PARTIAL DIFFERENTIAL EQUATIONS II

JAGIELLONIAN UNIVERSITY, INSTITUTE OF MATHEMATICS, 2010

ZBIGNIEW BŁOCKI

1. Weak Differentiation

Regularization. Let $\rho \in C_0^{\infty}(\mathbb{R}^n)$ be such that $\rho \geq 0$, $\rho(x)$ depends only on |x|, supp $\rho \subset \overline{B}(0,1)$ and $\int \rho d\lambda = 1$. For $\varepsilon > 0$ set $\rho_{\varepsilon}(y) := \varepsilon^{-n} \rho(y/\varepsilon)$. Then $\rho_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$, supp $\rho_{\varepsilon} \subset \overline{B}(0,\varepsilon)$ and $\int \rho_{\varepsilon} d\lambda = 1$. For any $u \in L^1_{loc}(\Omega)$ we set $u_{\varepsilon} := u * \rho_{\varepsilon}$, that is

$$u_{\varepsilon}(x) = \int_{\Omega} u(y)\rho_{\varepsilon}(x-y)d\lambda(y)$$
$$= \int_{B(0,\varepsilon)} u(x-y)\rho_{\varepsilon}(y)d\lambda(y)$$
$$= \int_{B(0,1)} u(x-\varepsilon y)\rho(y)d\lambda(y)$$

(note that the first integral is in fact over $B(x,\varepsilon)$). The function u_{ε} is defined in the set

$$\Omega_{\varepsilon} := \{ x \in \Omega : B(x, \varepsilon) \subset \Omega \}.$$

Theorem 1.1. *i*) $u_{\varepsilon} \to u$ pointwise almost everywhere as $\varepsilon \to 0$.

ii) If $u \in C(\Omega)$ then $u_{\varepsilon} \to u$ locally uniformly as $\varepsilon \to 0$.

iii) For $p \geq 1$ if $u \in L^p_{loc}(\Omega)$ then $u_{\varepsilon} \to u$ in $L^p_{loc}(\Omega)$ (that is in $L^p_{loc}(\Omega')$ for $\Omega' \Subset \Omega$) as $\varepsilon \to 0$.

Proof. i) By the Lebesgue differentiation theorem for almost all x we have

$$\lim_{\varepsilon \to 0} \frac{1}{\lambda(B(x,\varepsilon))} \int_{B(x,r)} |u(y) - u(x)| \, d\lambda(y) = 0.$$

For such an x

$$\begin{aligned} |u_{\varepsilon}(x) - u(x)| &\leq \int_{B(x,\varepsilon)} \rho_{\varepsilon}(x-y) |u(y) - u(x)| d\lambda(y) \\ &\leq \frac{C}{\lambda(B(x,\varepsilon))} \int_{B(x,\varepsilon)} |u(y) - u(x)| d\lambda(y). \end{aligned}$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

ii) We have

$$|u_{\varepsilon}(x) - u(x)| \le \int_{B(0,\varepsilon)} |u(x - y) - u(x)|\rho_{\varepsilon}(y)d\lambda|y| \le \sup_{B(0,\varepsilon)} |u - u(x)|$$

and the convergence follows because continuous functions are locally uniformly continuous.

iii) We first estimate by Hölder's inequality

$$|u_{\varepsilon}(x)|^{p} \leq \int_{B(0,\varepsilon)} |u(x-y)|^{p} \rho_{\varepsilon}(y) d\lambda(y).$$

Integrating over x we will get

$$\|u_{\varepsilon}\|_{L^{p}(\Omega_{\varepsilon})} \leq \|u\|_{L^{p}(\Omega)}.$$

For every $\delta > 0$ there exists $v \in C_0(\Omega)$ with $||v - u||_p \leq \delta$ (this is a consequence of Lusin's theorem). Then for sufficiently small ε

$$||u_{\varepsilon} - u|| \le ||u_{\varepsilon} - v_{\varepsilon}|| + ||v_{\varepsilon} - v|| + ||v - u||$$

(with norms in $L^p(\Omega')$ for a fixed $\Omega' \subseteq \Omega$). We have

$$||u_{\varepsilon} - v_{\varepsilon}|| \le ||u - v||_p \le \delta,$$

thus

$$||u_{\varepsilon} - u|| \le 2\delta + ||v_{\varepsilon} - v||$$

and it is enough to use ii). \Box

Weak differentiation. We will use the notation

$$D_j = \frac{\partial}{\partial x_j}, \quad D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}},$$

where j = 1, ..., n, $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. Ω will denote a domain in \mathbb{R}^n . By Stokes' theorem we have

$$\int_{\Omega} \varphi \, D^{\alpha} u \, d\lambda = (-1)^{|\alpha|} \int_{\Omega} u \, D^{\alpha} \varphi \, d\lambda$$

for $u \in C^{|\alpha|}(\Omega)$, $\varphi \in C_0^{|\alpha|}(\Omega)$. Now for $u, v \in L^1_{loc}(\Omega)$ we say that $v = D^{\alpha}u$ in the weak sense if

$$\int_{\Omega} \varphi \, v \, d\lambda = (-1)^{|\alpha|} \int_{\Omega} u \, D^{\alpha} \varphi \, d\lambda, \quad \varphi \in C_0^{|\alpha|}(\Omega).$$

The function v, if exists, is determined almost everywhere.

 $\mathbf{2}$

Exercise 1. Set $u(x) := |x| \in L^1_{loc}(\mathbb{R})$. Show, directly from the definition, that u'does exist but u'' does not.

One can easily show that for the weak differentiation we also have $D^{\alpha}D^{\beta}$ = $D^{\alpha+\beta}$.

Differentiating under the sign of integration, we see that

$$D^{\alpha}u_{\varepsilon} = u * D^{\alpha}\rho_{\varepsilon}$$

(in the strong sense) and $u_{\varepsilon} \in C^{\infty}(\Omega_{\varepsilon})$.

Proposition 1.2. If $D^{\alpha}u$ exists in the weak sense then

$$D^{\alpha}u_{\varepsilon} = (D^{\alpha}u)_{\varepsilon}.$$

Proof. We have

$$D^{\alpha}u_{\varepsilon}(x) = \int_{\Omega} u(y)D^{\alpha}\rho_{\varepsilon}(x-y)d\lambda(y)$$
$$= (-1)^{|\alpha|}\int_{\Omega} u D^{\alpha}(\rho_{\varepsilon}(\cdot-y))d\lambda$$
$$= (D^{\alpha}u)_{\varepsilon}(x). \quad \Box$$

Sobolev Spaces. For k = 1, 2, ... and $p \ge 1$ define

$$W^{k,p}(\Omega) := \{ u \in L^p_{loc}(\Omega) : D^{\alpha}u \in L^p(\Omega) \text{ if } |\alpha| \le k \}.$$

This is a Banach space with the norm

$$\|u\|_{W^{k,p}(\Omega)} := \left(\int_{\Omega} \sum_{|\alpha| \le k} |D^{\alpha}u|^p \, d\lambda\right)^{1/p}.$$

One can easily check that

$$\sum_{|\alpha| \le k} \|D^{\alpha}u\|_p$$

(where we use the notation $\|\cdot\|_p = \|\cdot\|_{L^p(\Omega)}$) is an equivalent norm. Of course

 $W_{loc}^{k,p}(\Omega)$ will denote the class of those functions that belong to $W^{k,p}(\Omega')$ for $\Omega' \subseteq \Omega$. The case p = 2 is special because $W^{k,2}(\Omega)$ is a Hilbert space. It is often denoted by $H^k(\Omega)$.

Proposition 1.3. For $u \in W_{loc}^{k,p}(\Omega)$ we have $u_{\varepsilon} \to u$ in $W_{loc}^{k,p}(\Omega)$ as $\varepsilon \to 0$.

Proof. It follows immediately from Proposition 1.2 and Theorem 1.1.iii. \Box

Proposition 1.4. $C^{\infty} \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Proof. Let $\psi_j \in C_0^{\infty}(\Omega)$ be a partition of unity in Ω (that is $\sum_j \psi_j = 1$ and the sum is locally finite). Fix $u \in W^{k,p}(\Omega)$ and $\delta > 0$. For every j we can find ε_j sufficiently small so that

$$\|(\psi_j u)_{\varepsilon_j} - \psi_j u\|_{W^{k,p}(\Omega)} \le \frac{\delta}{2^j}$$

and so that the sum

$$v := \sum_{j} (\psi_j u)_{\varepsilon_j}$$

is locally finite. It follows that $v \in C^{\infty}(\Omega)$ and $||u - v||_{W^{k,p}(\Omega)} \leq \delta$. \Box

By $W_0^{k,p}(\Omega)$ we will denote the closure of $C_0^k(\Omega)$ in $W^{k,p}(\Omega)$. From Proposition 1.3 it follows that if $u \in W^{k,p}(\Omega)$ has compact support then $u \in W_0^{k,p}(\Omega)$.

Theorem 1.5 (Sobolev). For p < n we have $W_0^{1,p}(\Omega) \subset L^{np/(n-p)}(\Omega)$ and

(1.1)
$$\|u\|_{np/(n-p)} \le C(n,p) \|Du\|_p, \quad u \in W_0^{1,p}(\Omega).$$

Proof. It is enough to show the Sobolev inequality (1.1) for $u \in C_0^1(\mathbb{R}^n)$. First assume that p = 1. We clearly have

$$|u(x)| \le \int_{\mathbb{R}} |D_j u| \, dx_j$$

and the right-hand side is a function in \mathbb{R}^n independent of x_j . We thus have

$$\begin{split} \int_{\mathbb{R}} |u|^{n/(n-1)} dx_1 &\leq \int_{\mathbb{R}} \prod_{j=1}^n \left(\int_{\mathbb{R}} |D_j u| dx_j \right)^{1/(n-1)} dx_1 \\ &= \left(\int_{\mathbb{R}} |D_1 u| dx_1 \right)^{1/(n-1)} \int_{\mathbb{R}} \prod_{j=2}^n \left(\int_{\mathbb{R}} |D_j u| dx_j \right)^{1/(n-1)} dx_1 \\ &\leq \left(\int_{\mathbb{R}} |D_1 u| dx_1 \right)^{1/(n-1)} \prod_{j=2}^n \left(\int_{\mathbb{R}^2} |D_j u| dx_1 dx_j \right)^{1/(n-1)} \end{split}$$

by Hölder's inequality. Proceeding further we obtain similarly

$$\begin{split} \int_{\mathbb{R}^2} |u|^{n/(n-1)} dx_1 dx_2 &\leq \left(\int_{\mathbb{R}^2} |D_1 u| dx_1 dx_2 \right)^{1/(n-1)} \left(\int_{\mathbb{R}^2} |D_2 u| dx_1 dx_2 \right)^{1/(n-1)} \\ &\prod_{j=3}^n \left(\int_{\mathbb{R}^3} |D_j u| dx_1 dx_2 dx_j \right)^{1/(n-1)} \end{split}$$

and eventually

$$\|u\|_{n/(n-1)} \le \left(\prod_{j=1}^n \int_{\mathbb{R}^n} |D_j u| \, d\lambda\right)^{1/n}.$$

From the inequality between geometric and arithmetic means we get

$$||u||_{n/(n-1)} \le \frac{1}{n} \int_{\mathbb{R}^n} \sum_{j=1}^n |D_j u| \, d\lambda \le \frac{1}{\sqrt{n}} ||Du||_1.$$

For arbitrary p set $\tilde{u} := |u|^q$ for some q > 1. Then $D_j \tilde{u} = q|u|^{q-1} D_j u$ and $|D\tilde{u}| = q|u|^{q-1} |Du|$, therefore

$$\begin{aligned} \|u\|_{qn/(n-1)}^{q} &= \|\widetilde{u}\|_{n/(n-1)} \leq \frac{1}{\sqrt{n}} \|D\widetilde{u}\|_{1} \\ &= \frac{q}{\sqrt{n}} \int_{\mathbb{R}^{n}} |u|^{q-1} |Du| \, d\lambda \leq \frac{q}{\sqrt{n}} \left(\int_{\mathbb{R}^{n}} |u|^{p'(q-1)} \, d\lambda \right)^{1/p'} \|Du\|_{p} \end{aligned}$$

by Hölder's inequality, where 1/p + 1/p' = 1. We now solve qn/(n-1) = p'(q-1)in q and get q = (n-1)p/(n-p) (since p < n, we have q > 1). We thus obtain

$$||u||_{np/(n-p)} \le \frac{(n-1)p}{\sqrt{n(n-p)}} ||Du||_p.$$

Corollary 1.6. For p < n one has $W_{loc}^{1,p} \subset L_{loc}^{np/(n-p)}$.

Proof. For $\Omega' \Subset \Omega'' \Subset \Omega$ choose $\psi \in C_0^{\infty}(\Omega'')$ with $\psi = 1$ in Ω' . Then for $u \in W^{1,p}(\Omega'')$ we have $\psi u \in W_0^{1,p}(\Omega'')$ (this is because directly from the definition of weak differentiation we have

$$D_j(\psi u) = D_j \psi u + \psi D_j u)$$

and the result follows. $\hfill \square$

Exercise 2. Show that

$$|x|^{\alpha} \in L^q_{loc}(\mathbb{R}^n) \iff \alpha > -n/q \quad and \quad |x|^{\alpha} \in W^{1,p}_{loc}(\mathbb{R}^n) \iff \alpha > 1 - n/p.$$

Conclude that the exponent np/(n-p) in the Sobolev theorem is optimal for every $1 \le p < n$.

Theorem 1.7 (Morrey). For p > n we have $W_0^{1,p}(\Omega) \subset C^{0,1-n/p}(\overline{\Omega})$. Moreover, for $u \in W_0^{1,p}(\Omega)$

(1.2)
$$\frac{|u(x) - u(y)|}{|x - y|^{1 - n/p}} \le C(n, p) \|Du\|_p, \quad x, y \in \Omega, \ x \neq y.$$

Proof. We claim that it is enough to show Morrey's inequality (1.2) for $u \in C_0^1(\mathbb{R}^n)$. For if $u \in W_0^{1,p}(\Omega)$ and $u_j \in C_0^1(\Omega) \subset C_0^1(\mathbb{R}^n)$ are such that $u_j \to u$ in $W^{1,p}(\Omega)$ and pointwise almost everywhere (because from every sequence converging in L_{loc}^1 one can choose a subsequence converging pointwise almost everywhere) then it follows that (1.2) holds almost everywhere, and thus everywhere.

Assume therefore that $u \in C_0^1(\mathbb{R}^n)$ and denote r = |x - y|. Let B any closed ball of radius R containing x and y. Then $r \leq 2R$ and $B \subset B(x, r + R) \subset B(x, 3R)$. We have, assuming for simplicity that x = 0,

(1.3)
$$u(y) - u(0) = \int_0^r \frac{d}{d\rho} u\left(\rho \frac{y}{|y|}\right) d\rho = \int_0^r \langle Du\left(\rho \frac{y}{|y|}\right), \frac{y}{|y|} \rangle d\rho.$$

 Set

$$u_B := \frac{1}{\lambda(B)} \int_B u \, d\lambda$$

and

$$V(x) := \begin{cases} |Du(x)|, & x \in B\\ 0, & x \notin B. \end{cases}$$

Integrating (1.3) over B w.r.t. y we can estimate

$$\begin{split} \lambda(B)|u_B - u(0)| &\leq \int_B \int_0^r V\left(\rho \frac{y}{|y|}\right) d\rho \, d\lambda(y) \\ &\leq \int_0^{2R} \int_{B(0,3R)} V\left(\rho \frac{y}{|y|}\right) d\lambda(y) \, d\rho \\ &= \int_0^{3R} \int_0^{3R} t^{n-1} dt \int_{|\omega|=1} V(\rho\omega) d\sigma(\omega) \, d\rho \\ &= \frac{(3R)^n}{n} \int_B |y|^{1-n} |Du(y)| d\lambda(y) \\ &\leq \frac{(3R)^n}{n} \|Du\|_p \left(\int_B |y|^{(1-n)p'} d\lambda(y)\right)^{1/p'} \end{split}$$

where 1/p + 1/p' = 1. Since

$$\int_{B} |y|^{(1-n)p'} d\lambda(y) \le \int_{B(0,3R)} |y|^{(1-n)p'} d\lambda(y)$$
$$= c_n \int_{0}^{3R} \rho^{(n-1)(1-p')} d\rho$$
$$= c'_n R^{n+p'(1-n)}$$

and n/p' + 1 - n = 1 - n/p, we now get

$$|u_B - u(x)| \le C(n, p)R^{1-n/p} ||Du||_p$$

and

$$|u(x) - u(y)| \le |u_B - u(x)| + |u_B - u(y)| \le 2C(n, p)R^{1-n/p} ||Du||_p.$$

From the proof we can deduce the following estimate:

Theorem 1.8. Assume that B is an open ball with radius R and $u \in W^{1,p}(B)$ for some p > n. Then for $x, y \in B$

$$|u(x) - u(y)| \le C(n,p)R^{1-n/p} ||Du||_{L^p(B)}.$$

6

Proof. By the proof of Theorem 1.7 the inequality holds for $u \in C^1 \cap W^{1,p}(B)$. For general u we can now use Proposition 1.4 to get it for almost all x, y. But since, by Morrey's theorem, u is in particular continuous, the theorem follows. \Box

We also have the following counterpart of Corollary 1.6 (with the same proof):

Corollary 1.9. For p > n we have $W^{1,p}_{loc}(\Omega) \subset C^{0,1-n/p}(\Omega)$. \Box

Exercise 3. Considering again the function $|x|^{\alpha}$ show that the Hölder exponent 1 - n/p in Morrey's theorem is optimal.

Morrey's theorem for $p = \infty$ asserts that functions from $W_{loc}^{1,\infty}$ are locally Lipschitz continuous. In fact in this case the opposite also holds:

Theorem 1.10. We have $W_{loc}^{1,\infty} = C^{0,1}$.

Proof. \subset follows from Morrey's theorem but we can in fact show it independently. For $u \in W^{1,\infty}(\Omega)$ we have

$$|Du_{\varepsilon}(x)| = |(Du)_{\varepsilon}| \le ||Du||_{\infty}$$

and

$$|u_{\varepsilon}(x) - u_{\varepsilon}(y)| \le ||Du||_{\infty} |x - y|$$

(if Ω is convex). Therefore for almost all $x, y \in \Omega_{\varepsilon}$

$$|u(x) - u(y)| \le ||Du||_{\infty} |x - y|,$$

and thus for all $x, y \in \Omega$.

On the other hand, take Lipschitz continuous u with compact support. For $h \neq 0$ consider the difference quotient

$$D_j^h u(x) = \frac{u(x+he_j) - u(x)}{h}.$$

Then $|D_j^h u(x)| \leq C$ and by the Banach-Alaoglu theorem there exists a sequence $h_m \to 0$ and $v_j \in L^{\infty}(\mathbb{R}^n)$ such that $D_j^{h_m} u(x) \to v_j$ weakly in $L^2(\mathbb{R}^n)$. Then for $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} u \, D_j \varphi \, d\lambda = \lim_{m \to \infty} \int_{\mathbb{R}^n} u \, D_j^{-h_m} \varphi \, d\lambda$$
$$= -\lim_{m \to \infty} \int_{\mathbb{R}^n} D_j^{h_m} u \, \varphi \, d\lambda$$
$$= -\int_{\mathbb{R}^n} v_j \, \varphi \, d\lambda$$

and $v_j = D_j u$ weakly. \Box

Iterating the Sobolev theorem we will get

$$W_{loc}^{k,p} \subset W_{loc}^{k-1,np/(n-p)} \subset W_{loc}^{k-2,np/(n-2p)} \subset \dots \subset L_{loc}^{np/(n-kp)}$$

provided that p < n/k. If p is such that n/(j+1) then

$$W_{loc}^{k,p} \subset W_{loc}^{k-j,np/(n-jp)} \subset C^{k-j-1,j+1-n/p}$$

(we may denote the latter as $C^{k-n/p}$) by Morrey's theorem. We thus get:

Theorem 1.11. Let $p \ge 1$ and k = 1, 2, ... If p < n/k then $W_{loc}^{k,p} \subset L_{loc}^{np/(n-kp)}$. For p > n/k such that $p \ne n/j$ for j = 1, ..., k-1 we have $W_{loc}^{k,p} \subset C^{k-n/p}$. \Box

For p = 1, without invoking neither Sobolev nor Morrey's theorems, one can show in a simple way that $W_{loc}^{k,1} \subset C^{k-n}$, where $k \ge n$, proceeding as follows:

Exercise 4. Prove that:

i) $||u||_{\infty} \leq ||D_1 \dots D_n u||_1$ *if* $u \in C_0^{\infty}(\mathbb{R}^n)$;

ii) $u_{\varepsilon} \to u$ uniformly as $\varepsilon \to 0$ if $u \in W^{n,1}(\mathbb{R}^n)$ has compact support.

Conclude that $W_{loc}^{n,1} \subset C$ and then that $W_{loc}^{k,1} \subset C^{k-n}$.

In particular we have $W_{loc}^{1,n} \subset C$ if n = 1. This is however no longer true for $n \geq 2$:

Exercise 5. Show the function $\log(-\log |x|)$ is in $W_{loc}^{1,n}$ near the origin for $n \ge 2$ but not for n = 1.

It shows that the second part of Theorem 1.11 is not true for p = n/j.

Differentiability almost everywhere. As an application of Morrey's inequality we will get the following:

Theorem 1.12. For p > n functions from $W_{loc}^{1,p}$ are differentiable almost everywhere.

Proof. By the Lebesgue differentiation theorem for almost all x

$$\lim_{r \to 0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |Du(y) - Du(x)|^p d\lambda(y) = 0,$$

where $Du = (D_1u, \ldots, D_nu)$ and $D_ju \in L_{loc}^p$. Fix such an x and set

$$v(y) := u(y) - u(x) - \langle Du(x), y - x \rangle.$$

Then by Theorem 1.8 with B = B(x, R) and R = r = 2|x - y|

$$\frac{|v(y)|}{|x-y|} \le C_1 r^{-n/p} ||Dv||_{L^p(B(x,r))}$$
$$= C_2 \left(\frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |Du(z) - Du(x)|^p d\lambda(z) \right)^{1/p}$$

and it converges to 0 as $r \to 0$. It follows that Du(x) is the classical derivative of u at x. \Box

Corollary 1.13 (Rademacher). Lipschitz continuous functions are differentiable almost everywhere. \Box

Compactness. It will be important for the existence theorems later on to know when the imbedding in the Sobolev theorem is compact.

Theorem 1.14 (Rellich-Kondrachov). Assume that Ω is bounded. Then for p < n and q < np/(n-p) the embedding $W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact (that is continuous and images of bounded sets are relatively compact).

Proof. Continuity is a consequence of the Sobolev inequality. We first show compactness for q = 1. Let \mathcal{A} be a bounded set in $W_0^{1,p}(\Omega)$, without loss of generality we may assume that $\mathcal{A} \subset C_0^1(\mathbb{R}^n)$ with $||u||_{W^{1,p}(\Omega)} \leq 1$ for $u \in \mathcal{A}$ and $\operatorname{supp} u \subset \Omega$. Fix $\widetilde{\Omega}$ with $\Omega \Subset \widetilde{\Omega} \Subset \mathbb{R}^n$ and for $\varepsilon > 0$ sufficiently small define $\mathcal{A}_{\varepsilon} := \{u_{\varepsilon} : u \in \mathcal{A}\} \subset C_0^1(\widetilde{\Omega})$. We have

$$|u_{\varepsilon}(x)| \leq \int_{B(x,\varepsilon)} |u(y)| \rho_{\varepsilon}(x-y) d\lambda(y) \leq \sup \rho_{\varepsilon} ||u||_{1} \leq \sup \rho_{\varepsilon}$$

and similarly

$$|Du_{\varepsilon}(x)| \le \sup |D\rho_{\varepsilon}|.$$

It follows that $\mathcal{A}_{\varepsilon}$ is equicontinuous and from the Arzela-Ascoli theorem we deduce that $\mathcal{A}_{\varepsilon}$ is relatively compact in $L^{1}(\widetilde{\Omega})$ for every single ε .

We also have

$$\begin{aligned} |u_{\varepsilon}(x) - u(x)| &\leq \int_{B(0,\varepsilon)} \rho_{\varepsilon}(y) |u(x-y) - u(x)| \, d\lambda(y) \\ &= \int_{B(0,\varepsilon)} \rho_{\varepsilon}(y) \Big| \int_{0}^{1} \frac{d}{dt} u(x-ty) \, dt \Big| \, d\lambda(y) \\ &\leq \varepsilon \int_{B(0,\varepsilon)} \rho_{\varepsilon}(y) \int_{0}^{1} |Du(x-ty)| \, dt \, d\lambda(y) \end{aligned}$$

and thus, integrating w.r.t. x

$$||u_{\varepsilon} - u||_1 \le \varepsilon ||Du||_1 \le \varepsilon \lambda(\Omega)^{1 - 1/p} ||Du||_p.$$

It is now sufficient to use the following simple fact:

Lemma 1.15. Let V be a Banach space with the following property: for every $u \in V$ and $\varepsilon > 0$ there exists $u_{\varepsilon} \in V$ with $||u - u_{\varepsilon}|| \leq C\varepsilon$ for some uniform constant C. Assume moreover that \mathcal{A} is a bounded subset of V such that for every $\varepsilon > 0$ the set $\mathcal{A}_{\varepsilon} := \{u_{\varepsilon} : u \in \mathcal{A}\}$ is relatively compact. Then \mathcal{A} is relatively compact.

Proof. We have to show that every sequence u_m in \mathcal{A} has a convergent subsequence. For $\delta > 0$ set $\varepsilon := C/\delta$. We can find a subsequence $u_{m_j,\varepsilon}$ such that $||u_{m_j,\varepsilon}-u_{m_k,\varepsilon}|| \le \delta$ for all j, k, and by the assumption $||u_{m_j}-u_{m_k}|| \le 3\delta$. Using the diagonal method we will now easily get a Cauchy subsequence of u_m . \Box

Proof of Theorem 1.14, continued. For q > 1 from Hölder's inequality we infer, if $0 \le \lambda < 1$,

$$||u_{\varepsilon} - u||_q^q \le ||u_{\varepsilon} - u||_1^{\lambda} ||u_{\varepsilon} - u||_{(q-\lambda)/(1-\lambda)}^{q-\lambda}.$$

We choose λ with $(q - \lambda)/(1 - \lambda) = np/(n - p) =: \mu$, that is $\lambda = (\mu - q)/(\mu - 1)$ (note that $\mu > q > 1$). By the Sobolev inequality

$$||u_{\varepsilon} - u||_q \le C ||u_{\varepsilon} - u||_1^{\lambda/q}$$

and we can use the previous part. \Box

2. Elliptic Equations of Second Order

We will consider second order operators in divergence form

(2.1)
$$Lu := D_i(a^{ij}D_ju) + b^i D_i u + cu,$$

where a^{ij}, b^i, c are functions defined in Ω , $a^{ij} = a^{ji}$. Note that operators in nondivergence form

$$a^{ij}D_iD_ju + b^iD_iu + cu$$

can be written in divergence form

$$D_i(a^{ij}D_ju) + (b^i - D_ia^{ij})D_iu + cu$$

provided that a^{ij} are sufficiently regular.

A function u is a weak solution of the equation

$$Lu = f$$

if

$$-\mathcal{L}(u, \varphi) = \int_{\Omega} f \varphi \, d\lambda, \quad \varphi \in C_0^{\infty}(\Omega),$$

where

$$\mathcal{L}(u,v) = \int_{\Omega} a^{ij} D_i u \, D_j v \, d\lambda - \int_{\Omega} \left(b^i D_i u + c u \right) v d\lambda.$$

The equation (2.2) makes sense for $u \in W^{1,2}_{loc}(\Omega)$ and $a^{ij}, b^i, c, f \in L^2_{loc}(\Omega)$. We can also write $Lu \ge 0$ if $-\mathcal{L}(u, \varphi) \ge 0$ for $\varphi \in C^{\infty}_0(\Omega)$ with $\varphi \ge 0$. On the other hand, the definition of $\mathcal{L}(u, v)$ makes sense for $u, v \in W^{1,2}(\Omega)$ if

(2.3)
$$a^{ij}, b^i, c \in L^{\infty}(\Omega).$$

We can also impose weak boundary condition: for $u, \varphi \in W^{1,2}(\Omega)$ we say that $u = \varphi$ on $\partial\Omega$ if $u - \varphi \in W^{1,2}_0(\Omega)$. We will say that $u \leq \varphi$ on $\partial\Omega$ if $(u - \varphi)^+ \in W^{1,2}_0(\Omega)$ (where $u^+ := \max\{u, o\}$). We will need a simple fact:

Lemma 2.1. If $u \in W^{1,p}(\Omega)$ then $u^+ \in W^{1,p}(\Omega)$ and $D(u^+) = \chi_{\{u>0\}}Du$.

Proof. Let $\rho \in C^{\infty}(\mathbb{R})$ be such that $\rho(t) = 0$ for $t \leq -1$, $\rho(t) = t$ for $t \geq 1$ and $\rho' \geq 0$. For $\varepsilon > 0$ define $\rho_{\varepsilon}(t) := \varepsilon \rho(t/\varepsilon)$. Then $\rho_{\varepsilon} \in C^{\infty}(\mathbb{R})$, $\rho_{\varepsilon}(t) = 0$ for $t \leq -\varepsilon$, $\rho(t) = t$ for $t \geq \varepsilon$ and ρ_{ε} decreases to t^+ as ε decreases to 0.

The sequence $\rho_{\varepsilon} \circ u$ decreases to u^+ . Using Proposition 1.4 one can show that for $\varphi \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} \rho_{\varepsilon} \circ u \, D_j \varphi \, d\lambda = - \int_{\Omega} \varphi \, \rho_{\varepsilon}' \circ u \, D_j u \, d\lambda$$

Therefore

$$\int_{\Omega} u^{+} D_{j} \varphi \, d\lambda = -\lim_{\varepsilon \to 0} \int_{\Omega} \varphi \, \rho_{\varepsilon}' \circ u \, D_{j} u \, d\lambda = -\int_{\Omega} \varphi \, \chi_{\{u>0\}} \, D_{j} u \, d\lambda. \quad \Box$$

10

The operator (2.1) is called *uniformly elliptic* if there exists a constant $\lambda > 0$ such that

(2.4)
$$a^{ij}\zeta_i\zeta_j \ge \lambda |\zeta|^2, \quad \zeta \in \mathbb{R}^n,$$

that is the lowest eigenvalue of the matrix $(a^{ij}(x))$ is $\geq \lambda$ for every $x \in \Omega$.

Dirichlet problem. From now on we will always assume that L satisfies (2.3), (2.4), and that Ω is a bounded domain. We will analyze existence and uniqueness of solutions of the Dirichlet problem

(2.5)
$$\begin{cases} Lu = f\\ u = \varphi \text{ on } \partial\Omega \end{cases}$$

for $f \in L^2(\Omega)$ and $\varphi \in W^{1,2}(\Omega)$. We will concentrate on the zero-value boundary problem

(2.6)
$$\begin{cases} Lu = f\\ u = 0 \text{ on } \partial\Omega \end{cases}$$

It will be essentially no loss of generality:

Remark (reduction to $\varphi = 0$). Clearly uniqueness for (2.5) and (2.6) is equivalent. If \tilde{u} solves

$$\begin{cases} L\widetilde{u} = f - L\varphi\\ \widetilde{u} = 0 \text{ on } \partial\Omega \end{cases}$$

then $u = \tilde{u} + \varphi$ solves (2.5), but we have to assume in addition that $L\varphi \in L^2(\Omega)$, whereas in general we are only guaranteed that $L\varphi \in L^1(\Omega)$. To get around this problem one can consider a more general equation than (2.2)

$$(2.2') Lu = f + D_i f^i,$$

where $f^i \in L^2(\Omega)$. A function u is a weak solution of this if

$$-\mathcal{L}(u,\varphi) = \int_{\Omega} f \,\varphi \, d\lambda - \int_{\Omega} f^i D_i \varphi \, d\lambda, \quad \varphi \in C_0^{\infty}(\Omega),$$

or more generally $\varphi \in W_0^{1,2}(\Omega)$. It turns out that the results below also hold for (2.2') replaced with (2.2). Then however

$$f + D_i f^i - L\varphi = f - b^i D_i \varphi - c\varphi + D_i \left(f^i - a^{ij} D_j \varphi \right)$$

and now the problem reduces to $\varphi = 0$ without any problem.

Exercise 6. Find all $\sigma \in \mathbb{R}$ for which the problem

$$\begin{cases} u'' - \sigma u = 0\\ u(0) = u(1) = 0 \end{cases}$$

has a nonzero smooth solution.

The main tool will be Hilbert space methods, namely the following result:

Theorem 2.3 (Lax-Milgram). Let B be a bilinear form on a Hilbert space H such that

$$|B(x,y)| \le C ||x|| ||y||$$

and

$$|B(x,x)| \ge c \|x\|^2$$

for some positive constants C, c and all $x, y \in H$. Then for any $f \in H'$ there exists unique $x \in H$ with

$$f(y) = B(x, y), \quad y \in H$$

In other words, the mapping

$$H \ni x \longmapsto B(x, \cdot) \in H'$$

is bijective.

Proof. By the Riesz theorem, which says that the mapping

$$H \ni x \longmapsto \langle x, \cdot \rangle \in H'$$

is bijective, we get

 $T:H\longrightarrow H$

given by

$$B(x, \cdot) = \langle Tx, \cdot \rangle, \quad x \in H.$$

By the Riesz theorem again it suffices to show that T is bijective. It is clear that T is linear, by the assumptions we have moreover

$$c||x|| \le ||Tx|| \le C||x||, \quad x \in H.$$

It follows that T is one-to-one and has closed range (the latter by the Banach-Alaoglu theorem). If x is perpendicular to the range then in particular $0 = \langle Tx, x \rangle = B(x, x)$, and thus x = 0. Therefore T is onto. \Box

Of course, if B is in addition symmetric then it is another scalar product in H and in this case the Lax-Milgram theorem is a direct consequence of the Riesz theorem.

We first check the assumptions of the Lax-Milgram theorem for \mathcal{L} and the Hilbert space $H = W_0^{1,2}(\Omega)$.

Proposition 2.4. For $u, v \in W^{1,2}(\Omega)$ we have

$$|\mathcal{L}(u,v)| \le C ||u||_{W^{1,2}(\Omega)} ||v||_{W^{1,2}(\Omega)}$$

and

$$\mathcal{L}(u,u) \ge \frac{\lambda}{2} \int_{\Omega} |Du|^2 d\lambda - C \int_{\Omega} u^2 d\lambda,$$

where C depends only on λ , n and an upper bound for the coefficients of L.

12

Proof. The first part is a consequence of the Schwarz inequality. On the other hand,

$$\mathcal{L}(u,u) \ge \lambda \int_{\Omega} |Du|^2 d\lambda - C_1 \int_{\Omega} |Du| |u| d\lambda - C_2 \int_{\Omega} u^2 d\lambda.$$

The desired inequality now easily follows, since for every $\varepsilon > 0$

$$2|Du| |u| \le \varepsilon |Du|^2 + \frac{1}{\varepsilon} u^2. \quad \Box$$

The following result is an easy consequence of the Lax-Milgram theorem and Proposition 2.4:

Theorem 2.5. There exists $\mu_0 \ge 0$ depending only on L such that for every $\mu \ge \mu_0$ and every $f \in L^2(\Omega)$ the problem

$$\begin{cases} Lu - \mu u = f \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

has a unique solution in $W^{1,2}(\Omega)$.

Proof. For the operator $\tilde{L}u = Lu - \mu u$ the associated form is

$$\mathcal{L}(u,v) = \mathcal{L}(u,v) + \mu \langle u, v \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product in $L^2(\Omega)$. Then for $\mu \geq \lambda/2 + C$ (where C is the constant from Proposition 2.4) we have

$$\widetilde{\mathcal{L}}(u,u) \ge \frac{\lambda}{2} \|u\|_{W^{1,2}(\Omega)}^2.$$

By the Lax-Milgram theorem for $f \in L^2(\Omega)$ there exists unique $u \in W_0^{1,2}(\Omega)$ with

$$\widetilde{\mathcal{L}}(u,v) = -\int_{\Omega} f v \, d\lambda, \quad v \in W_0^{1,2}(\Omega).$$

Theorem 2.6 (Fredholm alternative). For a given operator L precisely one of the following statements holds:

i) either for every $f \in L^2(\Omega)$ the equation Lu = f has a unique solution in $W_0^{1,2}(\Omega)$;

ii) or there exists a nonzero $u \in W_0^{1,2}(\Omega)$ such that Lu = 0.

Proof. Let μ , given by Theorem 2.5, be such that the equation

$$Lu - \mu u = g$$

is uniquely solvable in $W_0^{1,2}(\Omega)$ for $g \in L^2(\Omega)$. In other words, we have a well defined operator $\widetilde{L}^{-1} = L^2(\Omega) = - W_0^{1,2}(\Omega)$

$$L^{-1}: L^2(\Omega) \to W^{1,2}_0(\Omega),$$

where $\tilde{L}u = Lu - \mu u$. Now the equation Lu = f is equivalent to $\tilde{L}u = f - \mu u$, which means that $u = \tilde{L}^{-1}(f - \mu u)$. We can write it as

$$u - Tu = h$$
,

where $T = -\mu \widetilde{L}^{-1}$ and $h = \widetilde{L}^{-1} f$. If $\widetilde{L}u = g$ then by the proof of Theorem 2.5

$$\frac{\lambda}{2} \|u\|_2^2 \le \widetilde{L}(u, u) = -\langle g, u \rangle \le \|g\|_2 \|u\|_2.$$

It follows that

$$||Tg||_2 \le \frac{2\mu}{\lambda} ||g||_2, \quad g \in L^2(\Omega).$$

Therefore the linear operator

$$T: L^2(\Omega) \to L^2(\Omega)$$

is bounded. Since the range of T is contained in $W_0^{1,2}(\Omega)$, by the Rellich-Kondrachov theorem we infer that T is also compact.

To finish the proof it now suffices to use the following fact from functional analysis:

Theorem 2.7. Let H be a Hilbert space and $T : H \to H$ a compact linear operator such that ker $(I - T) = \{0\}$. Then I - T is onto.

Proof. Suppose $H_1 := (I - T)(H) \subsetneq H$. Then $H_2 := (I - T)(H_1) = (I - T)^2(H) \subsetneq H_1$ (because I - T is one-to-one) and we can define subspaces $H_k := (I - T)^k(H)$ such that $H_{k+1} \subsetneq H_k$. We claim that H_k are closed. For this it will be enough to show that if \tilde{H} is a closed subspace of H then $(I - T)(\tilde{H})$ is also closed. Take a convergent sequence $y_j = x_j - Tx_j$, where $x_j \in \tilde{H}$. We may assume that $x_j \in \tilde{H} \cap (\ker (I - T))^{\perp}$. If we show that for some constant C

(2.7)
$$||x|| \le C ||x - Tx||, \quad x \in (\ker (I - T))^{\perp},$$

then $||x_j - x_k|| \le C ||y_j - y_k||$ and x_j will also be convergent. To show that (I - T)(H) is closed it therefore remains to prove (2.7).

Suppose (2.7) does not hold. Then we can find $\tilde{x}_j \in (\ker (I-T))^{\perp}$ with $\|\tilde{x}_j\| = 1$ and such that

(2.8)
$$\widetilde{x}_j - T\widetilde{x}_j \to 0.$$

Since T is compact, choosing a subsequence if necessary, we may assume that $T\tilde{x}_j$ is convergent and thus by (2.8) \tilde{x}_j is also convergent to some \tilde{x} . But then $\tilde{x} \in \ker (I - T) \cap (\ker (I - T))^{\perp}$ and $\|\tilde{x}\| = 1$ which is a contradiction. We thus showed that $(I - T)(\tilde{H})$ is closed and therefore so are the subspaces H_k .

We can now choose $\hat{x}_k \in H_k \cap H_{k+1}^{\perp}$ with $\|\hat{x}_k\| = 1$. For k > l write

$$T\widehat{x}_k - T\widehat{x}_l = -(\widehat{x}_k - T\widehat{x}_k) + (\widehat{x}_l - T\widehat{x}_l) + \widehat{x}_k - \widehat{x}_l.$$

Since $H_{k+1} \subsetneq H_k \subset H_{l+1}$, we have $\hat{x}_k - T\hat{x}_k$, $\hat{x}_l - T\hat{x}_l$, $\hat{x}_k \in H_{l+1}$. But $\hat{x}_l \in H_{l+1}^{\perp}$ and thus $||T\hat{x}_k - T\hat{x}_l|| \ge ||\hat{x}_l|| = 1$ which contradicts the fact that T is compact. \Box

As a consequence of the Fredholm alternative we will get in particular the following improvement of Theorem 2.5:

Theorem 2.8. Assume that $c \leq 0$. Then for every $f \in L^2(\Omega)$ the equation Lu = f has a unique solution in $W_0^{1,2}(\Omega)$.

This result follows immediately from the following weak maximum principle which excludes the case ii) in Theorem 2.6:

Theorem 2.9. Assume that $c \leq 0$. Let $u \in W^{1,2}(\Omega)$ be such that $u \leq 0$ on $\partial\Omega$ and $Lu \geq 0$. Then $u \leq 0$ in Ω .

Proof. By approximation we have $\mathcal{L}(u, v) \leq \text{for } v \in W_0^{1,2}(\Omega)$ with $v \geq 0$. Therefore, since $c \leq 0$, for $v \in W_0^{1,2}(\Omega)$ with $v \geq 0$ and $uv \geq 0$ we obtain

$$\int_{\Omega} a^{ij} D_i u \, D_j v \, d\lambda \le \int_{\Omega} b^i D_i u \, v \, d\lambda \le C \int_{\Omega} |Du| \, v \, d\lambda.$$

Suppose $\sup_{\Omega} u > 0$ and choose a with $0 < a < \sup_{\Omega} u$. Set $v := (u - a)^+$. Then $v \in W_0^{1,2}(\Omega)$ (by Lemma 2.1 and regularization), $v \ge 0$, $uv \ge 0$. Therefore by Lemma 2.1

$$\int_{\Omega} a^{ij} D_i v \, D_j v \, d\lambda \le C_1 \int_{\Omega} |Dv| \, v \, d\lambda$$

and thus by (2.4)

$$\|Dv\|_2^2 \le C_2 \int_{\Omega} |Dv| \, v \, d\lambda.$$

We will get

$$||Dv||_2 \le C_3 ||v||_{L^2(\{Dv \ne 0\})}$$

and by the Sobolev inequality for $n \geq 3$

$$\|v\|_{2n/(n-2)} \le C_4 \|Dv\|_2 \le C_5 \|v\|_{L^2(\{Dv \neq 0\})} \le C_5 (\lambda(\{Dv \neq 0\}))^{1/n} \|v\|_{2n/(n-2)}$$

and thus

(2.9)
$$\lambda(\{Dv \neq 0\}) \ge c > 0,$$

where c does not depend on a. (For n = 2 we choose any p with 1 and similarly obtain

$$\|v\|_{2p/(2-p)} \le C \|Dv\|_p \le C(\lambda(\Omega))^{1/p-1/2} \|Dv\|_{2}.$$

By Lemma 2.1 (applied twice) we have $\{Dv \neq 0\} \subset \{a < u < \sup_{\Omega} u\}$ which easily contradicts (2.9). \Box

Eigenvalues. For a given operator L (which in turn depends also on Ω) by Σ we denote the set of eigenvalues of -L, that is those $\sigma \in \mathbb{R}$ such that the problem

$$\begin{cases} Lu + \sigma u = 0\\ u = 0 \text{ on } \partial \Omega \end{cases}$$

has a nonzero solution in $W^{1,2}(\Omega)$. The set Σ is called a spectrum of -L.

Theorem 2.10. For $\sigma \notin \Sigma$ the problem

(2.10)
$$\begin{cases} Lu + \sigma u = f \\ u = 0 \text{ on } \partial \Omega \end{cases}$$

has a unique solution in $W^{1,2}(\Omega)$ for every $f \in L^2(\Omega)$. The set Σ is either finite or consists of a sequence converging to $+\infty$.

Proof. The first part follows directly from the Fredholm alternative applied to the operator $Lu + \sigma u$. Let $\mu > 0$, $\tilde{L}u = Lu - \mu u$ and $T = -\mu \tilde{L}^{-1}$ be as in the proof of Theorem 2.6. For $\sigma \in \Sigma$ we then have $\tilde{L}u = -(\sigma + \mu)u$ for some nonzero $u \in W_0^{1,2}(\Omega)$ and thus

$$Tu = \frac{\mu}{\sigma + \mu}u.$$

Therefore, σ is an eigenvalue of -L if and only if $\mu/(\sigma + \mu)$ is an eigenvalue of T. Since by Theorem 2.5 Σ is bounded from below, it is enough to use the following result:

Theorem 2.11. Let $T : H \to H$ be a linear compact operator, where H is a Hilbert space. Then the set of nonzero eigenvalues of T is either finite or consists of a sequence converging to 0.

Proof. If $Tw_k = \eta_k w_k$, where $||w_k|| = 1$, then, choosing subsequence if necessary, by compactness we see that the sequence $\eta_k w_k$ is convergent, and thus η_k is bounded. We thus have to show that if $\eta_k \to \eta$, where all η_k are distinct, then $\eta = 0$. Suppose that $\eta \neq 0$ and $\eta_k \neq 0$. By H_k denote the space spanned by w_1, \ldots, w_k . Then, since w_k are linearly independent, we have $H_k \subsetneq H_{k+1}$. For $k \ge 2$ we also have $(T - \eta_k I)(H_k) \subset H_{k-1}$. We can find $x_k \in H_k \cap H_{k-1}^{\perp}$ with $||x_k|| = 1$. For k > l we have $H_{l-1} \subsetneq H_l \subset H_{k-1} \subsetneq H_k$ and

$$rac{Tx_k}{\eta_k}-rac{Tx_l}{\eta_l}=rac{Tx_k-\eta_k x_k}{\eta_k}-rac{Tx_l-\eta_l x_l}{\eta_l}+x_k-x_l.$$

Now $Tx_k - \eta_k x_k$, $Tx_l - \eta_l x_l$, $x_l \in H_{k-1}$ and $x_k \in H_{k-1}^{\perp}$, therefore

$$\left\|\frac{Tx_k}{\eta_k} - \frac{Tx_l}{\eta_l}\right\| \ge \|x_k\| = 1.$$

We get a contradiction with the compactness of T. \Box

Theorem 2.12. Assume that

$$Lu = D_i(a^{ij}D_ju),$$

that is the coefficients b^i and c vanish. Then the eigenvalues of -L are positive and there exists a complete orthonormal system in $L^2(\Omega)$ consisting of eigenfunctions of -L from $W_0^{1,2}(\Omega)$. Eigenspaces of -L are finite dimensional.

Proof. Positivity of the eigenvalues follows from Theorem 2.9. Together with the Fredholm alternative it also implies that the operator

$$L^{-1}: L^2(\Omega) \to W^{1,2}_0(\Omega)$$

is well defined. Thus

$$S: L^2(\Omega) \to L^2(\Omega)$$

given by $S := -L^{-1}$ is a compact operator by the Rellich-Kondrachov theorem. We claim that

$$\langle Sf,g\rangle = \langle f,Sg\rangle,$$

that is S is symmetric. This follows immediately from

$$\langle Lu, v \rangle = \langle u, Lv \rangle,$$

which we first prove for $u, v \in C_0^{\infty}(\Omega)$ (integrating by parts), and thus it holds for $u, v \in W_0^{1,2}(\Omega)$.

It is clear that ker $S = \{0\}$. Therefore the eigenvalues of S are precisely $1/\sigma$, where σ is an eigenvalue of -L. By λ_k denote all eigenvalues of S and let $H_k = \ker (S - \lambda_k I)$ be the corresponding eigenspaces. Note that if $Sf = \lambda_k f$, $Sg = \lambda_l g$ then

$$\lambda_k \langle f, g \rangle = \langle Sf, g \rangle = \langle f, Sg \rangle = \lambda_l \langle f, g \rangle$$

and thus the spaces H_k and H_l are perpendicular for $k \neq l$.

Set $H := \bigoplus H_k$ (that is H consists of finite linear combinations of elements from H_k). We have to show that \tilde{H} is dense in $L^2(\Omega)$. We clearly have $S(\tilde{H}) \subset \tilde{H}$. Set $\hat{H} := \tilde{H}^{\perp}$. If $f \in \hat{H}$ and $g \in \tilde{H}$ then $\langle Sf, g \rangle = \langle f, Sg \rangle = 0$, and thus $S(\hat{H}) \subset \hat{H}$. Since ker $S = \{0\}$, for density of \tilde{H} it is enough to show that $S(\hat{H}) = 0$. For that it suffices to prove that

$$(2.12) \qquad \langle Sf, f \rangle = 0, \quad f \in H$$

(because the corresponding form $\langle Sf, g \rangle$ is symmetric). Suppose

$$M:=\sup_{f\in \hat{H},\;||f||=1}\langle Sf,f\rangle>0$$

(if the corresponding infimum is negative then we may consider -S instead of S). We can find $f_j \in \widehat{H}$ with $||f_j|| = 1$ and such that $\langle Sf_j, f_j \rangle \to M$. By compactness we may assume in addition that $Sf_j \to \widetilde{f}$. We then have by the Schwarz inequality applied to the positive form $\langle Mf - Sf, g \rangle$

$$\begin{split} ||Mf_j - Sf_j|| &= \sup_{g \in \widehat{H}, \ ||g|| = 1} |\langle Mf_j - Sf_j, g\rangle| \\ &\leq \sup_{g \in \widehat{H}, \ ||g|| = 1} \langle Mg - Sg, g\rangle^{1/2} \ \langle Mf_j - Sf_j, f_j\rangle^{1/2}. \end{split}$$

It follows that $Mf_j - Sf_j \to 0$ and $S\tilde{f} = M\tilde{f}$. We thus get an eigevector in $\hat{H} = \tilde{H}^{\perp}$, which is a contradiction. Therefore (2.12) and the density of \tilde{H} follows.

The last statement of the theorem is a consequence of the following result.

Proposition 2.13. Assume that $T : H \to H$ is a compact operator on a Hilbert space H. Then dim ker $(T - I) < \infty$.

Proof. If the dimension were not finite then we would find an orthonormal sequence $x_k \in \ker(T-I)$. For $k \neq l$

$$||Tx_k - Tx_l||^2 = ||x_k - x_l||^2 = ||x_k||^2 - 2\langle x_k, x_l \rangle + ||x_l||^2 = 2.$$

Thus Tx_k has no convergent subsequence which contradicts compactness. \Box

The dimension of the corresponding eigenspace is called a *multiplicity* of an eigenvalue. Summing up, we see that eigenvalues of a symmetric elliptic operator (2.11) form a sequence of positive numbers converging to $+\infty$

$$0 < \sigma_1 \leq \sigma_2 \leq \dots$$

(we repeat an eigenvalue in this sequence k times, where k is the multiplicity). One can in fact show that the first eigenvalue is simple (multiplicity is 1), that is $\sigma_1 < \sigma_2$.

The famous problem *Can one hear the shape of a drum?* whether one can tell the shape of a domain knowing the eigenvalues of the Laplacian. It turned out that in general one cannot, but the problem is still open for example for smooth or convex domains.

Example. For $\Omega = (0, 2\pi)$ and $L = \Delta$ we have to solve

$$\begin{cases} u'' + \sigma u = 0\\ u(0) = u(2\pi) = 0. \end{cases}$$

For a solution to exist we have to assume $\sigma > 0$, they are of the form $A\cos(\sqrt{\sigma}t) + B\sin(\sqrt{\sigma}t)$. The boundary condition implies that A = 0 and $\sin(2\pi\sqrt{\sigma}) = 0$, and thus

$$\sigma_k = \frac{k^2}{4}, \quad k = 1, 2, \dots,$$

whereas $u_k = \sin(kt/2)$ are the corresponding eigenfunctions.

Exercise 7. Show that $\sin(kt/2)$, k = 1, 2, ..., forms a complete orthogonal system in $L^2((0, 2\pi))$.

The eigenvalue equation for the Laplacian

$$\Delta u + \sigma u = 0$$

is called the Helmholtz equation. For product domains it can be solved using the method of separation of variables (by Σ_{Ω} we denote the spectrum of $-\Delta$ for Ω).

Proposition 2.14. $\Sigma_{\Omega_1 \times \Omega_2} = \Sigma_{\Omega_1} + \Sigma_{\Omega_2}$.

Sketch of proof. Let $\sigma_j \in \Sigma_{\Omega_j}$, j = 1, 2, and let $u_j \in W_0^{1,2}(\Omega_j)$ be corresponding eigenfunctions. Set

$$w(x,y) := u_1(x)u_2(y), \quad x \in \Omega_1, \ y \in \Omega_2.$$

One can show that

$$\Delta w = v\Delta u + u\Delta v$$

(in the weak sense). Therefore $\Delta w + (\sigma_1 + \sigma_2)$

$$w + (\sigma_1 + \sigma_2)w = v(\Delta u + \sigma_1 u) + u(\Delta v + \sigma_2 v) = 0$$

and thus we have \supset . To show \subset it is enough to prove (using Fubini theorem) that if $u_k(x)$ is a complete orthogonal system in $L^2(\Omega_1)$ and $v_l(y)$ a complete orthogonal system in $L^2(\Omega_2)$ then $u_k(x)v_l(y)$ is a complete orthogonal system in $L^2(\Omega_1 \times \Omega_2)$. \Box

Example (rectangle). Similarly as in the previous example we can show that for a > 0

$$\Sigma_{(0,a)} = \{ \frac{\pi^2 k^2}{a^2} : k = 1, 2 \dots \}.$$

Therefore, by Proposition 2.14

$$\Sigma_{(0,a)\times(0,b)} = \{\pi^2(\frac{k^2}{a^2} + \frac{l^2}{b^2}): \ k, l = 1, 2, \dots\}.$$

Example (disc). It turns out that we can solve the Helmholtz equation in a disc also using separation of variables but applied to polar coordinates $x = r \cos \phi$, $y = r \sin \phi$. It is known that

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2}$$

Consider the function of the form

$$u(x,y) = R(r)\Phi(\phi)$$

Then

$$\Delta u + \sigma u = \left(R''(r) + \frac{1}{r} R'(r) + \sigma R(r) \right) \Phi(\phi) + \frac{1}{r^2} R(r) \Phi''(\phi).$$

To get a single variable equation we assume that

$$\Phi'' + c\Phi = 0$$

We will get nontrivial periodic solutions of period 2π only if $c \ge 0$: $\Phi = A_0$ for c = 0 and

$$\Phi = A_k \cos(k\phi) + B_k \sin(k\phi)$$

for $c = k^2$, k = 1, 2, ... The equation for R now becomes

$$r^2 R_{rr} + r R_r + (\sigma r^2 - k^2) R = 0$$

and, after the substitution $\rho = \sqrt{\sigma r}$,

$$\rho^2 R_{\rho\rho} + \rho R_{\rho} + (\rho^2 - k^2)R = 0.$$

The solutions are Bessel functions of order $k = 0, 1, \ldots$:

$$J_k(\rho) = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(k+j)!} \left(\frac{\rho}{2}\right)^{k+2j}.$$

We thus got the following solutions to the Helmholtz equation

$$J_k(\sqrt{\sigma r})(A_k\cos(k\phi) + B_k\sin(k\phi)), \quad k = 0, 1, \dots,$$

where $B_0 = 0$ (one can check that these functions are smooth at the origin). The boundary condition in the unit disc gives

$$J_k(\sqrt{\sigma}) = 0,$$

therefore the eigenvalues are the squares of zeros of the Bessel functions (for J_0 the are of multiplicity 1 and for zeros of J_k , k = 1, 2, ..., of multiplicity 2).