � 0, !n' � !n , ' D  on @M , we have

 � ' � max
@M

 ;

so we immediately get the L1-estimate in the second case. The case @M D ;
is more difficult and historically turned out to be the main obstacle in proving the
Calabi conjecture. Its proof making use of Moser’s iteration was in fact the main
contribution of Yau [47] (see also [31] for some simplifications).

Theorem 22. Assume @M D ;. Take ' 2 C.M/ with !' � 0, satisfying the
Monge–Ampère equation !n' D f!n. Then

osc ' � C.M;!; jjf jj1/:

Proof. It will be convenient to assume that V D R
M
!nD1 and that maxM 'D � 1,

so that jj'jjp � jj'jjq for p � q (we use the notation jj � jjp D jj � jjLp.M/). Write

.f � 1/!n D ddc' ^ T;

where

T D
n�1X

pD0
!p' ^ !n�p�1:

Note that T � !n�1. Then for p � 2

Z

M

.�'/p�1.f � 1/!n D
Z

M

.�'/p�1dd c' ^ T

D �
Z

M

d.�'/p�1 ^ dc' ^ T

D .p � 1/
Z

M

.�'/p�2d' ^ dc' ^ T

� .p � 1/
Z

M

.�'/p�2d' ^ dc' ^ !n�1

D 4.p � 1/
p2

Z

M

d.�'/p=2 ^ dc.�'/p=2 ^ !n�1

� cn

p
jjr..�'//p=2jj22:

(33)
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By the Sobolev inequality

jj'jjp=2pn=.n�1/ D jj.�'/p=2jj2n=.n�1/ � C.M/
�jj.�'/p=2jj2 C jjr..�'/p=2/jj2

�
:

Combining this with (33) we will get

jj'jjpn=.n�1/ � .Cp/1=pjj'jjp:

Setting
p0 WD 2; pkC1 D npk=.n� 1/; k D 1; 2; : : : ;

we will get
jj'jj1 D lim

k!1 jj'jjpk � QC jj'jj2
and it remains to use the following elementary estimate:

Proposition 23. Assume that @M D ; and let ' 2 C.M/ be such that !' � 0,
max' M D 0. Then for any p < 1

jj'jjp � C.M;p/:

Proof. It will easily follow from local properties of plurisubharmonic functions. For
p D 1 we can use the following result: if u is a negative subharmonic function in
the ball B.0; 3R/ in Cn then

jjujjL1.B.0;R// � C.n;R/ inf
B.0;R/

.�u/:

After covering M with finite number of balls of radius R, a simple procedure
starting at the point where ' D 0 will give us the required estimate for jj'jj1. The
case p > 1 is now an immediate consequence of the following fact: if u is a negative
plurisubharmonic function in B.0; 2R/ then

jjujjLp.B.0;R// � C.n; p;R/ jjujjL1.B.0;2R//: ut

10 Interior Second Derivative Estimate

It turns out that in case of Theorem 18 one can bypass the gradient estimate. The
interior estimate for the second derivative which will be needed in the proofs of
both cases was shown independently by Aubin [1] and Yau [47]. We will show the
following version from [14]:

Theorem 24. Assume that ' 2 C4.M/ satisfies !' > 0 and !n' D f!n. Then

�' � C; (34)
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where C depends only on n, on upper bounds for f , the scalar curvature of M ,
osc' and sup@M �' (if @M D ; then this is void), and on lower bounds for
f 1=.n�1/�.logf / and the bisectional curvature ofM .

Proof. By C1; C2; : : : we will denote constants depending only on the required
quantities. Set

˛ WD log.�' C 2n/ � A'

(note that �' > �2n), where A under control will be specified later. We may
assume that ˛ attains maximum at y in the interior of M , otherwise we are done.
Let g be a local potential for ! near y and set u WD g C '. We choose normal
coordinates at y (so that gj Nk D ıjk , gj Nkl D 0 at y), so that in addition the matrix
.uj Nk/ is diagonal at y. Then at y

˛p Np D .�u/p Np
�u

� j.�u/pj2
.�u/2

C A �Aup Np

.�u/p D 2
X

j

uj Njp

.�/p Np D 2
X

j

uj Njp Np C 2
X

j

Rj Njp Npuj Nj :

(by (9)). The equation !n' D f!n now reads

det.up Nq/ D f det.gp Nq/: (35)

Differentiating w.r.t. zj and Nzj we get

up Nqup Nqj D .logf /j C gp Nqgp Nqj (36)

and

up Nqup Nqj Nj D .logf /j Nj C up Ntus Nqup Nqj us Nt Nj C gp Nqgp Nqj Nj � gp Nt gs Nqgp Nqj gs Nt Nj : (37)

Therefore at y

X

p

uj Njp Np
up Np

D .logf /j Nj C
X

p;q

jup Nqj j2
up Npuq Nq

�
X

p

Rj Njp Np

and, since ˛p Np � 0,



130 Z. Błocki

0 �
X

p

˛p Np
up Np

D 1

�u

0

@�.logf /C 2
X

j;p;q

jup Nqj j2
up Npuq Nq

� S C 2
X

j;p

Rj Njp Npuj Nj
up Np

1

A

� 4

.�u/2
X

p

jPj uj Njpj2
up Np

C A
X

p

1

up Np
� An:

By the Schwarz inequality

ˇ
ˇ
X

j

uj Njp
ˇ
ˇ2 � �u

2

X

q

juq Nqpj2
uq Nq

and therefore we can get rid of the terms with third derivatives. We also have

�.logf / � � C1

f 1=.n�1/ ;

2
X

j;p

Rj Njp Npuj Nj
up Np

� �C2�u
X

p

1

up Np

(by (12)), and

X

p

1

up Np
�
 

.n � 1/
X

p

up Np
u1N1 : : : un Nn

!1=.n�1/
�
�
�u

f


1=.n�1/

(we may assume n � 2). Therefore, choosing A WD C2 C 1, at y we get

� C1

f 1=.n�1/�u
� S

�u
C
�
�u

f


1=.n�1/
� C3 � 0:

Multiplying by f 1=.n�1/�u we will get at y

.�u/n=.n�1/ � C4�u � C5 � 0;

and thus
�u.y/ � C6:

Therefore ˛ � ˛.y/ � C7 and we get (34). ut
An upper bound for �' for functions satisfying !' � 0 easily gives a bound

mixed complex derivatives of '

j'j Nkj � C:
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However, it does not imply the full estimate for the second derivative of ':

Example. Set S WD freit W 0 � r � 1; 	=4 � t � 3	=4g and

u.z/ WD 2

	

Z

S

log jz � 
jd�.
/:

Then uzNz D �S 2 L1.C/, and thus u 2 W 2;p

loc .C/ for every p < 1 (which implies
that u 2 C1;˛.C/ for every ˛ < 1 by Morrey’s embedding theorem). However

uxx.0/ D 2

	

Z

S

y2 � x2
.x2 C y2/2

d�.z/ D 4

Z 1

0

Z 3	=4

	=4

sin2 t � cos2 t

r2
dt dr D 1;

and u … W 2;1
loc .C/ D C1;1.C/.

The following estimate will enable to apply the real Evans–Krylov theory (see
Sect. 13) directly, without reproving its complex version.

Theorem 25 ([15]). Assume that ' 2 C4.M/, !' > 0, !n' D f!n. Then

jr2'j � C; (38)

where C depends on n, on upper bounds for jRj, jrRj, jj'jjC0;1.M/, �',
sup@M jr2'j, jjf jjC1;1.M/ and a lower (positive) bound for f on M .

Proof. We have to estimate the eigenvalues of the mapping X 7! rXr'. Since
their sum is under control from below (by �2n), it will be enough to get an upper
bound. The maximal eigenvalue is given by

ˇ D max
X2TMnf0g

hrXr';Xi
jX j2 :

This is a continuous function onM (but not necessarily smooth). Locally we have

r@j r' D @j .g
p Nq'p/@ Nq C @j .g

p Nq' Nq/@p C gp Nq' Nq�sjp@s

D gp Nq'j Nq@p C .gp Nq'p/j @ Nq:

Therefore for a real vector field X D Xj@j C NXk@ Nk

hrXr';Xi D 2ReXj
� NXk'j Nk CXlgl Nq.gp Nq'p/j

�

D D2
X' C 2Re

�
XjXlgp Nqgj Nql'p

�
;

whereDX denotes Euclidean directional derivative in direction X .
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Set

˛ WD ˇ C 1

2
jr'j2:

We may assume that ˛ attains maximum y in the interior of M . Near y we choose
normal coordinates (gj Nk D ıjk , gj Nkl D gj Nklm D 0 at y) so that in addition the
matrix .'j Nk/ is diagonal at y. Take fixed X D .X1; : : : ; XN / 2 CN such that at y

one has jX j2.D 2gj NkXj NXk/ D 1. Near y define

Q̌ WD hrXr';Xi
jX j2

and
Q̨ WD Q̌ C jr'j2:

Then Q̌ � ˇ, Q̌.y/ D ˇ.y/ and Q̨ � ˛ � ˛.y/ D Q̨ .y/, so that Q̨ (which is defined
locally) also has a maximum at y, the same as that of ˛. The advantage of Q̨ is that
it is smooth (this argument goes back to [11]). It remains to estimate Q̌.y/ from
above.

The function u WD ' C g solves (35). Similarly as with (37) we will get at y

X

p

D2
X'p Np
up Np

� D2
X.logf /C

X

p

D2
Xgp Np �

X

p

D2
Xgp Np
up Np

:

Since f is under control from below, we have D2
X.logf / � �C1 and by

Theorem 24
1

C2
� up Np � C3:

This, together with the fact that jRj is under control, implies that

X

p

D2
X'p Np
up Np

� �C4: (39)

Using the fact that jX j D 1 and .jX j2/p D 0 at y, combined with (36), at y we
will get

Q̌
p Np D D2

X'p Np C 2Re
X

l

XjXkgj Nlk Npp'l

C 2Re
X

l

XjXkgj Nlk Np'lp � Xj NXkgj Nkp NpD
2
X' (40)

� D2
X'p Np � C5 � C6 Q̌;

where we used in addition that jrRj is under control.
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Near y we have

1

2
.jr'j2/p D .gj

Nk/p'j ' Nk C gj
Nk'jp' Nk C gj

Nk'j 'p Nk :

Therefore at y

1

2
.jr'j2/p Np D

X

j;k

Rj Nkp Np'j ' Nk C 2Re
X

j

'jp Np' Nj C
X

j

j'jpj2 C '2p Np:

Since

2Re
X

j;p

'jp Np' Nj
up Np

D 2Re
X

j

.logf /j ' Nj � �C7

and
X

j;p

j'jpj2
up Np

� 1

C8
Q̌2 � C9;

from (39), (40) it follows that at y

0 �
X

p

˛p Np
up Np

� 1

C8
Q̌2 � C10 Q̌ � C11: ut

Since the estimate depends on a lower bound for f , Theorem 25 cannot be
used in the degenerate case. It is an open problem if one can get rid of this
dependence, this would in particular imply full C1;1-regularity of weak geodesics
obtained by Chen [18]. This was shown only under additional assumption that M
has nonnegative bisectional curvature, see [15].

11 Gradient Estimate

If @M D ; then Theorem 24 gives an a priori estimate for the Laplacian, and
thus also for the gradient. However, if @M ¤ ; then a direct gradient estimate
is necessary because the boundary estimates from Sect. 12 depend on it.

The estimate for jr'j on @M follows easily from the comparison principle: if
h 2 C1.M/ is harmonic in the interior of M with h D  on @M then

 � ' � h

in M . Therefore on @M we have

jr'j � maxfjr j; jrhjg:

We have the following interior gradient bound from [14] (see also [29, 30]).
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Theorem 26. Let ' 2 C3.M/ be such that !' > 0 and !n' D f!n. Then

jr'j � C; (41)

where C depends on n, on upper bounds for osc ', sup@M jr'j, f , jr.f 1=n/j and
on a lower bound for the bisectional curvature ofM .

Proof. We may assume that infM ' D 0 and C0 WD supM' D osc'. Set

ˇ D 1

2
jr'j2

and
˛ WD logˇ � � ı ';

where � 2 C1.Œ0; C0�/ with � 0 � 0 will be determined later. We may assume that
� attains maximum at y in the interior of M . Near y write u D ' C g, where g
is a local potential for !. Similarly as before, we may assume that at y we have
gj Nk D ıj Nk, gj Nkl D 0 and .uj Nk/ is diagonal.

At y we will get

ˇ D
X

j

j'j j2

ˇp D
X

j

'jp' Nj C 'p.up Np � 1/

ˇp Np D
X

j;k

Rj Nkp Np'j ' Nk C 2Re
X

j

up Npj ' Nj C
X

j

j'jpj2 C '2p Np:

and

˛p Np D ˇp Np
ˇ

� �
.� 0/2 C � 00�j'pj2 � � 0'p Np;

where for simplicity we denote � 0 ı ' just by � 0 (and similarly for � 00). By (36)

X

p

up Npj
up Np

D .logf /j :

Since

1

ˇ

X

j;k;p

Rj Nkp Np'j ' Nk
up Np

� �C1
X

p

1

up Np

and (we may assume that ˇ.y/ � 1)
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2

ˇ
Re

X

j

.logf /j ' Nj � �2jr.logf /j � � C2

f 1=n
� �C2

X

p

1

up Np
;

we will obtain at y

0 �
X

p

˛p Np
up Np

� .� 0 � C3/
X

p

1

up Np
C 1

ˇ

X

j;p

j'jpj2
up Np

� Œ.� 0/2 C � 00�
X

p

j'pj2
up Np

� n� 0:

We have to estimate the term

1

ˇ

X

j;p

j'jpj2
up Np

from below. For this we will use that fact that ˛p D 0 at y. Therefore ˇp D � 0ˇ'p,
that is

X

j

'jp' Nj D .� 0ˇ � up Np C 1/'p:

By the Schwarz inequality

ˇ̌X

j

'jp' Nj
ˇ̌2 � ˇ

X

j

j'jpj2;

hence

1

ˇ

X

j;p

j'jpj2
up Np

� 1

ˇ2

X

p

.� 0ˇ C 1 � up Np/2j'pj2
up Np

� .� 0/2
X

p

j'pj2
up Np

� 2� 0 � 2

ˇ
:

This gives

0 � .� 0 � C3/
X

p

1

up Np
� � 00X

p

j'pj2
up Np

� .nC 2/� 0 � 2

ˇ
:

We now set �.t/ D �t2=2C .C0CC3C1/t , so that � 00 D �1 and � 0 � 1 in Œ0; C0�.
We will get

X

p

1

up Np
C
X

p

j'pj2
up Np

� C5:

Therefore up Np � C6 and ˇ � C7 at y, and we easily arrive at (41). ut
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12 Boundary Second Derivative Estimate

In this section we want to show the a priori estimate

jr2'j � C

on @M . It is due to Caffarelli et al. [16] if the boundary is strongly pseudoconvex
and to B. Guan [27] in the general case. We will prove the following local result
which is applicable to the case of flat boundary:

Theorem 27. Write BR D B.0;R/ and B�
R D BR \ fxn � 0g. Let u; v 2 C3.B�

R /

be such that .uj Nk/ > 0, .vj Nk/ � �.ıjk/ for some � > 0,

det.uj Nk/ D f � det.vj Nk/:

Assume moreover that u � v on B�
R and u D v on fxn D 0g. Then

jD2u.0/j � C;

where C depends on n, on upper bounds for jjvjjC2;1.B�

R /
, jjf 1=njjC0;1.B�

R /
,

jjujjC0;1.B�

R /
, and on lower bounds for �, R.

Proof. If s; t are tangential directions to fxn D 0g then ust .0/ D vst .0/, so just .0/j
is under control. The main step in the proof is to estimate the tangential-normal
derivative utxn .0/. Set r WD R=2 and

Qw WD �.u � v/C 2A1x
n.r C xn/;

where A1 > 0 under control will be determined later. We have Qw � 0 in B�
r and

uj
Nk Qwj Nk D �nC uj

Nkvj Nk C A1u
n Nn � �nC �

X
uj Nj C A1u

n Nn:

By �1 � � � � � �n denote the eigenvalues of .uj Nk/. Then
P

uj Nj D P
1=�j

and un Nn � 1=�n. Since �1 : : : �n D f , by the inequality between geometric and
arithmetic means we will obtain

uj
Nk Qwj Nk � �nC �

2

X
uj Nj C �

2

X 1

�j
C A1

�n

� �nC �

2

X
uj Nj C n.�=2/1�1=nA1=n1

f 1=n

� �

2
.1C

X
uj Nj / (42)
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for A1 sufficiently large.
Further define

w WD ˙.u � v/t C 1

2
.u � v/2yn �A2jzj2 C A3 Qw;

where positive A2;A3 under control will be determined later. Since .u � v/t D
.u � v/yn D 0 on fxn D 0g, we have w � 0 on fxn D 0g. We also have

ˇ
ˇ
ˇ
ˇ˙.u � v/t C 1

2
.u � v/2yn

ˇ
ˇ
ˇ
ˇ � C1

and thus for A2 sufficiently large w � 0 on @Br \ fxn � 0g. By (36)

uj
Nk�˙ .u � v/t C 1

2
.u � v/2yn

�
j Nk D ˙.logf /t 
 uj

Nkvtj Nk C .u � v/yn .logf /yn

C uj
Nk.u � v/ynj .u � v/yn Nk

� �C2.1C
X

uj Nj /;

where the last inequality follows from

f �1=n � 1

n

X
uj Nj :

Therefore, from (42) we get

uj
Nkwj Nk � 0

ifA3 is chosen sufficiently large. Now from the maximum principle we obtain w � 0

in B�
r and thus

j.u � v/txn.0/j � A3
�
.u � v/xn.0/C 2A1r

�
;

so
jutxn .0/j � C3:

It remains to estimate the normal-normal derivative uxnxn.0/. At the origin we
can now write

f D det.uj Nk/ D un Nn det.uj Nk/j;k�n�1 C R D un Nn det.vj Nk/j;k�n�1 C R;

where jRj is under control. Therefore
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0 � un Nn.0/ � C4

�n�1

and the normal-normal estimate follows. ut

13 Higher Order Estimates

We will make use of a general (real) theory of nonlinear elliptic equations of second
order. They are of the form

F.D2u;Du; u; x/ D 0; (43)

where
F W Rm2 � R

m � R �� �! R

(� is a domain in R
m) satisfies two basic assumptions:

F is concave in D2u (44)

and elliptic, that is
@F

@uxsxt

s
t � �j
j2; 
 2 R

m; (45)

for some � > 0.
If by MC we denote the set of Hermitian positive matrices then, as one can show

(see e.g. [13, 24]),

.detA/1=n D 1

n
infftrace .AB/ W B 2 MC; detB D 1g; A 2 MC:

Moreover, one can also easily prove the following formula for the minimal
eigenvalue of .uj Nk/ > 0

�min

 
@ det.uj Nk/
@uxsxt

!

D det.uj Nk/
4�max.uj Nk/

;

(see e.g. [9]). (Here xs denote real variables in Cn, s D 1; : : : ; 2n.)
By Theorem 24 we can assume that

1

C
j
j2 � uj Nk


j N
k � C j
j2; 
 2 C
n: (46)

Therefore, if we define F as
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F.D2u; z/ WD .det.uj Nk//
1=n � f .z/

for functions (or rather matrices) satisfying (46) and extend it in a right way to the
set of all symmetric real 2n � 2n-matrices, then F satisfies (44) and (45).

Theorem 28 ([22, 23, 32, 38, 46]). Assume that u 2 C3.�/ solves (43), where F is
C2 and satisfies (44) and (45). Then for �0 b � there exists ˛ 2 .0; 1/ depending
only on upper bounds for jjujjC1;1.�/, jjF jjC1;1.�/ and a lower bound for �, and C
depending in addition on a lower bound for dist .�0; @�/, such that

jjujjC2;˛.�0/ � C:

Theorem 29 ([16, 32]). Assume that u, defined in BC
R WD B.0;R/ \ fxm � 0g,

solves (43) with F satisfying (44) and (45) and u D  on B.0;R/ \ fxm D 0g.
Then there exists ˛ 2 .0; 1/ and C , depending only on m, �, R, jjujjC1;1, jjF jjC1;1
and jj jjC3;1 , such that

jjujj
C2;˛.B

C

R=2/
� C:

Now the standard Schauder theory applied to (the linearization of) F gives the
required a priori estimate (32).
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variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)
37. D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in Handbook of

Geometric Analysis, vol. 3, Adv. Lect. Math., vol. 14 (International Press, Boston, 2010),
pp. 357–436

38. F. Schulz, Über nichtlineare, konkave elliptische Differentialgleichungen. Math. Z. 191,
429–448 (1986)



The Complex Monge–Ampère Equation in Kähler Geometry 141

39. S. Semmes, Complex Monge-Ampère and symplectic manifolds. Am. J. Math. 114, 495–550
(1992)

40. Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein
metrics, DMV Seminar, 8, Birkhäuser, 1987
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