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Abstract We will discuss two main cases where the complex Monge—Ampere
equation (CMA) is used in Kéehler geometry: the Calabi—Yau theorem which boils
down to solving nondegenerate CMA on a compact manifold without boundary
and Donaldson’s problem of existence of geodesics in Mabuchi’s space of Kéehler
metrics which is equivalent to solving homogeneous CMA on a manifold with
boundary. At first, we will introduce basic notions of Kéiehler geometry, then derive
the equations corresponding to geometric problems, discuss the continuity method
which reduces solving such an equation to a priori estimates, and present some of
those estimates. We shall also briefly discuss such geometric problems as Kéehler—
Einstein metrics and more general metrics of constant scalar curvature.

1 Introduction

We present two situations where the complex Monge—Ampere equation (CMA)
appears in Kdhler geometry: the Calabi conjecture and geodesics in the space of
Kihler metrics. In the first case the problem is to construct, in a given Kéhler class,
a metric with prescribed Ricci curvature. It turns out that this is equivalent to finding
a metric with prescribed volume form, and thus to solving nondegenerate CMA on
a manifold with no boundary. This was eventually done by Yau [47], building up on
earlier work by Calabi, Nirenberg and Aubin. On the other hand, to find a geodesic
in a Kibhler class (the problem was posed by Donaldson [20]) one has to solve a
homogeneous CMA on a manifold with boundary (this was observed independently
by Semmes [39] and Donaldson [20]). Existence of weak geodesics was proved
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by Chen [18] but Lempert and Vivas [33] showed recently that these geodesics do
not have to be smooth. Their partial regularity is nevertheless of interest from the
geometric point of view.

In Sects. 2—-6 we discuss mostly geometric aspects, whereas Sects. 7—13 concen-
trate on the PDE part, mostly a priori estimates. We start with a very elementary
introduction to Kihler geometry in Sect.2, assuming the reader is familiar with
Riemannian geometry. The Calabi conjecture and its equivalence to CMA are
presented in Sect. 3, where the problem of extremal metrics is also briefly discussed.
Basic properties of the Riemannian structure of the space of Kéhler metrics
(introduced independently by Mabuchi [35] and Donaldson [20]) are presented in
Sect. 4. The Aubin—Yau functional and the Mabuchi K-energy as well as relation to
constant scalar curvature metrics are discussed there as well. The Lempert—Vivas
example is described in Sect. 5. Assuming Sects. 7—13, where appropriate results on
CMA are shown, in Sect. 6 we present a theorem due to Chen [18] that a Kidhler
class with the distance defined by this Riemannian structure is a metric space.

The fundamental results on CMA are formulated in Sect. 7, where also basic
uniqueness results as well as the comparison principle are showed. The continuity
method, used to prove existence of solutions, is described in Sect. 8. It reduces
the problem to a priori estimates. Yau’s proof of the L°°-estimate using Moser’s
iteration is presented in Sect. 9, whereas Sects. 10—12 deal with the first and second
order estimates (Sects. 11-12 are not needed in the empty boundary case, that is
in the proof of the Calabi conjecture). Higher order estimates then follow from the
general, completely real Evans—Krylov theory, this is explained in Sect. 13. A slight
novelty of this approach in the proof of Yau’s theorem is the use of Theorem 25
below which enables us to use directly this real Evans—Krylov theory, instead of
proving its complex version (compare with [10,40] or [13]).

The author would like to thank the organizers of the CIME school in Pluripo-
tential Theory, Filippo Bracci and John Erik Forness, for the invitation and a very
good time he had in Cetraro in July 2011.

2 Basic Notions of Kihler Geometry

Let M be a complex manifold of dimension n and by J : TM — TM denote its
complex structure. We start with a Hermitian metric # on M and set

(X,Y) =Reh(X,Y), w(X,Y):=—-Imh(X,Y), X,Y e TM.
Then (-, -) is a Riemannian metric on M, w a real 2-form on M and
(JX,Y)=w(X,Y), (JX,JY)=(X,Y). @))]

The Riemannian metric (-, -) determines unique Levi—Civita connection V.
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By Tc M denote the complexification of 7M (treated as a real space) and extend
J, (~.+), w, and V to Tc M in a C-linear way. In local coordinates z/ = x/ + iy/
the vector fields 8/dx/, /3y’ span TM over R. We also have

J(0/0x;) = 8/dy;. J(3/dy;) = —d/dx;.

The vector fields

a-:

8] j_ = @,

97/’

span Tc M over C and
J(3;) =1id;, J(@;) =—id;.

Set
g5 = (95, 95) (= (95.9,))-
Then g7 = g, ;7 and by (1)

(9;,0k) = (9;.95) = 0.
IfX =X/9,; +)Zj3]r then X € TM and it follows that
i vk

thus (gj,;) > 0.By (1)
a):igj,;dszde 2

(we see in particular that w is a form of type (1, 1)).

Proposition 1. For a Hermitian metric h the following are equivalent

(i) VJ =0;
(ii) do = 0;
(iii) w = i00dg locally for some smooth real-valued function g.

Proof. (i)=>(ii) By (1)

3dw(X.Y,Z) = Xao(Y, Z) + Yo(Z. X) + Zo(X.Y)
- a)([Xs Y]v Z) - CL)([Y, Z]s X) - a)([Z, X]v Y)
=((Vx Y. Z) + (V) Z, X) + (V2 J)X.Y).

(i1))=>(i) Similarly one can show that

3do(X,Y,Z)—3dw(X,JY,JZ) = 2((VxJ)Y, Z) + (X, N(Y, J Z)),
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where
NX,Y)=[X, Y]+ J[JX, Y|+ J[X,JY]-[JX,JY]

is the Nijenhuis tensor (in our case it vanishes, because J is integrable).
(ii))=(iii) Locally we can find a real 1-form y such that o = dy. We may write
y = B + B, where f is a (0, 1)-form. Then, since d = 9 + 0,

w=20B+03B+03p+0B.

It follows that E_),B = 0, because w is a (1, 1)-form. Therefore we can find (locally) a
complex-valued, smooth function f with 8 = d f and

w =B + 9B = 2i3d(Im f).

We can thus take g = 2Im f.
(iii)=>(ii) is obvious. ]

The metric satisfying equivalent conditions in Proposition 1 is called Kéhler. It is
thus a Hermitian metric on a complex manifold for which the Riemannian structure
is compatible with the complex structure. The corresponding form w is also called
Kihler, it is characterized by the following properties:  is a smooth, real, positive,
closed (1, 1)-form.

From now on we will use the lower indices to denote partial differentiation
w.rt. 77 and 7¥, so that for example 0°g/dz/ 07" = g ;i and (2) is compatible with

» = iddg.

Volume form. Since (0;,9;) = g ;i and (0;,0x) = 0, we can easily deduce that

0 0 J d a d 0

0
T T

From this, using the notation x/*" = y”,

ad 0 n
\/det ((W ax_k))lsj,kgzn =2 det(gj,;),

It follows that the volume form on M is given by

n

" 1)
2 det(gj,;) di = o

where d A is the Euclidean volume form and " = @ A --- A w. In the Kéhler case
it will be however convenient to get rid of the constant and define the volume as

dV = o".
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Christoffel symbols. From now on we assume that @ is a Kéhler form on M and
(-, -) is the associated metric. Write

Vaj 0k = Fjl»kf)[ + F}kal‘, Vafak = Fjlka)[ + F}kal‘.

Since VJ = 0, we have for example i Vy, dx = Vj,(J k) = J Vj; 9k and it follows
that '}, = 0. Similarly we show that F][Tk = I‘}k = 0, so the only non-vanishing

Christoffel symbols are ', = I‘%. Denoting further g; = dg/dz/, g = dg/07*
(which by Proposition 1(iii) is consistent with the previous notation) we have

8iki = 31(31,3;;) = Fll;‘gpzj,

which means that

T = Th = 8" 0. 3)

where g? is determined by N
8’85 = k. 4)

Riemannian curvature. Recall that it is defined by

R(X,Y) =VxVy —VyVy — Vixy]
(we extend it to Tc M) and

R(X,Y,Z, W) =(R(X.Y)Z,W). 5)
The classical properties are

R(Y,X)=—R(X,Y),
R(X.Y.Z,W)=—R(Y.X.Z,W)=—R(X.Y,W.Z) = R(Z,W,X.,Y), (6)
R(X,Y)Z + R(Y.Z)X + R(Z,X)Y =0

(the latter is the first Bianchi identity). From VJ = 0 it follows that
R(X,Y)J = JR(X,Y)
and from (6) we infer
R(X,Y,Z,W)=R(X,Y,JZ,JW)=R(JX,JY,Z,W).

It follows that
R(JX,JY)=R(X,Y),
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thus
R(9;,0x) = R(95,0;) = 0.
We have
R(3;.,8;)0, = —Vi.Vy;0, = —0;(I},)0
and

R(D;.0p)0 = Vi, Vy05 = 9, (r,iq)a;.

Therefore, if we write
R(3;.07)d, = R'; 8. R(3;.9:)0; = R0y,

then

I _ I _ If, _ .
R]];p - _Rk]_ﬁ - _(g tgjtp)k‘

The relevant coefficients for (5) are

: !
Rifp; = R(9;,0f,0p,05) = g’quIEp

Z. Btocki

by (3). Applying a first-order differential operator (with constant coefficients) D to

both sides of (4) we get ) o
Dg" = —g"g" 1 Dg,;
and thus )
Rityps = ~8jkp; + 8" 8578k
Ricci curvature. Recall that the Ricci curvature is defined by
Ric(X,Y) :=tr(Z— R(Z,X)Y).
We extend it to Tc M . If we write Z = Z”d, + Z99; then
R(Z.0;)0 = —ZR.501. R(Z.0;)d; = ZPR;ﬂ;a,-,
5q pl I
R(Z,0;)0; = —Z'R; 507, R(Z,0p)0; = Z”Rplgjal.
It follows that
Ric(d;,0k) = RiC(f)]T, ;) =0
and

Ric; == Ric(d;.0p) = R} = —(871¢,50) ;-

Since )
D det(g,5) = M7 Dgpg,

where (M ?7) = det(g,7)(g"?) is the adjoint matrix to (g,7), we have

(N
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D(logdet(g,5)) = g7 Dg ;. (8)
Therefore
Ric;; = —(log det(gpq))j,;. 9)

From the proceeding calculations we infer in particular
Ric(JX,JY) =Ric(X,Y).
The associated Ricci 2-form is defined by
Ric,(X,Y) := Ric(JX,Y)
(since Ric is symmetric, Ric,, is antisymmetric). We then have
Ric, = iRicj,;dzj A d7F = —idd(log det(g,3)).

An important consequence of this formula is the following: if @ is another Kahler
form on M then .

Ricy — Rics = i99log . (10)
a)n

In particular, Ric,, and Ricg are 35-coh0mologous.

Scalar curvature. It is the trace of the mapping Ric : TcM — TcM defined by
the relation
(Ric X,Y) = Ric(X,Y).
Since )
Ric aj = gqul.quap,

we will obtain
Ricy A" !

S = 2g"Ric,; = 2n
g pq o

Bisectional curvature. It is defined by
o(X,Y)=R(X,JX,Y,JY)=RX,Y,X,Y)+ R(X,JY,X,JY),

where the last equality is a consequence of the first Bianchi identity. If we write
X =X/9; + X3, Y =YPd, + Y90, then

o(X,Y) =—=2iX/ X R(3;,0;.Y.JY) = 4R ;. X/ X Y7V,

An upper bound for the bisectional curvature is a positive constant C > 0 satisfying

o(X,Y)<C|XY|Y]®>, X.Y e TM. (11)
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Since |Xjaj + ka)];lz = Zgj];Xj)?k, it follows that (11) is equivalent to
R;;,;a’@bPb? < Cg ra’ @ g,qb"b?, a.b e C". (12)

Similarly we can define a lower bound.

Gradient. For a real-valued function ¢ on M its gradient V¢ is defined by the
relation
(V. X) = Xo.

Therefore B
Vo = g/ (¢pd; + ¢;07)
and B
IVol* = 2¢" 0, 0z.

Laplacian. Itis given by
Agp :=tr(X — VxVop).

For X = X/9; + X*3; we have

Vx Vo = X7[(g"95),;0, + g0 75,0 + (87 0)), 0]

+ X*[(e"09)i0, + (8"0p);05 + 87,11, 0;].
From (3) and (7) we will get
13
Ap =2g/ Pk
Lichnerowicz operator. For a real-valued function ¢ we can write
Vo =V'ep+ Vg,

where B
Vg =g/*epd; e T"OM.

The Lichnerowicz operator is defined by

Lo =0V = (gﬂgfp,;)qaj ®dz,
so that Vg is a holomorphic vector field iff Lo = 0.
Proposition 2. £*L¢ = A% + (Ric,,i03¢) + (VS, V).

Proof. Since i )
1Lol* = 48" g;7(87 vp) (8" 0s),,
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and )
(g7 det(g 7)), =0
for every ¢, it follows that
st q ik
L*Ly = 4Re [g ’ (g”q (g,-;(g’ %;)5)[)) }
N
We can compute that
g™ (g;f(gj"w;;)q)p = (8" 0p0)i — 8"1(8" 81) p %
and thus
1 sF g st _pg ¢ -ak st 7 ( gak
1L Lo =" (@"gp)i — 878" (2 *gui7)p0,i — Re [£(877(8 guig)p) ,2F -
One can check that
sT piroak . N _ o sG.opkpi. _
—8" g"(8" gaig)p = &8 Ricy;
st g ak 1 i
—¢" ("8 guiz)y), = 58'*S,

and the result follows. O
Poisson bracket. It is defined by the relation

{o. VYo" =ndo Ady A"
or, in local coordinates,

{o. v} = ig/ (ppv; — 09

If one of ¢, V¥, n has a compact support then

[ oo = [ otynior

d‘-operator. It is useful to introduce the operator d€ := %(E_i — d). Itisreal (in the

sense that it maps real forms to real forms) and dd¢ = i99. One can easily show
that

. 1
dd°p A" ' = —Agp "
2n

and |
dpond‘y A" ! = 2—(V<p, Vi )w".
n
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The operator d° clearly depends only on the complex structure. In the Kéhler case
we have however the formula

1.
dp = —Ezwa) (13)

(where iyw(Y) = o(X,Y)).

Normal coordinates. Near a fixed point we can holomorphically change coor-
dinates in such a way that g;; = & and it = &jkim = 0. By a linear
transformation we can obtain the first condition. Then consider the mapping

1 : 1 .
F'(z) . =7"+ za’sz’zk + gb;”k,z/zkzl

(the origin being our fixed point), where aj’?’k is symmetric in j, k and b;"k ; Symmetric
in j,k,l. Then for ¢ = g o F we have

2,10 = g;5(0) +a*,
gj];lm(o) = gj];lm(o) + nglgp(o)afm + b?lm

and we can choose the coefficients of F' in such a way that the left-hand sides vanish.

3 Calabi Conjecture and Extremal Metrics

A complex manifold is called Kéhler if it admits a Kéhler metric. We will be
particularly interested in compact Kéhler manifolds. If w is a Kihler form on a
compact complex manifold M then the (p, p)-form w? is not exact, because if
w? = da for some o, then

/Ma)”szd(oz/\a)P)zo

which is a contradiction. Since w? is a real closed 2p-form, it follows that for
compact Kihler manifolds H?? (M, R) # 0.

Example. Hopf surface M := (C?\ {0})/{2" : n € 7Z} is a compact complex
surface, topologically equivalent to S' x S3. Therefore H?(M,R) = 0 and thus M
is not Kihler. O

dd‘-lemma. It follows from (10) that for two Kihler forms w,® on M the
(1, 1)-forms Ric,, Ricg are dd‘-cohomologous, in particular d -cohomologous. The
following result, called a dd¢-lemma, shows that these two notions are in fact
equivalent for (1, 1)-forms on a compact manifold:
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Theorem 3. If a (1,1)-form on a compact Kéiihler manifold is d-exact then it is
dd‘-exact.

We will follow the proof from [44]. Theorem 3 will be an easy consequence of
the following:

Lemma 4. Assume that B is a (0,1)-form on a compact Kéhler manifold such that
d8 = 0. Then 9 = 00 f for some f € C*(M,C).

Proof. Let w be a Kéhler form on M. Since

/MaﬁAw"—I:/MdﬁAw"—IZ/Md(ﬁAw"—l)zo,

we can find f € C*°(M, C) solving
f A" =B A"

Sety := f — 9 f, we have to show that dy = 0. Since dy = 0,

/3)//\5/\60"_2:/ d(y Ady A" %) = 0.
M M

Locally we may write
y = ypdZ*
and '
dy = yg;dz) A dzr.

One can then show that

_— n— 1 ik g J— ik 2 n
By Ay no' = s (878 v Vig — |87 v e

Now dy A @"~! = 0 means that gj’;y,;j = 0 and it follows that y; - = 0. O

Proof of Theorem 3. Write @« = 81 + 82, where B is a (1,0), and B, a (0, 1)-form.
Then B B
da = 9B, + 0> + 381 + 906>

Since do is of type (1,1), it follows that 3B; = 8B, = 0. By Lemma 4 we have
0B = 00 f1 and 0B, = 30 f> for some f;, f, € C°(M, C). Therefore

da = 9By + 8B1 = 30(f — f1). O

From now on we assume that M is a compact Kihler manifold. For a Kéhler
form w on M by c¢;(M) we denote the cohomology class {Ric,}. By (10) it is
independent of the choice of w; in fact ¢; (M) = ¢ (M)r/27, where ¢ (M )R is the
first Chern class.
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Calabi conjecture ([17]). Let R be a (1,1)-form on M cohomologous to Ric,, (we
write R ~ Ric,). Then we ask whether there exists another, unique Kihler form
@ ~ w on M such that R = Ricg. In other words, the question is whether the
mapping

{w} > &+ Ricg € c1(M)

is bijective.
Derivation of the Monge—~Ampeére equation. By dd‘-lemma we have Ric, =

R + dd°n for some 1 € C®(M). We are thus looking for ¢ € C° (M) such that
wy :=w+ddp > 0and

n

dd”(log& —n) =0,
wn

that is

n

¥ _
logﬁ—n—c,

a constant. This means that

a); = e Tw".

Since w” — w" is exact, from the Stokes theorem we infer

»
a)”:/w"::V.
Joee=],

Therefore the constant ¢ is uniquely determined. It follows that to solve the
Calabi conjecture is equivalent to solve the following Dirichlet problem for the
complex Monge—Ampere operator on M: for f € C*®(M), f > 0, satisfying
/ y Jo" =V, there exists, unique up to an additive constant, ¢ € C°(M) such
that w + dd ¢ > 0 and

(w+ddo)' = fo". (14)

This problem was solved by Yau [47], the proof will be given in Sects. 7-13.
The solution of Calabi conjecture has many important consequences (see e.g. [48]).
The one which is particularly interesting in algebraic geometry is that for a compact
Kaihler manifold M with ¢;(M) = 0 there exists a Kdhler metric with vanishing
Ricci curvature. Except for the torus C* /A such a metric can never be written down
explicitly.

Kihler-Einstein metrics. A Kihler form w is called Kahler-Einstein if Ric, =
Aw for some A € R. A necessary condition for M is thus that ¢;(M) is definite
which means that it contains a definite representative. There are three possibilities:
cit(M) = 0,c;(M) < 0and ¢;(M) > 0. Assume that it is the case, we can then
find a Kidhler metric w with Aw € ¢;(M), that is Ric, = Aw + ddn for some
n € C®(M). We are looking for ¢ € C°(M) such that Ric,, = Aw, which,
similarly as before, is equivalent to
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(0 +ddp)' = e M tnTeyn, (15)

If c;(M) = 0 then A = 0 and (15) is covered by (14). If ¢; (M) < 0 one can solve
(15) in a similar way as (14). It was done by Aubin [1] and Yau [47], in fact, the
L®°-estimate in this case is very simple.

The case ¢;(M) > 0 (such manifolds are called Fano) is the most difficult.
The first obstruction to the existence of Kihler—Einstein metrics is a result of
Matsushima [36] which says that in this case the Lie algebra of holomorphic vector
fields must be reductive (that is it must be a complexification of a compact real
subalgebra). By the result of Tian [41] this is the only obstruction in dimension 2 but
in [43] he constructed a 3-dimensional Fano manifold with no holomorphic vector
fields and no Kéahler—Einstein metric. In fact, the Fano surfaces can be classified:
they are exactly IP?, P! x P! or P> blown up at k points in general position, where
1 < k < 8. Among those only P? blown up at one or two points have non-reductive
algebras of holomorphic vector fields, and thus all the other surfaces admit Kéhler—
Einstein metrics—see [43] or a recent exposition of Tosatti [45].

Uniqueness of Kihler—Einstein metrics in a given Kéhler class {w} (satisfying
the necessary condition A{w} C c¢;(M)) for ¢;(M) = 0 and ¢c;(M) < O
follows quite easily from the equation (15). In the Fano case c¢;(M) > 0 it holds
up to a biholomorphism—it was proved by Bando and Mabuchi [3] (see also
[6,7D.

Constant scalar curvature metrics. Given a compact Kéhler manifold (M, w)
we are interested in a metric in {@} with constant scalar curvature (csc). With the
notation S, = S, we are thus looking for ¢ satisfying S, = S, where S is a
constant. First of all we note that S is uniquely determined by the Kihler class:

S‘/ " =/ Sew, =2n/ Ric(,/\a)z_1 = Zn/ Ricy A "' (16)
M M M M

Secondly, the csc problem is more general than the Kdhler—Einstein problem. For if
Mo} C (M), that is Ric, = Aw + dd‘n for some n € C*°(M), and w, is a csc
metric then § = 21 and Ric, A @) ~" = Aw};. But since

n

. @y
Ricy — Aw, = dd‘[n— loga7 — ],

it follows that Ric, = Aw,.

The equation S, = S is of order 4 and therefore very difficult to handle directly.
The question of uniqueness of csc metrics was treated in [19]. A general conjecture
links existence of csc metrics with stability in the sense of geometric invariant
theory. So far it has been fully answered only in the case of toric surfaces (Donaldson
[21]). See [37] for an extensive survey on csc metrics.
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4 The Space of Kihler Metrics

We consider the class of Kihler potentials w.r.t. a Kéhler form w:
H:={p e C®(M):w, >0}

It is an open subset of C°°(M) and thus has a structure of an infinite dimensional
differential manifold (its differential structure is determined by the relation

C®U,C®(M)) = C®(M x U)

for any region U in R™). For ¢ € H the tangent space T, may be thus identified
with C*°(M). On T,’H, following Mabuchi [M], we define a scalar product:

1
() :=7/Mwnwz, V.ne T,H.

Also by ¢ = ¢(t) denote a smooth curve [a,b] — H (which is an element
of C*°(M x [a,b])). For a vector field ¥ on ¢ (which we may also treat as an
element of C*°(M x [a, b])) we want to define a connection V,;¢ (where we denote
¢ = dg/dt), so that

d

7 ) = (Vaym)) + (Y. Vo) (17

(where 7 is another vector field on ¢). Since

d . IR B
Ew;:ndd‘}p/\a); :§A<pw;, (18)

where A denotes the Laplacian w.r.t. w,, we have

d 1 : o1 N
prasal V/M(wnerJrzwnAw)ww

1 . 1
5 | (e vi- S0 o

7 LG =5tvwva) o (-3 v0) |

This shows that the right way to define a connection on H is

o1
Vo¥ =¥ — S (VY. Vo),
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where V on the right-hand side denotes the gradient w.r.t. w,. A curve ¢ in H is
therefore a geodesic if V¢ = 0, that is

SR
¢ — EIWJI2 = 0. (19)

Curvature.

Theorem 5 (Mabuchi [35], Donaldson [20]). We have the following formula for
the curvature of ({-,-))

1
R,y = —Z{{w, nLydh veny € T,H, ¢ € H.

In particular, the sectional curvature is given by

1
K@y.m =—lltv, n* < 0.

Proof. Without loss of generality we may evaluate the curvature at 0 € H. Let
@ € C*([0,1] x [0,1], H) be such that ¢(0,0) = 0 and at s = t = 0 we have
¢s(=dp/ds) =, ¢ = 1. Take y € C=([0, 1?, C®(M)) = C®(M x [0, 1]).
We have

1 1
Vo VoV = Vo Vo, v = Vo, (v — E(Vﬁﬂrv Vy)) = Vo (vs — E(V%s Vy))

1d 1 1
= _§$<W’“ Vy) = E(V%, Vyi) + Z(prs, V{(Vg:, Vy))
+1d(V V)—i—l(V Vys) 1(V V{(Vs, Vy))
2d[ (pSa )/ 2 (pl‘7 yS 4 (pl‘7 §0s’ )/ .

Denoting u = g + ¢ we get

d d T
7 Ve Vy) = [u’k (vieg + V/E‘/’sj)]

1 - _ _
= —Z(iaf?n, 10y Ady +idy AdY) + (Vos, Vi) + (Vou, Vy)

where in the last line we have evaluated at s = ¢ = 0. Therefore at s = ¢t = 0 we
have

1
Vo, Vo, v = Vg, Vo v = Z(Vl/f, V{(Vn,Vy)) — —(Vn, V(Vy, Vy))

1
4

+ —(id0y,idn A dy +idy A On)

(i00n,i0% Ay +idy A 0Y).

oo | — o | =—
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We can now show, using for example normal coordinates, that the right-hand side is
equal to —%{{1//, n}, v} O

Derivation of the homogeneous complex Monge-Ampere equation. Writing
locally u = g + ¢, since g is independent of 7, we can rewrite (19) as

e pge
u uupug = V.

Multiplying both sides by det(u; 7) (which is non-vanishing) we arrive at the
equation
Uir

det (u;) “l=o.
Unt

U .. U Ut

This suggests to complexify the variable 7, either simply by adding an imaginary
variable, or introducing the new one ¢ (= z"*!) € Cy, so that t = log |¢|. Then for
v(¢) = u(log|¢|) we have v, = i1/2¢ and Ve = ii/4|¢|%. We have thus obtained the
following characterization of geodesics in H:

Proposition 6 ((Semmes [39], Donaldson [20])). For ¢y, 91 € H existence of a
geodesic in 'H joining ¢o and ¢, is equivalent to solving the following Dirichlet
problem for the homogeneous complex Monge—Ampere equation:

9 eC®M x{" <[l <e'}
w+ddp(-,0) >0, ¥ <|t]<e!
(0 +ddp)"™ =0

(.0 =¢;, [tl=e€/, j =01

Although w is a degenerate form on M x C, it is not a problem: write
w+dd'e=3d+dd(p—IP). (20)

where @ = w + dd¢|¢|* is a Kihler form on M x C, and consider the related
problem.

The existence of geodesic is thus equivalent to solving the homogeneous
Monge—Ampere equation on a compact Kidhler manifold with boundary. From the
uniqueness of this equation (see e.g. the next section) it follows in particular that
given two potentials in H there exists at most one geodesic joining them.

As shown recently by Lempert and Vivas [33], it is not always possible to join
two metrics by a smooth geodesic (see Sect. 6). However, for & > 0 we can introduce
a notion of an e-geodesic: instead of (19) it solves
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U S
(¢ = 5IVeP)wy = eo”

which is equivalent to the following non-degenerate complex Monge—Ampere

equation:
(@ +ddo)"! = ﬁ(a) +dde|ePy. @1)

As shown by Chen [18] (see also [15]), smooth e-geodesics always exist (see
Theorem 19 below) and they approximate weak geodesics. Existence of e-geodesics
will be used in Sect.6 below to show that H with a distance defined by its
Riemannian structure is a metric space (this result is due to Chen [18], see also [15]).

Normalization, Aubin—-Yau functional. The Riemannian structure on H will
induce such a structure on the Kihler class {w} = H/R, which is independent
of the choice of w. For this we need a good normalization on H. The right tool for
this purpose is the Aubin—Yau functional (see e.g. [2])

I H—-R
which is characterized by the following properties

10)=0, d,Iy = %/M Y. geH, ¥ eC®M). 22)

This means that we are looking for / with d/ = o, where the 1-form « is given by

1
@) = /M vl 23)

Such an I exists provided that « is closed. But by (18)

da(p).(¥. V) = dy(a(p).¥). ¥ —dy(a(p).¥).y = % /M WAY — Y AY) 0 =0

and it follows that there is I satisfying (22).
For any curve ¢ in ‘H joining O with ¢ we have

11 .
I =/—/ b wtdt.
(®) v ], P

Taking ¢(t) = t¢, since (with some abuse of notation)

d (a) + ¢ ddc(p)n+l —o"t!
dt (n+1)ddcy

=(w+1dd)" = wy,

we obtain the formula
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1 1
I(p) = E = PAW"E.
(¢) n+1p:0V/M(Pw<p w

We also get
Io+c)y=1(p)+c

for any constant c.
Now for any curve ¢ in H by (22) and (17) we have

d\* d
(a) 1) = -4, 1)) = (Vi 1)

and it follows that 7 is affine along geodesics. Moreover, if ¢ is a geodesic then so is
@ — I (). Therefore, by uniqueness of geodesics, Hy := 17'(0) is a totally geodesic
subspace of H. The bijective mapping

Ho 3 ¢ —> w, € {0}

induces the Riemannian structure on {w}. By (22) we have
ToHo ={Y € C®(M): / Yo, = 0}.
M

One can easily show that this Riemannian structure on {w} is independent of the
choice of w.

Mabuchi K-energy [34]. It is defined by the condition
1 _
K©0) =0, d, K.y = _7/ V(Sy — S)wy, 24)
M

where S is the average of scalar curvature S, (it is given by (16)). We are thus
looking for K satisfying dK = B 4 Sa, where « is given by (23) and

1 2n . e
b == [ wSpar=-3 [ wrio, oy
we have to show that df = 0. We compute
Wy 1.
dy(Ricy).¥ = dy(Ric, —dd‘log —2).¢ = —Eddcmp (25)
wn

and thus

- 1o a
dy(B(@)¥)-V = 7 /M Y (38% @) =2n(n = 1)ddY A Ricy, n 0y ?).
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It is clear that the latter expression is symmetric in ¥ and 1/~/ and therefore d§ = 0.
To get a precise formula for K take as before ¢ = t¢. Similarly we have

n n
d oj,—o

-t - _  n—l
di nddeg P
and
d 1 wg nl _— 1 1 w‘% dd¢ = n—1
E[( ogﬁ)wa]—n( + ogJ) NG
Using this we will easily get (see also [37,42])
2 ! -l _
K(p) = 7/ (logw—i)wg—@ZRicw/\wé’Aa)”_p_l + S I(p).
M
p=0

The usefulness of the K-energy in some geometric problems becomes clear in
view of the following two results:

Proposition 7 (Mabuchi [35], Donaldson [20]). For any smooth curve ¢ in H we
have

d\? 1 - 1
— K = —— V.o _ n . .12 n
(d[) (p) 7 /M 39S — S)w, + e /M Lol w,

In particular, the K-energy is convex along geodesics.

Proof. We have
d . _
-, K@) = (.5, = S)).

therefore

d\* S
(E) K(g) = —{((Vsg, Sy — $)) — (9, V3 S,)).

Moreover
1

. 1 , . d
—{@.V;S,) = % /M ® (E(VS“” V) — ES¢) w,.
Write u = g + ¢. Then

S, = —2u”(log det(uj,;))pq

and, since ¢ = 0,



114 Z. Btocki

d ; : i (g
77 S0 = 2u”"u? (log det(u ;) o 4si — 2u" (@) o

1, . N T
= —5 (RlC(p, Vz(p) — §A2§0
The result now follows from Proposition 2. O

Proposition 8 (Donaldson [20]). Let w,, and w,, be csc metrics. Assume more-
over that ¢y and ¢, can be joined by a smooth geodesic. Then there exists a
biholomorphism F of M such that wy, = F*w,,.

Proof Let ¢ be this geodesic and set & := K(¢). Then, since Sy, = Sy, = S, we
have /:(0) = (1) = 0 and by Proposition 7 / is convex. Therefore /i = 0 and, again
by Proposition 7, L¢ = 0, that is V¢ is a flow of holomorphic vector fields. By F
denote the flow of biholomorphisms generated by %V(j) (so that F = %V(j) oF,
F It =0 =1 d ).

We have to check that w,, = F*w,, it will be enough to show that 7 d - F*w, = 0.
We compute

d * * c:
S Frep=F (Livyw, +dd ¢) = F* d( iviw, +d°9) =0

by (13) (where Ly = ix od + d o iy is the Lie derivative). (This argument from
symplectic geometry is called a Moser’s trick.) O

In view of the Lempert—Vivas counterexample Proposition 8 is not sufficient to
prove the uniqueness of csc metrics. For a more direct approach to this problem
see [19].

S Lempert-Vivas Example

It is well known that in general one cannot expect C *°-regularity of solutions of the
homogeneous Monge—Ampere equation. The simplest example is due to Gamelin
and Sibony [25]: the function

u(z,w) = (max{0, |z|* — 1/2, |w|* — 1/2})2
satisfies dd“u > 0, (dd°u)?® = 0 in the unit ball B of C?,
uGzw) = (1217 = 1/2)* = (> — 1/2)* € C=(8B),

but u ¢ C2(B).
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For some time it was however an open problem whether there exists a smooth
geodesic connecting arbitrary two elements in 7. In the special case of toric Kdhler
manifolds it was in fact shown in [28] that it is indeed the case. This suggests that
a possible counterexample would have to be more complicated, as the Gamelin—
Sibony example from the flat case is toric.

The counterexample to the geodesic problem was found recently by Lempert
and Vivas [33]. It works on Kihler manifolds with a holomorphic isometry 4 :
M — M satisfying h?> = id and having an isolated fixed point. We will consider
the simplest situation, that is the Riemann sphere P with the Fubini-Study metric
o = dd°(log(1 + |z|?)) and h(z) = —z. The key is the following result:

Lemma 9 (Lempert-Vivas [33]). Take ¢ € H with

o(—=2) = ¢(2) (26)

Assume that there is a geodesic of class C* joining 0 with @. Then either 1+¢z(0) =
11— ¢(0)] or |9z (0)| < l¢=z(0)|, in particular

l9(0)] <2+ ¢z(0). 27

Proof. By ¢ denote the geodesic joining 0 with ¢. We can assume that it is a c?
function defined on P x S, where S = {0 < Imw < 1}, and such that

@z, w+0) =@(z,w), o €eR.

Moreover, by uniqueness of the Dirichlet problem (see Theorem 21 below) by (26)
we have

@(_Zs W) = @(Zs W)
OnC x Ssetu:=g+ @ Thenue C3(C xS),

UzzUwyw — |“zv_v'|2 =0,

uz > 0, u is independent of 0 = Rew, u(-,0) = g, u(-,i) = g + ¢.

Since (u ; ) is of maximal rank, it is well known (see e.g. [4]) that there is a C 1
foliation of C x § by holomorphic discs (with boundary) which are tangent to d d .
This foliation is also invariant under the mapping (z, w) — (—z, w) and thus {0} x §
is one of the leaves. The neighboring leaves are graphs of functions defined on S:
there exists f € C'(U x §), where U is a neighborhood of 0, f(z,-) holomorphic
in S and {(f(z,w),w) : w € S} is the leaf passing through (z, 0). Since this leaf is
tangent to d d “u, it follows that

MZZ(f(Zs W)v W)fw(zv W) + uzv_v(f(zv W)s W) =0

which is equivalent to the fact that u,( f(z, w), w) is holomorphic in w. Set
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d
Od(w) = —| f@t,w)
and

d

t=0

Then ®, ¥ are holomorphicin S, ® is C!on S, and W is continuous on S.
Since u is independent of Re w, we can write

d(w), Imw=20

U(w) = R
P o(w)+ Q0 ®(w), Imw=1,

(St W), W) = 1tz (0, w) P (W) + uz(0, w) D(w).

Z. Btocki

where P = g:(0) + ¢z(0) = 1 + ¢z(0) > 0O and Q = g..(0) + ¢..(0) = ¢..(0).

Since ¥; = 0,
Uz (0, W) P (W) + 1z (0, w) @(w) + uzz(0, w)®'(w) = 0.
On {Imw = 0} we thus have

' (0) = AD(0) + BO(0)
®(0) =1,

where
A = _MZEW(Ov 0)5 B = _MEE,W(Ov 0)

Therefore ® on {Imw = 0} is of the form

d(0) = xe* + ﬁei”,

(35)0)=+(0)

and x + y = 1. Note that A € iR (because u, = 0), and thus either A
A€iR.

By the Schwarz reflection principle and analytic continuation we obtain

where

d(w) = xe™ + feiw, weS.

Similarly, since )
(o) = ®(0) = Xe’” + ye',

we infer

€ R or
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U(w) = Tt ye*, weS.

Therefore, using the fact that W(w) = P ®(w) + Q ®(w) on {Imw = 1}, we get
xei(a+i) + yel(o+i) —p ()—Cei(o—i) + yex(a—i)) ) (xel(a+i) + )76/_1(0+i)).
We have to consider two cases. If 1 € R then
M= pe 4 Qe

This means that ‘
P=e(1-0),

in particular
P=1]1-0|

If A =iu € iR then we will get

xet = Pxe ™" 4+ Qyet
ye ' = Pyet + Qxe .

Rewrite this as

)_c(ez“ -P)= yQe*H
Jle™ —P) =xQe ™

Since at least one of x, y does not vanish, we will obtain
|0)? = (e* — P)(e™* — P) < (1— P)”. o

If ¢ is a smooth compactly supported function in C then ¢ € H provided that
gz + ¢z > 0. The following lemma shows that there are such functions satisfying
(26) but not (27):

Lemma 10. For every real a and ¢ > 0 there exists smooth ¢ with support in the
unit disc, satisfying (26), and such that ¢,,(0) = a, ¢,z(0) =0, |¢z| < einC.

Proof. We may assume that a > 0. The function we seek will be of the form
¢(2) = Re () x(12*),

where y € C*°(R.) is supported in the interval (0, 1) and constant near 0. Then
#22(0) = x(0), ¢z(0) = 0 and

9z =Re ()31 (I21») + I21* X" (2])).
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We are looking for y of the form

x(t) = f(=log1),

where f € C*°(Ry) is supported in (1, 0o) and equal to a near co. We have, with
t =z,

loz| <t|3x'(0) +1x" ()] = | —2f'(—logt) + f"(—log1)|.

We can now easily arrange f in such a way that | /| and | f”'| are arbitrarily small.
O

6 Metric Structure of H

Although smooth geodesics in H do not always exist, one can make a geometric use
of existence of ¢-geodesics. The Riemannian structure gives a distance on H:

d(po. ¢1) = inf{l(p) : ¢ € C([0, 1], H),¢(0) = @o.¢(1) = @1}, @0, ¢1 € H,

1 1 1
[ =/ 'dt:/ —/ 2w dt
(®) A [ A ‘/V A

(note that the family in the definition of d is always nonempty, for example ¢(¢) =
(1 —t)@o + tg is a smooth curve in H connecting ¢ with ¢;). We will show the
following result of Chen [18] (see also [15]):

where

Theorem 11. (H,d) is a metric space.

The only problem with this result is to show that d(¢g, 1) > 0if @9 # ¢i.
The main tool in the proof will be existence of e-geodesics. In fact, making use of
results proved in Sects. 7—13 and the standard elliptic theory, we have the following
existence result for e-geodesics:

Theorem 12. For ¢y, 01 € H and ¢ > 0 there exists a unique e-geodesic ¢
connecting @y with ¢1. Moreover, it depends smoothly on ¢g, 1, i.e. if o, @1 €
C°°([0, 1], H) then there exists unique ¢ € C°°([0,1] x [0,1],H) such that
©(0,9) = @0, (1,)) = @1, and ¢(-,t) is an e-geodesic for every t € [0,1]. In
addition,

Ap, [Vol|, ¢ <C, (28)

(here A and V are taken w.r.t. w) where C is independent of ¢ (if € is small).
We start with the following lemma:

Lemma 13. For an e-geodesic ¢ connecting ¢y, 91 € 'H we have
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1 . .
5 [ = o~ 2esup 1l
M

[0.1]
where
E(go. ¢1) 1= max {l / (9o — 1)’w) . L (o1 — o)’ }.
4 {po>¢1} 4 {o1>¢0}
In particular,
() = E(po. 1) — 26 [su1?||¢)||-
0.1
Proof. For
1 2
we have
. 1 1 2 1 2¢
E=_ 206 _.ZA. n_ = ...__V.z n:_/-n'
V/M( op+ 29 Py, V/M<P(<P 2| ¢ w, v/,

Thus |E| < 2¢ supyo 1) ||¢|| which implies that

E(t) =z max{E(0), E(1)} —2¢ fOUHIIGbII-

Since ¢ > 0,
¢(0) < ¢(1) —9(0) < ¢(1).
For z € M with ¢,(z) > @o(z) we thus have ¢(z, 1)> > (¢1(z) — ¢o(z))>. Therefore

1
Emz—[ (01 — 90)20
v {p1>¢0} !

Similarly
1
E@z—/ (00— @)
4 {po>e1} ”
and the desired estimate follows. O

Theorem 14. Suppose v € C®([0,1],H) and € H \ ¥ ([0, 1]). For ¢ > 0 by
¢ denote an element of C*°([0, 1] x [0, 1], H) uniquely determined by the following
property: ¢(-,t) is an e-geodesic connecting W with Y (t). Then for ¢ sufficiently
small

lg(-.0) = I(¥) + (e, 1) + Ce,

where C > 0 is independent of ¢.

Proof. Without loss of generality we may assume that ' = 1. Set
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L(1) ::/0 W lldi, L) = 1(e(. ).

It is enough to show that l{ + lé > —Ceon [0, 1]. We clearly have

1= (] = ,//M J2a).

1
L(t) = /0 VE(s. 1) ds,

E :/Mqoszw(’;

(using the notation ¢; = d¢/ds). We have

E, = 2/ (psV%(psa)Z = 28/ @s"
M M

On the other hand,

where

and
1 2 n
E, = (prs(pst + 595 A(pt)ww
M 2
1 n
= 2 (ps((pst - E(Vﬁow V(pl‘>)w<p
M
= 2/ @5 Vo, o0y,
M

3 n
= 2$((<ps,<pt)) —Z/M%szww

3 n n
:2$/M<ps<ptw¢ —ZS/M%CO .

Therefore

1 1
I, = —/ E7'2E, ds
2 Jo

1 3 1
:/ E‘l/za—/ ¢, ds—e/ E_1/2/ " ds,
0 S Jm 0 M

and the first term is equal to

Z. Btocki
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s=1 1 1
|:E_1/2/ (p(p,a):| +§/ E_3/2E/<p<ptw ds
0
—1/2
=(/nw) /m/fw—S/ 3/2/% /<p<ptwds

where 77 = ¢, (1, -); we have used that ¢; (0,-) = 0, ¢;(1,+) = ¥, and

E(l,) = / nzw;.
M

From the Schwarz inequality it now follows that /{ 4+ /; > —R, where

1 1
R = e/ E_I/Z/ Q0" dS+8/ E_3/2/ (psa)”/ (psfp,a); ds.
0 M 0 M M

By Lemma 13 _
E@s.1) 2 EW. ¢ (1) —2¢ [SUI])H%('J)H-
0,1

Since £(, ¥ (¢)) is continuous and positive for 1 € [0, 1], it follows that for &
sufficiently small
E>c>0

and thus R < Ce. O
We are now in position to show that the geodesic distance is the same as d:

Theorem 15. Let ¢° be an e-geodesic connecting ¢y, ¢ € H. Then
d(@o, 1) = lim [(¢®).
e—0T1

Proof. Let v € C°([0, 1], H) be an arbitrary curve connecting ¢g, ¢; € H. We
have to show that

lim /(%) <1(¥).
e—0T1

Without loss of generality we may assume that ¢; ¢ ¥ ([0, 1)). Extend ¢° to a
function from C°°([0, 1] x [0, 1), H) in such a way that ¢*(0,-) = ¢1, ¢°(1,) = ¢
on [0, 1) and ¢°(-, ) is an e-geodesic for ¢ € [0, 1). By Theorem 14 for ¢ € [0, 1)
we have

Hp®(.0) = 1Y) + 1(@°(. 1)) + Ct)e.
Since clearly

Jim (Y lpg) = L),

it remains to show that



122 Z. Btocki

lim lim I(¢°(-. 1)) = 0.
t—>17 g0t
But it follows immediately from the following:

Lemma 16. For an g-geodesic ¢ connecting ¢g, @1 € H we have

&
1) = VV (llgo = glloan + 507 )

where A > 0 is such that wy, > Aw, w,, > Aw.

Proof. Since ¢ > 0,
¢0) =@ = ¢(1).
So to estimate |¢| we need to bound ¢(0) from below and ¢(1) from above. The

function
v(¢) = 2blog?|¢| + (a —2b) log|¢| —a

satisfies v,z = blZ|™2,v=—aon|{| =1,andv = Oon || = e. We want to

choose a, b sothat g, +v <gon M := M x {1 <[{| <e}. 5
On one hand, if a := ||gy — @1||Loo(m) then ¢; + v < @ on dM. On the other
one we have (if b > 0)

, b i bA"
(@ +dd(p1 + )" = (Ao + decmz) o 7

Therefore, by (21) if b := ¢/4A" we will get w;:_lv > w;“ and 91 +v <@ on M
by comparison principle. We will obtain

((U + ddc|é.|2)n+l.

: d .
o() = — @b1* + (a —2b)t —a)|,_, = llgo — @1llLooar) + e

Similarly we can show the lower bound for ¢(0) and the estimate follows from the
definition of /(). O

Combining Theorem 14 with Lemma 13 we get the following quantitative
estimate from which Theorem 11 follows:

Theorem 17. For ¢y, @1 € H we have

d(@o, ¢1) = maX{/ (po — <p1)2w$0,/ (91— @o)?wp | o
{po>¢1} {p1>¢0}

7 Monge-Ampere Equation, Uniqueness

We assume that M is a compact complex manifold with smooth boundary (which
may be empty) with a Kéhler form w. Our goal will be to prove the following two
results:
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Theorem 18 (Yau [47]). Assume that M has no boundary. Then for f € C*°(M),
f > 0 such that fM fo" =V there exists, unique up to an additive constant,
@ € C®(M) withw + dd‘¢ > 0 satisfying the complex Monge—Ampére equation

(w+ddo)' = fo". (29)

Theorem 19. Assume that M has smooth nonempty boundary. Take f € C*°(M),
f > 0,andlety € C®°(M) be suchthatw+dd“y > 0and (w+dd¥)" = fo'.
Then there exists ¢ € C*°(M), w + dd“¢ > 0, satisfying (29) and ¢ =  on IM.

Theorem 19 can be rephrased as follows: the Dirichlet problem

@ € C®(M)
w+dd‘e>0
(w+dd ) = fo"
¢ = ¥ on OM

has a solution provided that it has a smooth subsolution. It is a combination of the
results proved in several papers [1, 15,16, 18,27,47].

We will give a proof of Theorem 19 under additional assumption that the
boundary of M is flat, that is near every boundary point, after a holomorphic change
of coordinates, the boundary is of the form {Re z" = 0}. We will use this assumption
only for the boundary estimate for second derivatives (see Theorem 27 below), but
the result is also true without it (see [27]).

This extra assumption is satisfied in the geodesic equation case, then M is of
the form M’ x D, where M’ is a manifold without boundary and D is a bounded
domain in C with smooth boundary. This will immediately give existence of smooth
e-geodesics. (Note that by (20) the geodesic equation is covered here.)

The uniqueness in Theorems 18 and 19 is in fact very simple: if ¢, ¢ are the
solutions then

0=, —wg =dd(p — @) AT,

where
n—1
T = E o? NP
@ @
p=0

Since T > 0, we will get 9—¢@ = const in the first case and ¢ = ¢ in the second one.

This argument does not work anymore if we allow the solutions to be degenerate,
that is assuming only that @, > 0, wz; > 0. In fact, much more general results hold
here. We will allow continuous solutions given by the Bedford Taylor theory [5]

(see also [8]) — then w(’; is a measure.

Theorem 20 ([12]). Assume that M has no boundary. If ¢, ¢ € C(M) are such
that w, > 0, w; > 0 and a)(’; = a)g then ¢ — @ = const.
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Proof. Assume n = 2, the general case is similar, for details see [12]. Write
0= a)é —a)é =ddp A (0w, + 0p),
where p = ¢ — ¢. Therefore
0= —/ pddp A (w, + @) :/ dp Ndp A (0, + 05),
M M
and thus

dprnd‘pAwy,=dpNdpAwg=0. (30)
‘We have to show that

dond‘pAw=0. (31)
By (30)
/dpAdcpAw:—/ dondpnddy
M M
:/ dp/\d"qo/\dd"p:/ dpnd o A (0, — wg).
M M

By the Schwarz inequality and (30) again

2
5/ d,o/\d",o/\a)w/ dond‘p Aw, =0.
M M

'/ dpANde N w,
M
Similarly we show that
dpndpAw; =0
M
and (31) follows. O

Theorem 21 ([15]). Let M have nonempty boundary. Assume that ¢,p € C(M)
are such that w, > 0, wg > 0, a)(’; > a)g and o < @ondM.Then o < @in M.

Proof. For ¢ > 0 set ¢, := max{y — &, @}, so that 9. = ¢ near dIM . Since for
continuous plurisubharmonic functions we have

(dd® max{u, v})" = Y=} (ddu)" + Yu<wy(dd v)"

(it is a very simple consequence of the continuity of the Monge—Ampere operator,
see e.g. Theorem 3.8 in [8]), it follows that wgs > a)g. Therefore, without loss of
generality, we may assume that ¢ > ¢ in M, ¢ = @ near M, and we have to show
thatp =@ in M.

Assume again n = 2. Then, since p := ¢ — @ vanishes near M, we have

05/ p(a)é—wé):—/ dp Ndp A (0, + 05).
M M



The Complex Monge—Ampere Equation in Kéhler Geometry 125

We thus get (30) and the rest of the proof is the same as that of Theorem 20. O

Assuming Theorem 19 and estimates proved in Sects. 8—13, we get Theorem 12.
From the comparison principle it follows that e-geodesics converge uniformly to a
weak geodesic which is almost C*! (that is it satisfies (28)). It is an open problem
if it has to be fully C LI (it was shown in [15] in case the bisectional curvature is
nonnegative).

8 Continuity Method

In order to prove existence in Theorems 18 and 19 we fix an integer k > 2 and o €
(0, 1). Let fy denote the r.h.s. of the equation for which we already know the solu-
tion: fo = 1 in the first case and fo = wy, /" in the second one. For 7 € [0, 1] set

fi=0=1t)fo+1f

By S denote the set of those ¢ € [0, 1] for which the problem

@, € CKF2o(p)
w+dd‘e, >0
(w+ddp)" = fro"
Ju 0" =0,

resp.
@, € CKF2o ()
w+dd‘e, >0
(w+ddp)" = fro"
¢ = ¥ on M

has a solution (by the previous section it has to be unique). We clearly have 0 € S
and we have to show that 1 € S. For this it will be enough to prove that S is open
and closed.

Openness. The Monge—Ampere operator we treat as the mapping
n

w
M:As¢p+— 2 eB,
wn

where
A:={peC*M): w0, > 0,/ po" =0}
M

B:= {feCk'“(M):/Mfw” =/Mw”},
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resp.
A:={peC***(M):w, >0, = on M}

B := CckY(M).

Then A is an open subset of the Banach space
E:={neCk29M): / nw" = 0},
M

resp. a hyperplane in the Banach space C*+2¢(M) with the tangent space
E:={neCr%M): ¢ =00ndM}.

On the other hand, BB is a hyperplane of the Banach space C*%(M) with the tangent
space

F:={feC*M): / fo" =0},
M

resp. BB is a Banach space itself and F := B. We would like to show that for every
¢ € A the differential
dyM:E - F

is an isomorphism. But since
1
deﬂ = EA?’],

where the Laplacian is taken w.r.t. w,, it follows from the standard theory of the
Laplace equation on Riemannian manifolds. Therefore M is locally invertible, in
particular M (.A) is open in B and thus S is open in [0, 1].

Closedness. Assume that we knew that
llgillx+20 <C, t €S, (32)

for some uniform constant C, where || - |[xo = || - [|cka(pr)- Then by the Arzela—
Ascoli theorem every sequence in {¢, : ¢ € S} would contain a subsequence whose
derivatives of order at most k + 1 converged uniformly.

The proof of existence of solutions in Theorems 18 and 19 is therefore reduced to
(32) for all k big enough. The first step (but historically the latest in the Calabi—Yau
case) is the L°°-estimate, this is done in Sect. 9. The gradient and second derivative
estimates are presented in Sects. 10-12. They are all very specific for the complex
Monge—Ampere equation and most of them (except for Theorem 25) are applicable
also in the degenerate case, that is they do not depend on a lower positive bound
for f. Finally, in Sect. 13, we make use of the general Evans—Krylov theory for
nonlinear elliptic equations of second order (see e.g. [26], in the boundary case it is
due to Caffarelli et al. [16]). This givesa C 2 pound and then higher order estimates
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follow from the standard Schauder theory of linear elliptic equations of second order
with variable coefficients.

9 [ *°.Estimate

If OM # @ then by the comparison principle, Theorem 21, for any ¢ € C(M) with
wy = 0, wy < wj, ¢ = ondM, we have

< <
I/f_fp_l%xw,

so we immediately get the L°°-estimate in the second case. The case IM = @
is more difficult and historically turned out to be the main obstacle in proving the
Calabi conjecture. Its proof making use of Moser’s iteration was in fact the main
contribution of Yau [47] (see also [31] for some simplifications).

Theorem 22. Assume 0M = 0. Take ¢ € C(M) with w, > 0, satisfying the
Monge—Ampére equation w,, = fw". Then

oscop < C(M,w,|| floo)-

Proof. 1t will be convenient to assume that V' = f y @"=1 and that maxy o= —1,
so that ||¢||, < ||¢||4 for p < g (we use the notation || - ||, = || - ||zr(ar)). Write

(f — D" =ddo AT,
where
n—1
=S arnarr,
p=0
Note that T > »"~'. Then for p > 2
[ cori-vet = [ ortaacont
M M
- —/ A=) Ad°o AT
M

(-1 / (—p)?2dp A dp AT
M (33)

v

(p—1) / (—p)?2do A dp A"
M

4(p—1
— (]7 - )/ d(—(p)"/zAdc(—w)p/zAw”_l
p M

V=) 2.
P

%
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By the Sobolev inequality

el172 1) = =) a1y < €M) (Il(=0)"I1z + IV (=9)?)][2) .

Combining this with (33) we will get

@1l pn/m-1 < (Cp)""?ll0ll,-
Setting
poi=2, peyr=np/(n—1), k=12,

we will get ~
l¢lloe = Lim llolly = Cllgll2
—00

and it remains to use the following elementary estimate:

Proposition 23. Assume that IM = @ and let ¢ € C(M) be such that w, > 0,
max, M = 0. Then for any p < oo

llell, < C(M, p).

Proof. 1t will easily follow from local properties of plurisubharmonic functions. For
p = 1 we can use the following result: if u is a negative subharmonic function in
the ball B(0,3R) in C" then

< C(n,R) inf (—u).
lullL1(B0.R)) < C( )B(O,R)( “)

After covering M with finite number of balls of radius R, a simple procedure
starting at the point where ¢ = 0 will give us the required estimate for ||¢||;. The
case p > 1 is now an immediate consequence of the following fact: if u is a negative
plurisubharmonic function in B(0,2R) then

llullLro.r) < C(n, p, R) |[ul|11(B02r))- u|

10 Interior Second Derivative Estimate

It turns out that in case of Theorem 18 one can bypass the gradient estimate. The
interior estimate for the second derivative which will be needed in the proofs of
both cases was shown independently by Aubin [1] and Yau [47]. We will show the
following version from [14]:

Theorem 24. Assume that ¢ € C*(M) satisfies w, > 0 and w, = fo". Then

Ap = C, (34)
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where C depends only on n, on upper bounds for f, the scalar curvature of M,
oscy and supyy, Ag (if IM = @ then this is void), and on lower bounds for
FY0=D A(log f) and the bisectional curvature of M.

Proof. By Cy,C,,... we will denote constants depending only on the required
quantities. Set

= log(A¢p + 2n) — Agp

(note that A¢ > —2n), where A under control will be specified later. We may
assume that o attains maximum at y in the interior of M, otherwise we are done.
Let g be a local potential for w near y and set u := g + ¢. We choose normal
coordinates at y (so that g k= Sik, & = 0 at y), so that in addition the matrix
(uﬂ;) is diagonal at y. Then at y

(Aw),;  [(Au),|?
Upp = Al — (Au)z +A—Aupp-

(Au)p, = 2Zujfp
J

(A)PP - ZZ Uiipp +22RJ/PP ujj-

(by (9)). The equation wj; = fow" now reads
det(upg) = f det(gp7). (35)
Differentiating w.r.t. z/ and z/ we get
Wi,z = (log f); + &7 ¢pg; (36)
and
W,z = (log f); 7+ u wlupgiugs + 878,07 — 87 87 ¢pi 8,7 (37

Therefore at y

32T = g /)7 + z'””f' I
)4

UppUqg

and, since ap; < 0,
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p 1
02322 = L (aqog ) +2 3 Lol -5 +2% it

Upp Au i UpplUqg pp
| Z ]JP
+ A — — An.
(A“)Z Z Upp Z Upp

By the Schwarz inequality
2 Au |M 7 |2
| E u. < == E : aapl
jirl =" "o
P qq
and therefore we can get rid of the terms with third derivatives. We also have

C
A(log ) = NG

22% > CzAMZ—

, u u
I pp ph

(by (12)), and

1/(n—1) 1(n=1)
)T ALY QA 2(&)/"
~ Upj Uy U f

(we may assume n > 2). Therefore, choosing A := C, + 1, at y we get

C S Au\ /D
2 (= —Cy>0.
FAw ” Au ( 7 ) =

Multiplying by £/~ Au we will get at y
(Au)" "D — C4Au—Cs <0,

and thus
Au(y) < Cs.

Therefore o« < a(y) < C; and we get (34). |

An upper bound for Ag for functions satisfying w, > 0 easily gives a bound
mixed complex derivatives of ¢

lo;el = C.
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However, it does not imply the full estimate for the second derivative of ¢:

Example. Set S :={re'' :0<r <1, 7/4 <t <3n/4}and
u() = / log [< — £|dA(©).

Then u;; = ys € L°°(C), and thus u € W,M’7 (C) for every p < oo (which implies

that u € C!(C) for every a < 1 by Morrey’s embedding theorem). However

2 y? 37/4 sin? t — cos? ¢
i (0) = /(2+ 2)201/\(1) // r—dtdr—

and u ¢ W,UC (C) = Cch(O).

The following estimate will enable to apply the real Evans—Krylov theory (see
Sect. 13) directly, without reproving its complex version.

Theorem 25 ([15]). Assume that ¢ € C*(M), w, > 0, w, = fo". Then
IVl < C, (38)

where C depends on n, on upper bounds for |R|, |VR|, ||¢llcorar), Ag,
sup,y | V20, [l fllcr1(ay and a lower (positive) bound for f on M.

Proof. We have to estimate the eigenvalues of the mapping X + Vx V. Since
their sum is under control from below (by —2n), it will be enough to get an upper
bound. The maximal eigenvalue is given by

(Vx Vo, X)
= max ———
XeTM\{0} | X |?

This is a continuous function on M (but not necessarily smooth). Locally we have
Vi, Vo = 0;(g"9,)05 + 3, (8" 07)0, + g7 @3, 0y
= g"0;30, + (8"9) ;9.
Therefore for a real vector field X = X/9; + X*;
(VxVe, X) = 2Re X/ (X ¢t + X'213(¢"9,);)
_ N2 Ixlorly. -
= Dyp+2Re (X' X'g"g;a10,).

where Dy denotes Euclidean directional derivative in direction X .
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Set .
a:=p+ §|qu|2.
We may assume that o attains maximum y in the interior of M. Near y we choose
normal coordinates (¢, = 8jk, &z = &;fm = 0 at y) so that in addition the
matrix (¢,7) is diagonal at y. Take fixed X = (X',..., X") € CV such thatat y
one has | X |>(= Zgj];Xj)Zk) = 1. Near y define

2 . (VXV(pv X)
|X?

and ~
@:= B+ Vol

Then,B~ <8, E(y) =B(y)and @ < a < a(y) = &(y), so that & (which is defined
locally) also has a maximum at y, the same as that of «. The advantage of & is that
it is smooth (this argument goes back to [11]). It remains to estimate B(y) from
above.

The function u := ¢ + g solves (35). Similarly as with (37) we will get at y

qu) - D2g _
Y > Di(log f) + ) Digpi— Y, —
s Upp > 5 Upp

Since f is under control from below, we have D%(log f) > —C; and by

Theorem 24 )

- = Upp = C3-
This, together with the fact that | R| is under control, implies that
D2 _
Zxbrp > —Cy. (39)
o Upp

Using the fact that |X| = 1 and (|X|*), = 0 at y, combined with (36), at y we
will get

Bri = Dy¢p; + 2Re ZXijgjl'kﬁp(Pl
I

1

> D%¢,5 — Cs — CoB,

where we used in addition that |V R| is under control.
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Near y we have
1 2 ik ik ik
S Vel = (87)p0j0r + 8" 0iner + 87700,k
Therefore at y

1
E(lV(plz)pp Z R]kpp¢]¢k + 2Re Z(pjpp(pj + Z |§0]p|2 + 90];];

Jk J j
Since 0ira -
2Re Z PPTJ = 2Re Z(logf)jqoj > —Cy
I j
and
Z |(pjp| — G
Upp

from (39), (40) it follows that at y

op ~
0=y -~ .32 Ciop — Cur. O

Since the estimate depends on a lower bound for f, Theorem 25 cannot be
used in the degenerate case. It is an open problem if one can get rid of this
dependence, this would in particular imply full C'!-regularity of weak geodesics
obtained by Chen [18]. This was shown only under additional assumption that M
has nonnegative bisectional curvature, see [15].

11 Gradient Estimate

If O0M = 0 then Theorem 24 gives an a priori estimate for the Laplacian, and
thus also for the gradient. However, if dM # @ then a direct gradient estimate
is necessary because the boundary estimates from Sect. 12 depend on it.

The estimate for |[Vg| on dM follows easily from the comparison principle: if
h € C°°(M) is harmonic in the interior of M with 47 = ¥ on dM then

Vv <¢p=<h
in M . Therefore on oM we have
IVo| < max{|Vy/|, |Vhl}.

We have the following interior gradient bound from [14] (see also [29, 30]).
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Theorem 26. Let ¢ € C3(M) be such that w, > 0 and w, = fw". Then
Vol = C, (4D

where C depends on n, on upper bounds for osc ¢, supyy, |Vol, f, V(") and
on a lower bound for the bisectional curvature of M .

Proof. We may assume that infy; ¢ = 0 and Cy := sup,,¢ = osc ¢. Set

1

= —|Vo|?
p=IVol

and
a:=logf—yoop,

where y € C®°([0, Cy]) with y” > 0 will be determined later. We may assume that
y attains maximum at y in the interior of M. Near y write u = ¢ + g, where g
is a local potential for w. Similarly as before, we may assume that at y we have
g = 5].,;, & = 0and (u}) is diagonal.

At y we will get

B=> lol?
J

,Bp = Z(pjp(pj + @p(”pﬁ —1)
J

2 2
Boi =D Rytps0i0i + 2Re D upsio5+ ) lojpl + 0
Jk i g

and

ﬁ _
app = % — () +Y")epl> =V 0ps.

where for simplicity we denote y’ o ¢ just by y’ (and similarly for y”). By (36)
3R~ (log f);.
o Upp

Since

1 Riip5%i%i 1
i P L ACLCE T
p Upp 5 Uprp

Jk.p

and (we may assume that §(y) > 1)
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2 G, 1
ERe E (log f)j¢; > =2|V(log f)| > ~ i >-C) e
J )4

we will obtain at y
Upp ’ 1 1 |§0]'P|2 N2 " |§0P|2 ’
0= 2> =C)Y —+ 2> [V +y) L —ny.
> Upp upy B upp o Urp

We have to estimate the term

1 |§0jp|2

Ui
/3 jp pp

from below. For this we will use that fact that o, = 0 at y. Therefore 8, = y'B¢,,
that is

> 0ipe; = (/'B—upp + Doy
J
By the Schwarz inequality

1> eivei < B el
J J

hence
L lepl? 1 OB+ 1—u5)%0,) lop|* 2
_Z ]P_ 2_22 _pp p 2()//)22%—2)/——.
B I Upp B 7 Upp 5 Upp B
This gives
1 lop|* 2
I " 14 li
0> (y _CS)ZE_J/ ZE_(”"’_Z)V ~ 3
p p

We now set y(t) = —t2/2+ (Co+ C3 + 1)t,sothat y” = —l and y’ > 1 in [0, Co).
We will get
1 2
Y s
P

Upj Upj
pp o Upp

Therefore u,; < C¢ and B < (5 at y, and we easily arrive at (41). O
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12 Boundary Second Derivative Estimate

In this section we want to show the a priori estimate
[V?¢| < C

on oM. It is due to Caffarelli et al. [16] if the boundary is strongly pseudoconvex
and to B. Guan [27] in the general case. We will prove the following local result
which is applicable to the case of flat boundary:

Theorem 27. Write Bg = B(0, R) and By = Br N {x" < 0}. Letu,v € C3(By)
be such that (uj,;) > 0, (vj];) > A(8x) for some A > 0,

det(uj,;) =f< det(vj,;).
Assume moreover that u > v on By and u = v on {x" = 0}. Then
|D*u(0)] < C,

where C depends on n, on upper bounds for |[v|lc21(sy) ||f1/"||co.1(3;),
[lul|cor(s5), and on lower bounds for A, R.

Proof. If s,t are tangential directions to {x" = 0} then u,,(0) = v, (0), so |us (0)]
is under control. The main step in the proof is to estimate the tangential-normal
derivative ;. (0). Set r := R/2 and
wi=—@u—v)+ 24 x"(r + x"),
where A; > 0 under control will be determined later. We have w < 0 in B, and
uﬂ;fvﬂ; =-n+ uﬂ;vj,; + A" > —n + /\Zujf + A",
By A1 < -+- = A, denote the eigenvalues of (u;;). Then Zuff = Y 1/A;

and " > 1/A,. Since A;...A, = f, by the inequality between geometric and
arithmetic means we will obtain

. A = A 1 A
ke~ 1
u! ijZ—n-FEZM”-FEZA—j‘FA—n
) (A2 Ay
2—n+52u“+ Fln

> %(1+Zuff) (42)
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for A sufficiently large.
Further define

1 s
Wi (=) + = V)5 — Asz” + Az,

where positive A,, A3 under control will be determined later. Since (u — v), =
(. —v)» = 0on {x" = 0}, we have w < 0 on {x" = 0}. We also have

1
+(u—v), + E(u —v)%| < C
and thus for A, sufficiently large w < 0 on dB, N {x" < 0}. By (36)

- 1 '_
w* (£ w—v), + E(u— v)i”)j]; = +(log f); F u/kvtj,; + (u—v)yn(log f)yn
+ uj];(u—v)ynj(u—v)yn,;

> —Co(1+ Yy wl),

where the last inequality follows from

1 T
—l/n - — JJ
ST
Therefore, from (42) we get
if A3 is chosen sufficiently large. Now from the maximum principle we obtain w < 0
in B and thus
| = ) (0)] < A3(( = v)xn (0) + 2417),

SO
[t (0)] < Cs.

It remains to estimate the normal-normal derivative u,n»(0). At the origin we
can now write

f= det(uj/E) = Upj det(”j/é)j,ksn—l + R = upi det(vjjg)j,ksn—l + R,

where |R| is under control. Therefore
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Cy

0=uni(0) = 5=

and the normal-normal estimate follows. ]

13 Higher Order Estimates

We will make use of a general (real) theory of nonlinear elliptic equations of second
order. They are of the form

F(D?u, Du,u,x) =0, (43)

where ,
F:R" xR"xRxQ2 —R

(L2 is a domain in R™) satisfies two basic assumptions:
F is concave in D2u (44)

and elliptic, that is
oF

a XXt

e = Ag)A L eR”, (45)

for some A > 0.
If by M we denote the set of Hermitian positive matrices then, as one can show
(seee.g. [13,24]),

1
(det A)'/" = —inf{trace (AB) : B € M4, detB =1}, Ae M.
n

Moreover, one can also easily prove the following formula for the minimal
eigenvalue of (u ; ) >0

<8det(uj,;)) det(uj,;)
min = 4

a”)gx, Amax(uj/E) '

(see e.g. [9]). (Here x; denote real variables in C", s = 1,...,2n.)
By Theorem 24 we can assume that

1 .
SIEP <u g/t < cip. sec. (46)

Therefore, if we define F as
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F(D%u.z) := (det(u;p))""" = f(2)

for functions (or rather matrices) satisfying (46) and extend it in a right way to the
set of all symmetric real 2n x 2n-matrices, then F satisfies (44) and (45).

Theorem 28 ([22,23,32,38,46]). Assume that u € C3(Q) solves (43), where F is
C? and satisfies (44) and (45). Then for Q' € Q there exists a € (0, 1) depending
only on upper bounds for ||u||c11(q), || Fllc11q) and a lower bound for A, and C
depending in addition on a lower bound for dist (', 0Q2), such that

| |I/l| |C2.u(Q/) f C

Theorem 29 ([16, 32]). Assume that u, defined in B; := B(0,R) N {x™ > 0},
solves (43) with F satisfying (44) and (45) and u = ¥ on B(0, R) N {x" = 0}.
Then there exists a € (0, 1) and C, depending only on m, A, R, ||u||c11, || F||ci
and ||¥||c3.1, such that

”ullczu(Blj’/z) = C.

Now the standard Schauder theory applied to (the linearization of) F gives the
required a priori estimate (32).
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