Chapter 5
The Calabi—Yau Theorem

Zbigniew Blocki

Course given at the Winter School in Complex Analysis
Toulouse, 24—28 January 2005

Abstract This lecture, based on a course given by the author at Toulouse
in January 2005, surveys the proof of Yau’s celebrated solution to the
Calabi conjecture, through the solvability of inhomogeneous complex Monge—
Ampere equations on compact Kéhler manifolds.

5.1 Introduction

Our main goal is to present a complete proof of the Calabi—Yau theorem
[Yau78] (Theorem 5.3 below). In Sect.5.2 we collect basic notions of the
Kéhler geometry (proofs can be found for example in [KN69]). We then
formulate the Calabi conjecture and reduce it to solving a Monge-Ampere
equation. Kahler-Einstein metrics are also briefly discussed. In Sect. 5.3 we
prove the uniqueness of solutions and reduce the proof of existence to a priori
estimates using the continuity method and Schauder theory. Since historically
the uniform estimate has caused the biggest problem, we present two different
proofs of this estimate in Sect.5.4. The first is the classical simplification of
the Yau proof due to Kazdan, Aubin and Bourguignon and its main tool
is the Moser iteration technique. The second is essentially due to Kolodziej
and is more in the spirit of pluripotential theory. In Sect.5.5 we show the
estimate for the mixed second order complex derivatives of solutions which
can also be applied in the degenerate case. The C*® estimate can be proved
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locally using general Evans—Krylov—Trudinger theory coming from (real) fully
nonlinear elliptic equations. This is done in Sect. 5.6. Finally, in Sect. 5.7 we
study a corresponding Dirichlet problem for weak (continuous) solutions.

We concentrate on the PDE aspects of the subject, whereas the geometric
problems are presented only as motivation. In particular, without much more
effort we could also solve the Monge-Ampere equation (5.9) below for A <
0 and thus prove the existence of the Kéhler—Einstein metric on compact
complex manifolds with negative first Chern class.

We try to present as complete proofs as possible. We assume that the
reader is familiar with main results from the theory of linear elliptic equations
of second order with variable coefficients (as covered in [GT83, Part I]) and
basic theory of functions and forms of several complex variables. Good general
references are [Aub98, Dembook, GT83, KN69], whereas the lecture notes
[Siu87] and [Tianbook] (as well as [Aub98]) cover the subject most closely. In
Sect. 6 we assume the Bedford—Taylor theory of the complex Monge—Ampere
operator in C™ but in fact all the results of that part are proved by means
of certain stability estimates that are equally difficult to show for smooth
solutions.

When proving an a priori estimate by C1,Cs, ... we will denote constants
which are as in the hypothesis of this estimate and call them under control.

5.2 Basic Concepts of Kahler Geometry

In this section we collect the basic notions of Kahler geometry. Let M be a
complex manifold of dimension n. By TM denote the (real) tangent bundle of
M - it is locally spanned over R by 0/0x;,0/0y;, j =1,...,n. The complex
structure on M defines the endomorphism J of T'M given by J(9/0x;) =
0/0y;, J(0/0y;) = —0/0z;. Every hermitian form on M

WX, Y)= Y g;X.;Y;, XY eTM,

ij=1

we can associate with a real (this means that w = @) (1,1)-form

2V/=1 ) g;jdzi A dz; (5.1)

ij=1

(it is easy to check that they are transformed in the same way under a
holomorphic change of coordinates). If w is positive then @ := Rew is the
Riemannian form on M. Let V be the Levi-Civita connection defined by w -
it is the unique torsion-free connection satisfying Vw = 0, that is
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(Vxwo)Y,Z)=w(VxY,Z)+w(Y,VxZ) - Xw(Y,Z)=0, X,Y,ZeTM.
One can show that for a hermitian manifold (M, w)
dw=0 & Vw=0 & VJ=0. (5.2)

Hermitian forms w satisfying equivalent conditions (5.2) are called Kahler.
This means that the complex structure of M is compatible with the
Riemannian structure given by w. Manifold M is called Kahler if there exists
a Kahler form on M.

We shall use the operators 0,9, so that d = 9 + 0 and 2,/—100 = dd°,
where d° := /—1(0 — ).

Proposition 5.1 Let w be a closed, real (1,1) form on M. Then locally w =
dd’n for some smooth 7.

Proof. Locally we can find a real 1-form « such that w = dvy. We may write
v = a+ 3, where a is a (1,0)-form and § a (0,1)-form. We have @ = 3, since
v is real. Moreover,

w=(0+0)(a+pB)=0a+da+dp+ 0P,

and thus da = 0, 9 = 0, since w is a (1,1)-form. Then locally we can find a
complex-valued, smooth function f with 8 = Jf and

w=09B+ 0B = dd°(Im f).

O
The condition dw = 0 reads
995  O09x;
aZk 621 ) Z’ j? ) ) n?

and by Proposition 5.1 this means that locally we can write w = dd°g for
some smooth, real-valued g. We will use the notation f; = 9f/0z;, f; =
0f/0z;, it is then compatible with (5.1). If w is Kéhler then g is strongly
plurisubharmonic (shortly psh). From now on we assume that w is a Kahler
form and g is its local potential.

By TcM denote the complexified tangent bundle of M - it is locally
spanned over C by 0; := 0/0z;,0; := 0/0%Z;, j = 1,...,n. Then J,w and
V can be uniquely extended to TcM in a C-linear way. One can check that

J(0;) = vV—10;, J((r“)j) = —V-10;,
w(aiaaj) = w(&vaj) =0, w(aﬂaj) = 95>

Vai(‘:)j = V&iaj =0, Vaiaj = vfhaj = gk[gl-[jak, (5.3)
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where (g*!) is the inverse transposed to (9i7), that is

9"950 = ;- (5.4)
We have the following curvature tensors from Riemannian geometry

R(X,Y)Z =VxVyZ —VyVxZ - Vixy|Z
R(X,Y,W,Z) = w(R(X,Y)Z,W),
Ric(Y, Z) = tr{X — R(X,Y)Z}.

One can then show that

Riixr = R(9i, 05,0k, 0p) = —gizui + 97 9pji ity

2

. . ii 6
Ricy; = Ric(0,07) = ¢ TR = —m log det(g,;)- (5.5)

Since this is the moment where the Monge-Ampere operator appears in
complex geometry, let us have a look at the last equality. Let D, Q be any
linear first order differential operators with constant coefficients. Then

_ a'l QYij
det(g;7)

Qlogdet(g;;) =99Qg;, (5.6)

where (a/) is the (transposed) adjoint matrix of (g,;). Differentiating (5.4)
we get ~ L
Dg" = —g"1g" Dgpq,
thus i o
DQlogdet(g;5) = 9 DQgy5 — 99" DgpaQ9sj, (5.7)

and (5.5) follows.

The (real) Laplace-Beltrami operator of a smooth function w is defined as
the trace of X —— VxVu, where @(X, Vu) = Xu, X € TM. In the complex
case it is convenient to define this operator as the double of the real one —
then B

Au = g U

and 1
ddu AWt = ZAuw™.
n

The form w™ will be the volume form for us (in fact, it is 4™n! times the
standard volume form) and we will denote V' := vol(M) = [, w". Note
that the local formulas for the quantities we have considered (the Christoffel
symbols (5.3), the curvature tensors, the Laplace-Beltrami operator) are
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simpler in the Kéahler case than in the real Riemannian case. It will also
be convenient to use the notation R, = —dd*logdet(g,7) (= 2Ric,, by (5.5)).

The formula (5.5) has also the following consequence: if @ is another Kahler
form on M then R, — Rz = dd®n, where 7 is a globally defined function (this
easily follows from Proposition 5.1), and thus R,,, Ry are cohomologous (we
write R, ~ Rg). The cohomology class of R, is precisely ¢1(M), the first
Chern class of M, which does not depend on w but only on the complex
structure of M.

The so called dd°-lemma says that in the compact case every d-exact (1,1)-
form is dd¢-exact:

Lemma 5.2 Let o be a real, d-exact (1,1)-form on a compact Kdihler
manifold M. Then there exists n € C°°(M) such that o = dd°n.

Proof. Write o = df8 and let w be a Kéhler form on M. Let 1 be the solution
of the following Poisson equation

ddn Aw™ P =a Aw™ L

(This equation is solvable since [, a Aw™ ! = [, d(8 Aw"') = 0.) Define
~:= B —d°n. We then have dy Aw™ ! = 0 and we have to show that dy = 0.
For this we will use the Hodge theory. Note that

/<d%d7>dV:/ (v, d"dy)dV,
M M

it is therefore enough to show that d*dy = 0. From now on the argument is
local: by Proposition 5.1 we may write dy = dd°h and dd°h A w™™ ! = 0 is
equivalent to d*dh = 0. We then have

d*dy = d*dd°h = —d*d°dh = d°d*dh = 0,
where we have used the equality
d*d°+d°d* =0

(see e.g. [Dembook]). O

From now on, we always assume that M is a compact manifold of
dimension n > 2 and w a Kahler form with local potential g.

Calabi conjecture. [Cal56] Let R be a (1,1) form on M cohomologous to
R,,. Then we ask whether there exists another Kahler form w~wonM
such that R = Rg. In other words, the problem is if every form representing
c1(M) is the Ricci form of a certain Kéhler metric on M coming from one
cohomology class.
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By the dd®-lemma we have R, = R+ dd¢n for some n € C*°(M). We are
thus looking for ¢ € C°°(M) such that in local coordinates (¢;; + g;5) > 0
and

dd*(log det(g,; + @;;) — logdet(g;;) —n) = 0.

However, log det(g;; +;7) —logdet(g,;) —n is globally defined, and since it is
pluriharmonic on a compact manifold, it must be constant. This means that

det(g;; + @i7) = e det(g;5),

which is equivalent to
(w+ ddp)™ = e“ ™.

Since (w 4 dd°p)™ — w™ is exact, from the Stokes theorem we infer

[ i -v
M

and thus the constant c is uniquely determined. Therefore, solving the Calabi
conjecture is equivalent to solving the following Dirichlet problem for the
complex Monge—Ampere operator on M.

Theorem 5.3 [Yau78] Let f € C(M), f > 0, be such that [,, fw™ =V.
Then there exists, unique up to a constant, p € C°°(M) such that w+ddp >
0 and

(w4 dd°p)" = fw". (5.8)

Kihler—Einstein metrics. A Ké&hler form w is called Kéhler-Einstein if
Rz = M@ for some A € R. Since A\w € ¢1(M), it follows that a necessary
condition for a complex manifold M to posses a Kéahler—Einstein metric is
that either ¢;(M) < 0, c1(M) = 0 or ¢1(M) > 0, that is there exists an
element in ¢q (M) which is either negative, zero or positive. In such a case
we can always find a Kéhler form w on M with Aw € ¢ (M), that is R, =
Aw + dd°n for some n € C*>°(M), since M is compact. We then look for
p € C®°(M) such that & := w + dd®p > 0 (from the solution of the Calabi
conjecture we know that ¢ (M) = {Rg : @ ~ w}, so we only have to look for
Kéhler forms that are cohomologous to the given w) and Ry = Aw, which,
similarly as before, is equivalent to

(w4 ddcp)™ = e Aetmteyn, (5.9)

To find a Kéhler-Einstein metric on M we thus have to find an admissible
(that is w + dd°p > 0) solution to (5.9) (for some constant c).

If ¢;(M) = 0 then A = 0 and the solvability of (5.9) is guaranteed by
Theorem 5.3. If ¢1(M) < 0 one can solve the equation (5.9) in a similar
way as (5.8). In fact, the uniform estimate for (5.9) with A < 0 is very
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simple (see [Aub76], [Yau78, p.379], and Exercise 5.9 below) and in this
case, (5.9) was independently solved by Aubin [Aub76]. The case ¢;(M) > 0
is the most difficult and it turns out that only the uniform estimate is the
problem. There was a big progress in this area in the last 20 years (especially
thanks to G. Tian) and, indeed, there are examples of compact manifolds
with positive first Chern class not admitting a Kéahler—Einstein metric. We
refer to [Tianbook] for details and further references.

5.3 Reduction to A Priori Estimates

The uniqueness in Theorem 5.3 is fairly easy.

Proposition 5.4 [Calb5] If ¢, € C*(M) are such that w + dd°p > 0,
w—+dd® >0 and (w + dd°@)" = (w + dd®P)™ then ¢ — 1) = const.

Proof. We have
0= (w+ dd°p)" — (w -+ ddw)" = dd*(p — ) AT,

where
n—1

T=> (w+ddp) A(w+ddy) '
j=0

is a positive, closed (n — 1,n — 1)-form. Integrating by parts we get
0= [ (6=t ddo)y - @ davy) = [ de =) Ad (o - AT

and we conclude that D(p —¢) = 0. O

In subsequent sections we will show the following a priori estimate: there
exists @ € (0,1) and C' > 0, depending only on M and on upper bounds for
||f|l1.1 and 1/infys f, such that for any admissible solution ¢ € C*(M) of
(5.8) satisfying the normalization condition [, ¢pw™ = 0 we have

lell2,a < C, (5.10)

where we use the following notation: in any chart U C M

. Dk . Dk -
llellck.a @y = Z sup |D7g|+  sup [ D" () e(y)]
o<j<k Y z,yeU,xty |z — 9]

and [|¢]k,a = Y2, [l¢llok.e @, for a fixed finite atlas {U;} (for any two such
atlases the obtained norms will be equivalent). In this convention
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Ifllka= > sup|Dif].
0<j<k+1

The aim of this section is to reduce the proof of Theorem 5.3 to showing the
estimate (5.10). It will be achieved using the continuity method (which goes
back to Bernstein) and the Schauder theory for linear elliptic equations of
second order.

Continuity method. Fix arbitrary integer & > 2, € (0,1) and let f be as
in Theorem 5.3. By S we denote the set of ¢ € [0,1] such that we can find
admissible ¢; € C*2%(M) solving
(w+ dd°0)" = (tf +1— "
and such that fM pw™ = 0. It is clear that 0 € S and if we show that 1 € S
then we will have a C*+2:@ solution of (5.8). It will be achieved if we prove
that S is open and closed in [0, 1].
The complex Monge-Ampere operator N, determined by
(w+ ddp)" = N(i) ",

in local coordinates given by

_ det(g;; + ¢55)
N = = Geion)

smoothly maps the set
A= {gﬁ € C*2(M) : w4 dd°p > O,/ pw" = O}
M
to

B:{fe Ck’“(M):/Mfw":/Mw”}.

Then A is an open subset of the Banach space

£ = {77 € CF e (M) / nw™ = O}
M

and B is a hyperplane of the Banach space C*+2:%(M) with the tangent space

F= {fe Che (M) : /M fut = o} :
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We want to show that for every ¢ € A the differential DN () : £ — F is an
isomorphism. For n € £, denoting @ = w + dd“p, we have
det(§i3)~i3 _

ni; = N(p)An.

d
DN(p)-n= 2 N(e+tn)l=o = det(g) )

It immediately follows that DAN(p) is injective. From the real theory on
compact Riemannian manifolds it is known that the Laplace-Beltrami
operator bijectively maps

{n € CFt2e (M) /Mn = o} — {fe Che(M) : /Mf: o}

(see e.g. [Aub98, Theorem 4.7]). This, applied to (M,®), implies that
DN () is indeed surjective, and thus an isomorphism. Therefore A is locally
invertible and in particular N'(A) is open in B, and S is open in [0, 1].

If we knew that the set {¢; : t € S} is bounded in C*+2:% (M) then from its
every sequence, by the Arzela—Ascoli theorem, we could choose a subsequence
whose all partial derivatives of order < k 4 1 converged uniformly. Thus, to
show that S is closed, we need an a priori estimate

lellkt2,0 < C (5.11)

for the solutions of (5.8). We now sketch how to use (locally) the Schauder
theory to show that (5.10) implies (5.11).

Schauder theory. We first analyze the complex Monge—Ampere operator
F(D?u) = det(u;;)

for smooth psh functions u — we see that the above formula defines the real
operator of second order. It is elliptic if the 2n x 2n real symmetric matrix
A = (0F/0uypq) (here by up, we denote the elements of the real Hessian
D?u) is positive. Matrix A is determined by

%F(DQu +tB)|i=o = tr(ABT).

Exercise 5.5 Show that

det(u;3)
4>\max (Uzj) ’

det (u;;)

Amin (OF [ Qupq) = Do ()
man 1)

Amaz (OF [ Oupg) =

where A\p,inA, resp. A A, denotes the minimal, resp. maximal, eigenvalue
of A.
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Thus the operator F is elliptic (in the real sense) for smooth strongly psh
functions and in our case when (5.10) is satisfied (then Aw is under control
and hence so are the complex mixed derivatives u;;) is even uniformly elliptic,
that is

2n
C?/C < > OF/0upe(éy < CIC)7, (e C =R
p,q=1

for some uniform constant C. We can now apply the standard elliptic theory
(see [GT83, Lemma 17.16] for details) to the equation

F(D*u) = f.
For a fixed unit vector ¢ and small h > 0 we consider the difference quotient

u(a + h¢) — ula)

ul(x) = .
and
ap?! = /1 a—F(lfD2u(gc + h¢) + (1 — t)D?u(x))dt.
0 Oupg
Then
1
aiq(:v)uzq(x) = % /0 %F(tD%z(x +h¢) + (1 —t)D?u(z))dt = ().

From the Schauder theory for linear elliptic equations with variable coeffi-
cients we then infer (all corresponding estimates are uniform in h)

ue O = gfl e 0 ST b o o2a e B0 —
Coming back to our equation (5.8) for k > 1 we thus get
peC>, feCh* = peCit?
and
lllkt2.0 < C,
where C' > 0 depends only on M and on upper bounds for ||¢||2,a; ||f]ka-

Hence, we get (5.11), ¢ € C*°(M), and to prove Theorem 5.3, it is enough
to establish the a priori estimate (5.10).
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5.4 Uniform Estimate
The main goal of this section will be to prove the uniform estimate. We will

use the notation ||¢[|, = ||¢||Lrar), 1 < p < oo.

Theorem 5.6 Assume that ¢ € C*(M) is admissible and (w + dd°p)" =
fw™. Then

= —info <C
osc i=supy —infp < C,

where C > 0 depends only on M and on an upper bound for || f||co-

The LP estimate for p < oo follows easily for any admissible ¢ (without
any knowledge on f).

Proposition 5.7 For any admissible p € C?(M) with maxy; ¢ = 0 one has

Proof. The case p = 1 follows easily from the following estimate (applied in
finite number of local charts to u = ¢ + g): if u is a negative subharmonic
function in B(y,3R) in R™ then for z € B(y, R) we have

) ), 2 ),
u(z) < —————— U< — U
) S ST B@2R) Jypom " = Vol (B2R) Jsim

and thus

< vol (B 2R inf (—u).
lellxcaty oy < vol (B(u,2R) in. (<)

For p > 1 we now use the following estimate: if u is a negative psh in B(y, 2R)
in C" then

l[ullzr(By,R)) < C(n,p, R)||ullL1(B(y,2R))- 0

We will now present two different proofs of the uniform estimate. The first
one (see [Siu87, p.92] or [Tianbook, p.49]) is similar to the original proof of
Yau, subsequently simplified by Kazdan [Kaz78] for n = 2 and by Aubin and
Bourguignon for arbitrary n (for the detailed historical account we refer to
[Yau78, p.411] and [Siu87, p. 115]).

First proof of Theorem 5.6. Without loss of generality we may assume that
[y w™ =1 and maxy ¢ = —1, so that [[¢||, < |[¢]]q if p < ¢ < co. We have
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(f —Dw" = (w+dd°)" —w" =dd°p AT,

where
n—1

T= Z(o.; +ddéo) AWt >
7=0

Integrating by parts we get for p > 1

| ot —ver = [ (morarent == [ dornaont

M

:p/ (=)’ rdp Ndp AT Zp/ ()Pt Adp Aw™ T
M M

4p / _
= o) PF/2 A ge(— ) @D/ p ynl
TESEAN (=) (—¢)
so that

POf—1)w" — CnD _N(p+1

The Sobolev inequality on compact a Riemannian manifold M with real
dimension m states that

V] lma/(m—a) < C(M,q) (|[v]lqg + ||Dvllg), veW (M), ¢g<m. (5.13)

(it easily follows from the Sobolev inequality for u € WO1 4(R™) applied in
charts forming a finite covering of M). Using (5.13) with ¢ = 2 and (5.12)

||(*<P)(p+1)/2||2n/(n—1)

1/2
<y (||<—so><p+l>/2||2 F 2 ([ ortr ) ) .

From this (replacing p + 1 with p) and since |p| < 1 we easily get

1ellnp/n-1) < (CP)Pllllp, > 2. (5.14)

We will now apply Moser’s iteration scheme (see [Mos60] or the proof of
[GT83, Theorem 8.15]). Set

po:=2, ppi=—0>0r, k=1,2,...,

so that py = 2(n/(n — 1))*. Then by (5.14)
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o0

. 1 .

il = Jim llelle < il [T (€03
J:

Taking the logarithm one can show that
H Cp l/pj _ n/(ni 1))n(n71)/2(20)n/2

and it is enough to use Proposition 5.7 (for p = 2).

Exercise 5.8 Slightly modifying the above proof show that the uniform
estimate follows if we assume that ||f||, is under control for some ¢ > n.

Exercise 5.9 Consider the equation
(W dd°p)" = F(, p)w",

where F' € C°(M x R) is positive. Show that if an admissible solution
p € C°°(M) attains maximum at y € M then F(y,¢(y)) < 1. Deduce a
uniform estimate for admissible solutions of (5.9) when A < 0.

The second proof of the uniform estimate is essentially due to Kolodziej
[Kol98] who studied pluripotential theory on compact Kéhler manifolds
(see also [TZ00]). The Kolodziej argument gave the uniform estimate under
weaker conditions than in Theorem 5.6 — it is enough to assume that || f]|,
is under control for some ¢ > 1. For ¢ = co (and even ¢ > 2) this argument
was simplified in [B105] and we will follow that proof.

The main tool in the second proof of Theorem 5.6 will the following
L? stability for the complex Monge-Ampere equation. It was originally
established by Cheng and Yau (see [B88, p.75]). The Cheng—Yau argument
was made precise by Cegrell and Persson [CP92].

Theorem 5.10 Let Q be a bounded domain in C". Assume that u € C(Q)
is psh and C? in Q, uw =0 on 0Q. Then

[[ul| Lo () < C(n, diam Q) ||f||L2 Q)

where f = det(u;;).

Proof. We use the theory of convex functions and the real Monge—Ampere
operator. From the Alexandrov—Bakelman—Pucci principle [GT83, Lemma

9.2] we get
diam €2 2 1/2m
[[ull Lo (o) < S (/F det D U) ,

2n
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where Ag,, = 7" /n! is the volume of the unit ball in C™ and
Ii={zcQ:ulz)+ (Du(z),y —z) <uly) Yy € Q} C {D?u > 0}.
It will now be sufficient to prove the pointwise estimate
D*u>0 = det D*u < cy(det(u;5))>.
We may assume that (u;;) is diagonal. Then

det(ul‘;) = 4_n(u’zlwl + uylyl) e (uznzn + uynyn)

—n
>2 \/lemluylyl s Uz, Uy yy,
> +/det D?u/c,,

where the last inequality follows because for real nonnegative symmetric
matrices (ap,) one easily gets det(apy) < mlair...amm (because |ap,| <

Applqq ); from Lemma 5.16 below one can deduce that in fact det(ay,) <
ai1 - .- Amm- O

From the comparison principle for the complex Monge—Ampere operator
one can immediately obtain the estimate

1/n
[ull ey < (diam )2 [|£]]}/2 g

in Theorem 5.10. It is however not sufficient for our purposes, because it does
not show that if vol (2) is small then so is ||u|| o (q)-

Exercise 5.11 Using the Moser iteration technique from the first proof of
Theorem 5.6 show the LY stability for ¢ > n, that is Theorem 5.10 with
[f|L2(e) replaced with || f||La(o)

The uniform estimate will easily follow from the next result.

Proposition 5.12 Let Q be a bounded domain in C* and u is a negative C?
psh function in Q. Assume that a > 0 is such that the set {u < infqu + a}
18 nonempty and relatively compact in 2. Then

lull L) < a+ (C/a)™|[ull Lyl FIIT =0

where f = det(u;;) and C = C(n,diam Q) is the constant from Theorem 5.10.

)

Proof. Set t :=infqu+a, v:=u—tand ' := {v < 0}. By Theorem 5.10

a = |[oll oy < C (vol ()™ [IF112 .
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On the other hand,

||U||L1(sz)_ ||u||L1(Q)

vol () < =
[t] l[ul|poe ) —a

and the estimate follows. O

Second proof of Theorem 5.6 Let y € M be such that ¢(y) = miny ¢. The
Taylor expansion of g about y gives

- — 1
9(y+h) =Re P(h) + > g;5(y)hih; + 5 D*g(7).h°

1,j=1

> Re P(h) + c1|h|? — ca|h|?,

where

P(h) = g(y) +2 Zgi(y)hi + Z gij (Y)hih;

is a complex polynomial, ¥ € [y,y + h] and ¢1,¢2 > 0 depend only on M.
Modifying ¢ by a pluriharmonic function (and thus not changing w), we
may thus assume that there exists a,r > 0 depending only on M such that
g < 0in B(y,2r), g attains minimum in B(y,2r) at y and g > ¢g(y) + a on
B(y,2r)\ B(y, r). Proposition 5.12 (for Q = B(y, 2r) and u = g+¢) combined
with Proposition 5.7 (for p = 1) gives the required estimate.

Slightly improving the proof of Proposition 5.12 (using the Holder
inequality) we see that the second proof of Theorem 5.6 implies that we
can replace || f||oo with || f]|4 for any ¢ > 2. Moreover, since Kolodziej [Kol96]
showed (with more complicated proof using pluripotential theory) that the
(local) L9 stability for the complex Monge-Ampere equation holds for every
g > 1 (and even for a weaker Orlicz norm), we can do this on M also for every
g > 1. This was proved in [Kol98], where the local techniques from [Kol96]
had to be repeated on M. The above argument allows to easily deduce the
global uniform estimate from the local results. Exercises 5.8 and 5.11 show
that both proofs of Theorem 5.6, although quite different, are related.

5.5 Second Derivative Estimate

In this section we will show the a priori estimate for the mixed complex
derivatives ;; which is equivalent to the estimate of Ag. The main idea is
the same as the one in the original Yau proof [Yau78] who used the method
of Pogorelov [Pog71] from the real Monge—Ampere equation. We will present
an improvement of the Yau estimate that can be applied to the degenerate
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case (when f > 0) because it does not quantitatively depend on infy; f. Tt
uses the idea of Guan [Gua97] (see also [GTW99]) who obtained regularity
results for the degenerate real Monge—Ampeére equation. It also simplifies
some computations from [Yau78§].

Theorem 5.13 [BI03] Let p € C*(M) be such that w + dd°p > 0 and (w +
ddp)™ = fw™. Then

sup [Ap| < C,

M

where C' depends only on M and on an upper bound for ||f1/("_1)||1,1.
Proof. By Theorem 5.6 we may assume that
—C1 <9 <0. (5.15)
Note that for any admissible ¢ we have (g;; + ¢;5) > 0 and thus
Ap = gp; > —n.

It is therefore enough to estimate Ay from above. In local coordinates the
function u = g + ¢ is strongly psh. It is easy to see that the expression

UpF UpF
n:zmaxﬁzmaxﬁ

CI=1 geg C#0 geg

(where ue = >, Gus, up = ZZZZU;, and ugg = Z” Cizjuﬁ, ¢ eC)is
independent of holomorphic change of coordinates, and thus 7 is a continuous,
positive, globally defined function on M. Set

a:=logn — Ap,
where A > 0 under control will be specified later. Since M is compact and «
is continuous, we can find y € M, where « attains maximum. After rotation

we may assume that the matrix (u;;) is diagonal and w1 > -+ > upp at y.
Fix ¢ € C", [(| = 1, such that 7 = u.¢/g.¢ at y. Then the function

defined in a neighborhood of y, also has maximum at y. Moreover, & < «
and a(y) = a(y). Since

uee(y) < uii(y) < Couee(y), (5.16)
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by (5.15) it is clear that to finish the proof it is sufficient to show the estimate

uii(y) < Cs. (5.17)

We will use the following local estimate.

Lemma 5.14 Let u be a C* psh function with F := det(u;;) > 0. Then
any direction ¢

(log F)Cf

u(loguce) 5 > e

for

Proof. Differentiating (logarithm of) the equation det(u;;) = F twice,

similarly as in (5.6), (5.7) we get
uijuijc = (log F)c,
uijuiﬂf = (log F) ¢ + uilukjuiﬁcuklf.

Using this we obtain

ucgu (loguee) 7 = uuzee — u—(gu”u@u@

L,k _
= (log F)¢¢ + u"uMuggeupye — —uuggiugg.

At a given point we may assume that the matrix (u;;) is diagonal. Then

G |U<c’i|2
ulucgueg = Tun
7: 43
and ) )
2 2 |ugel
luce ™ = < Z |17 w3 Z Tu
j j JJ

Z Citige
j

by Schwarz inequality. Therefore

1, kj,, _ _

uuegueg < uge Y

|Ui3
— .fu
i,j 11

P :
- = uggu'
UiiUjj

and the lemma follows.

O

As noticed by Bo Berndtsson, Lemma 4.2 has a geometric context. If ( is
a holomorphic vector field on a Kéhler manifold (with potential u) then one

can show that
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R(Ca Ca B )
I¢I?
Taking the trace and using that Ric;; = —(log F')

of the lemma.

V—180log [¢]* > —

ij» one obtains the statement

Proof of Theorem 5.13 (continued) Using the fact that & has maximum at y,
by Lemma 5.14 with F' = f det(g;;) we get

— lo = logdet(g,s)) ¢ -~
W >( gf)qc +( g (gpq))cc +Au”gi3—nA.

Ueg U¢c

By (5.16) and the elementary inequality (following from differential calculus
of functions of one real variable)

[VA]lo1 < Car(1+|h]|11), ke C3HM), h>0,
we get, denoting f := f1/(=1),

Gl -1 (f_u> o

Ueg uce \ f I?

uyy f
Therefore, using (5.16) again (recall that (u;;) is diagonal at y),

c,  C 1
0> ——4 — =2 4 (~Co+A/C7) Y — —nA,
uirf Wl T Wi

max{1,C5}. The inequality between arithmetic and geometric means gives

where 1/C7 < Amin(9:5(y)). We choose A such that —Cs + AlCr; =

1/(n—1)
S -
S ug (g np)/ Y !
We arrive at
u?{(nil) — Cguﬂ — Cg S 0
(at y) from which (5.17) immediately follows. O

In the proof of Theorem 5.13, unlike in [Yau78], we used standard
derivatives in local coordinates and not the covariant ones — it makes some
calculations simpler.

It is rather unusual in the theory of nonlinear elliptic equations of second
order that the second derivative estimate can be obtained directly from the
uniform estimate, bypassing the gradient estimate. The gradient estimate
follows locally (and hence globally on M) from the estimate for the Laplacian
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for arbitrary solutions of the Poisson equation (see e.g. [GT83, Theorem 3.9]
or use the Green function and differentiate under the sign of integration).

5.6 C?*< Estimate

Aubin [Aub70] and Yau [Yau78] proved a priori estimates for third-order
derivatives of ¢. The estimate from [Yau78], due to Nirenberg (see [Yau7s,
Appendix A]), was based on an estimate for the real Monge-Ampere equation
of Calabi [Cal58]. In the meantime, a general theory of nonlinear elliptic
equations of second order has been developed. It allows to obtain an interior
C?%“_estimate, once an estimate for the second derivatives is known. It was
done by Evans [Ev82,Ev83] (and also independently by Krylov [Kry82]) and
his method was subsequently simplified by Trudinger [Trud83]. Although the
complex Monge-Ampere operator is uniformly elliptic in the real sense (see
Exercise 5.5), we cannot apply the estimate from the real theory directly. The
reason is that Sect.5.5 gives the control for the mixed complex derivatives
;7 but not for D2, which is required in the real estimate. We can however
almost line by line repeat the real method in our case. It has been done in
[Siu87], and also in [B100, Theorem 3.1], where an idea from [Sch86] and
[WJ85] was used to write the equation in divergence form. We will get the
following a priori estimate for the complex Monge-Ampere equation.

Theorem 5.15 Let u be a C* psh function in an open Q C C™ such that
[ = det(u;5) > 0. Then for any Q' € Q there exist a € (0,1) depending only
onn and on upper bounds for ||u||co.1(q), supaAu, ||f||co1(q), 1/infq f, and
C > 0 depending in addition on a lower bound for dist(Q', 9Q) such that

ullc2.e @ < C.

A similar estimate can be proved for more general equations of the complex
Hessian of the form
F((u;;), Du,u, z) = 0.

Here F is a smooth function of GxR?" xR x (2, where G is an open subset of the
set of all n x n hermitian matrices H. In case of the complex Monge—Ampere
operator we take G = H; := {A € H : A > 0}. The crucial assumption that
has to be made on F' in order for the Evans—Trudinger method to work is
that it is concave with respect to (u;;). In case of the complex Monge-Ampere
equation one has to use the fact that the mapping

Hy > A (det V™ € Ry (5.18)

is concave. This can be immediately deduced from the following very useful
lemma.
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Lemma 5.16 [Gav77]
1
(det A)/™ = —inf{tr(AB): B€ H,, det B=1}, AecH,.
n

Proof. For every B € H, there is unique C € H, such that C? = B. We
denote C' = B'/2. Then BY/2AB'Y? ¢ H, and after diagonalizing it, from
the inequality between arithmetic and geometric means we get

(det A)Y/™(det B)Y/™ = (det(BY2ABY/?))1/»

< Ltr(BY2ABY?) = Ltr(AB)
and < follows. To show > we may assume that A is diagonal and then we
easily find B for which the infimum is attained. O

Lemma 5.16 also shows that the Monge-Ampere operator is an example
of a Bellman operator.

Proof of Theorem 5.15 Fix ¢ € C", |¢| = 1. Differentiating the logarithm of
both sides of the equation

det(ulj) = fa
similarly as in (5.7) or in the proof of Lemma 5.14, we obtain
u"ju@ij = (log f)¢e + uilukjucﬁuw > (log f)¢e- (5.19)

The inequality uiiukiugiEUEk[ > 0 is equivalent to the concavity of the
mapping

Hy > Ar—logdet A€ R

which also follows from concavity of (5.18). It will be convenient to write
(5.19) in divergence form. Set a® := fu®. Then for any fixed i

(aij)5 = f(uijuki — uiiukj)ukl‘j =0

and by (5.19)

. o (2 o)
Tueg); = fop — 24 = 0y + + ,
(%uce); = fee = =5 1 ZJ: oz,

y;

where || f!|| @) < C2, 1 =1,...,2n. By the assumptions on u (and Exercise

5.5) the operator 0; (a’7;) is uniformly elliptic (in the real sense) and from
the weak Harnack inequality [GT83, Theorem 8.18] we now get
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ro2n / (sup (N Ug{) < (s ( SUp Ucg — SUp Uee + T), (5.20)
B, Ar By, B,

where By, = B(zg,4r) C Q and 2 € .
On the other hand, for z,y € 2 by Lemma 5.16 we have

a’ (y) (uig(y) —ug(@)) < nf@) " (F)Y" = f(@)") < Calz—yl. (5.21)

We are going to combine (5.20) with (5.21). For that we will need to
choose an appropriate finite set of directions (. The following lemma from
linear algebra will be crucial.

Lemma 5.17 Let0 < A < A < oo and by S(\, A) denote the set of hermitian
matrices whose eigenvalues are in the interval [\, A]. Then one can find unit
vectors (1,...,(ny € C" and 0 < A\ < Ay < 00, depending only on n, \, and
A, such that every A € S(\,A) can be written as

N
A= Z BrCk ®Zk; e a; = Zﬁm%,
k=1 k

where B, € (A, Ai], k = 1,...,N. The vectors (1,...,(n can be chosen so
that they contain a given orthonormal basis of C™.

Proof. [Siu87, p.103] The space H of all hermitian matrices is of real
dimension n?. Every A € H can be written as

A= Z AWy ® W,
k=1

where A1,..., A\, € R are the eigenvalues of A and ws,...,w, € C" the
corresponding unit eigenvectors. It follows that there exist unit vectors
(1y.-+,Cys € C™ such that the matrices (x ®Zk, k=1,...,n% span H over
R. For such sets of vectors we consider the sets of matrices

U(Clv'-'7<n3> = {Zﬂka ®Zk30<ﬂk < 2A}
k

They form an open covering of S(A/2,A), a compact subset of H. Choosing
a finite subcovering we get unit vectors (y,...,(xy € C" such that

N
S(A/2,A) C {Zﬂkék @Cp:0< By < 2A}.

k=1
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For A € S(\,A) we have
Pyl -
A- 2Nk;<k®<k € S(A/2,A)

and the lemma follows. We see that may take arbitrary A, < A/N and A, > A.
O

Proof of Theorem 5.15. (continued) The eigenvalues of (u;;) are in [A, A],
where A, A > 0 are under control. By Lemma 5.17 we can find unit vectors
(1,...,(n € C" such that for z,y € Q

N
aij(y) (Uzj(y) - Uzj(if)) = Z Br(y) (ngék (y) — UeyCr (50)),
k=1

where O (y) € [A\*, A*] and A\*, A* > 0 are under control. Set

My, = SUPUc, &y Mikyr 1= 1}131fu<k§k,
B, r

and

Mz

Mkr mkr
k=1

We need to show that n(r) < Cr®. Since 71,...,vn can be chosen so that
they contain the coordinate vectors, it will then follow that ||Aul|ca (o) is
under control and by the Schauder estimates for the Poisson equation [GT83,
Theorem 4.6] also that ||D?u||ca (g is under control. The condition 7(r) <
Cr® is equivalent to

n(r) < om(dr) +r, 0<r<ro, (5.22)

where 6 € (0,1) and ¢ > 0 are under control (see [GT83, Lemma 8.23]).
From (5.21) we get

Zﬂk u(k(k y) — Uy, G (x)) < Calz —yl. (5.23)
Summing (5.20) over [ # k, where k is fixed, we obtain

/ > (Myar =g ) < Ca(n(4r) —n(r) + 7). (5.24)

Br 2k
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By (5.23) for « € By,,y € B, we have

Br() (e, (1) — oo, () < Calz =yl + Y Biw) (uge () = ug e, (v))
£k

< 057’ + A* Z(MIAT - UQQ (y))
I#k

Thus

1 *
Uy, G (y) — Mk4r < F Csr+ A Z (Mla47" — UGG (y))
12k

and (5.24) gives

T—2n/B (UCkfk - mk,4r) < 06(77(47°) — 77(T) 4 T).

T

This coupled with (5.20) easily implies that

n(r) < Cz(n(dr) —n(r) +7),

and (5.22) follows.

5.7 Weak Solutions

The theory of the complex Monge-Ampere operator (dd®)™ for nonsmooth
psh functions has been developed by Bedford and Taylor (see [BT76, BT82]
and also general references [Dem93, Dembook, Klimbook, B196, Blobook,
Ceg88,Ko0l05]). In particular, one can define (dd“u)™ as a nonnegative regular
Borel measure if u is a locally bounded psh function, and this operator is
continuous for monotone sequences (in the weak* topology of measures).
We define the class of weakly admissible functions on M in a natural way:
v : M — RU{—oc0} is called admissible (or w-psh) if locally g + ¢ is psh.
Therefore, if ¢ is locally bounded and admissible then M () := (w+dd°p)™,
locally equal to (dd°(g + ¢))", is a measure such that [, M(p) =V.
We will show the following version of Theorem 5.3 for weak solutions.

Theorem 5.18 [Kol98,Kol03] Let f € C(M), f >0, be such that [,, fw™ =
V. Then there exists a, unique up to a constant, admissible ¢ € C(M) such
that M(p) = fw™.
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The existence part of Theorem 5.18 was shown in [Kol98], also for f €
LY(M), ¢ > 1. As we will see, this part for f € C(M) can be proved in a
simpler way. It will immediately follow from Theorem 5.3 and appropriate
stability of smooth solutions (Theorem 5.21 below).

Concerning the uniqueness in Theorem 5.18 it was later shown in [Kol03]
(also for more general densities f). One can however consider the uniqueness
problem without any assumption on density of the Monge-Ampére measure:
does M(p) = M(v) imply that ¢ — 1) = const? It was proved in [BT89]
for M = P" but it is true for arbitrary M and can be shown much simpler
than in [BT89]. We have the following most general uniqueness result with
the simplest proof.

Theorem 5.19 [Bl03b] If o, v € L>®(M) are admissible and M(p) = M ()
then ¢ — ¥ = const.

Proof. Set p := ¢ — ¢ and w, = w + dd°p. We start as in the proof of
Proposition 5.4. We will get

dpndpAwl Awy =0, j=0,1,...,n—1, (5.25)

and we have to show that dpAd®pAw™ ! = 0. To describe the further method
we assume that n = 2. Using (5.25) and integrating by parts

/dp/\dcp/\w:—/ dp/\dcp/\ddcgo:/ do Ndp N (wy — wy).
M M M

By the Schwarz inequality

1/2 1/2
‘/ d<p/\dcp/\w¢'§</ dgp/\dcga/\wd,) </ dp/\dcp/\wd,> =0
M M M

by (5.25) and, similarly, [,, do A d°p A w, = 0. Therefore dp A d°p Aw = 0.
For n > 2 the proof is similar but one has to use an appropriate inductive
procedure: in the same way as before one shows for [ = 0,1,...,n — 1 that

dp/\dcp/\wfo/\wfj,/\wlzo

if j+k+1=n—1 (see [BI03b] for details). O

The Monge-Ampére measure (dd°u)™ can be defined also for some not
locally bounded psh u: for example if v is bounded outside a compact set
(see [Dem93]). However, there is no uniqueness in this more general class.

Exercise 5.20 Show that

p(z) ==log|z| — g(2), ¥(2):=logllz||—g(2), =z€C",
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where

1
2l = I+ dzal? el = max{|z], - fzal}, g(2) = S log( + [2]%),

define admissible ¢, on P™ (with the Fubini-Study metric w = dd°log|Z|)
such that M(p) = M(y) but ¢ — ¢ # const.

Closely analyzing the proof of Theorem 5.19 one can get the quantitative
estimate

217n

[ ae—vnae-nno <c( [ w-oe -me)
(5.26)

where C'is a constant depending only on n and upper bounds of ||¢||sc, ||¥]]0o
and V. The following Poincaré—Sobolev inequality on compact Riemannian
manifolds M of real dimension m

2
s <0 ([ 2) +100) . vewraan

is more difficult to prove than (5.13) (see [Siu87, p.140]; the proof uses an
isoperimetric inequality). This combined with (5.26) immediately gives the
following stability of weak solutions whose Monge—Ampere measures have
densities in L' -

o = ®llan/n-1) < CIIf —gllf

provided that [, ow™ = [, Yw", where M(p) = fw", M(¢)) = gw", and C
depends only on M and on upper bounds for ||¢||s and ||9|]cc-

For the proof of the existence part of Theorem 5.18 we will need a uniform
stability.

Theorem 5.21 [Kol03] Assume that p,¢ € C(M) are admissible and that
M(p) = fw", M(¢) = gw™ for some f,g € C(M) with ||f — g||sc < 1/2. Let
©, ¥ be normalized by maxp (¢ — 1) = maxp (¢ — ). Then

oscl — ) < CIIf — gl (5.27)

where C' depends only on M and on upper bounds for || f|lso, ||9]]cc-

Proof. First assume that we have proved the theorem for smooth, strongly
admissible ¢, 1. From this and Theorem 5.3 we can easily deduce Theorem
5.18: any nonnegative f € C(M) with [, fw™ = V can be uniformly
approximated by positive f; € C°°(M) with fM fjw™ =V and the existence
part of Theorem 5.18 follows from the continuity of the Monge-Ampere
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operator for uniform sequences. Then obviously (5.27) will also hold for
nonsmooth ¢, . It is thus enough to consider ¢, € C*°(M) with f,g > 0.

By Theorem 5.6 we may assume that —C7; < ¢,¢ < 0. Without loss
of generality we may replace the normalizing condition maxy(¢ — ¥) =
max s (1) — ) with the normalizing inequalities

0 < max(p — ¥) < 2max( — ¢) < Amax(y — ) (5.28)

and then by the Sard theorem we may assume that 0 is the regular value ¢ —1
(we will only need that the boundaries of the sets {¢ < 1} and {¥) < ¢} have
volume zero). We will need the following comparison principle.

Proposition 5.22 If p,v € C(M) are admissible then

/{ PRCCE /{ LM

Proof. Tt is a repetition of the proof for psh functions in domains in C™ (see
[Ceg88, p.43]). For € > 0 let ¢, := max{¢p,1) +¢}. Then ¢. = ¥+ in a
neighborhood of the boundary of {i) < ¢} and by the Stokes theorem

/{ o M) = /{ L ME)

But ¢. decreases to ¢ in {¢ < ¢} as ¢ decreases to 0 and we get the result
from the weak convergence M(¢.) — M(p). O

Proof of Theorem 5.21, (continued) Set § := ||f — gl|co. We may assume that
f{w@;}(f + g)w™ <V (otherwise replace ¢ with ). Then

1
/ for < 150y o
{(¥<p} 2

We can find h € C°°(M) such that 0 < h < Cs, [, hw™ =V andh > f+1/Cs
in {¢) < ¢} (here we use the fact that the boundary of {1) < ¢} has volume
zero, and thus fint{1p><p} fw™ > V/4). Since || f||oo is under control, we will
get B

V.

=~ w

Rt/ > flm oy 1/Cy in {9 < ¢}

By Theorem 5.3 there is an admissible p € C*° (M) such that (w + dd°p)" =
hw™ and —C5 < p < —C1.
Let a be such that 0 < a < maxps(p — ). Then

D#{Y<p—a} CE:={¢<(1-t)p+tp} C{Y <y},
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where t = a/Cy < 1. Using Proposition 5.22 and the concavity of (5.18) we
get

E E E

ey
> /Efw"+ é—ivol (E).
4

On the other hand, we have g < f + § and therefore

/ng"S[Efw"—Févol(E).

Hence a < C4C56*/™ and the estimate follows, since by (5.28)
— < — ).
osc(p —¢) < 3max(p — )

O

Note that in the proof of Theorem 5.21, contrary to Theorem 5.19, we
have heavily relied on Theorem 5.3 (in the construction of p).

From Theorems 5.3 and 5.13 we get the following regularity in the
nondegenerate (f > 0) and degenerate (f > 0) case.

Theorem 5.23 Let ¢ € C(M) be admissible and assume that M(p) = fw™.
Then

i) feC®, f>0= peC>;

i) f/0-D e OV —= Ap e L™® = p e C*, a < 1.
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