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ON THE OHSAWA–TAKEGOSHI EXTENSION THEOREM

by Zbigniew B locki

Abstract. Motivated by a recent work by B.-Y. Chen we prove a new
estimate for the ∂̄-operator, which easily implies the Ohsawa–Takegoshi
extension theorem. We essentially only use the classical Hörmander esti-
mate. This method gives the same constant as the one recently obtained
by Guan–Zhou–Zhu.

1. Introduction. The Ohsawa–Takegoshi extension theorem [14] turned
out to be one of the most important results in complex analysis and geometry.
There have been various simplifications of its proof (see e.g. [1]) but the crucial
one is due to B.-Y. Chen [8], who recently showed that it follows directly from
Hörmander’s estimate for the ∂̄-equation. Using some of his ideas we obtain
a generalization of an estimate due to Berndtsson [1] (see Theorem 1 below),
from which the Ohsawa–Takegoshi theorem can be deduced directly.

We are also interested in the conjecture formulated by Suita [15]: for a
bounded domain D in C one has

c2
D ≤ πKD.

Here
cD(z) = exp(lim

ζ→z
(GD(ζ, z)− log |ζ − z|)),

where GD(·, z) is the (negative) Green function with pole at z ∈ D, and

KD(z) = sup{|f(z)|2 : f holomorphic in D,

∫
D
|f |2dλ ≤ 1}

is the Bergman kernel. Its relation to the extension theorem was found by
Ohsawa [13] who, using methods of the ∂̄-equation, showed the estimate

(1) c2
D ≤ C πKD
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with C = 750. It was improved in [6] to C = 2 and recently to C = 1.95388...
by Guan–Zhou–Zhu, as announced in [11]. We show, see Theorem 4 below, a
result which covers both the Ohsawa–Takegoshi result and (1) with the same
constant as in [11] (Theorem 4 below was originally shown in [9] with C = 4).

2. The estimate for the ∂̄-equation. Let Ω be a pseudoconvex domain
in Cn and assume that

α =
∑
j

αjdz̄j ∈ L2
loc,(0,1)(Ω)

satisfies ∂̄α = 0. We are looking for solutions of

(2) ∂̄u = α

with L2-estimates. The classical one is due to Hörmander [12]: for any
plurisubharmonic ϕ in Ω we can find u with

(3)

∫
Ω
|u|2e−ϕdλ ≤

∫
Ω
|α|2i∂∂̄ϕe

−ϕdλ.

For C2, strongly plurisubharmonic ϕ we have

|α|2i∂∂̄ϕ =
∑
j,k

ϕjk̄ᾱjαk,

where (ϕjk̄) is the inverse transposed of (∂2ϕ/∂zj∂z̄k), whereas for ϕ which is
only plurisubharmonic the right-hand side of (3) is a bit ambiguous. It makes
sense however (and the estimate indeed holds – see [4] or [5]) if instead of
|α|2

i∂∂̄ϕ
we take any h ∈ L∞loc(Ω) with

iᾱ ∧ α ≤ h i∂∂̄ϕ.
Berndtsson [1] showed another estimate for (2): if in addition ψ is a

plurisubharmonic function in Ω satisfying

(4) i∂ψ ∧ ∂̄ψ ≤ i∂∂̄ψ
and 0 < δ < 1, then we can find u with

(5)

∫
Ω
|u|2eδψ−ϕdλ ≤ 4

δ(1− δ)2

∫
Ω
|α|2i∂∂̄ψe

δψ−ϕdλ.

The constant in (5) was improved in [3]: it was shown that the optimal C(δ)
satisfies

4

(1− δ)(2− δ)
≤ C(δ) ≤ 4

(1− δ)2
.

Then (5) makes sense also for δ = 0: one obtains the following estimate due
to Donnelly and Fefferman [10]:∫

Ω
|u|2e−ϕdλ ≤ 4

∫
Ω
|α|2i∂∂̄ψe

−ϕdλ.
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It is also clear that we cannot have a finite constant in (5) δ = 1.
Note that in our convention (4) can be written as |∂̄ψ|2

i∂∂̄ψ
≤ 1. Keeping

this in mind we will formulate our main result which can be viewed as a variant
of Berndtsson’s estimate (5) for δ = 1:

Theorem 1. Assume that Ω is a pseudoconvex domain in Cn and take
α ∈ L2

loc,(0,1)(Ω) with ∂̄α = 0. Let ϕ,ψ be plurisubharmonic functions in Ω

such that |∂̄ψ|2
i∂∂̄ψ

≤ 1 in Ω and |∂̄ψ|2
i∂∂̄ψ

≤ δ < 1 on suppα. Then there exists

u ∈ L2
loc(Ω) solving ∂̄u = α and such that

(6)

∫
Ω

(1− |∂̄ψ|2i∂∂̄ψ)|u|2eψ−ϕdλ ≤ 1

(1−
√
δ)2

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕdλ.

Proof. By standard approximation we may assume that ϕ,ψ are smooth
up to the boundary. We now use a trick from [2]. Let u be the minimal solution
to ∂̄u = α in L2(Ω, e−ϕ). This is equivalent to u being perpendicular to ker ∂̄
in L2(Ω, e−ϕ). Therefore, v := ueψ is perpendicular to ker ∂̄ in L2(Ω, e−ϕ−ψ),
which means that v is the minimal solution to ∂̄v = β, where

β := (α+ u∂̄ψ)eψ,

in L2(Ω, e−ϕ−ψ). Therefore, by Hörmander’s estimate (3)∫
Ω
|u|2eψ−ϕdλ =

∫
Ω
|v|2e−ϕ−ψdλ

≤
∫

Ω
|β|2i∂∂̄(ϕ+ψ)e

−ϕ−ψdλ ≤
∫

Ω
|α+ u∂̄ψ|2i∂∂̄ψe

ψ−ϕdλ.

Denoting h := |∂̄ψ|2
i∂∂̄ψ

, for any t > 0 we get∫
Ω
|α+ u∂̄ψ|2i∂∂̄ψe

ψ−ϕdλ

≤ (1 + t−1)

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕdλ+ t

∫
suppα

|u|2heψ−ϕdλ+

∫
Ω
|u|2heψ−ϕdλ

≤ (1 + t−1)

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕdλ+ δ(t+ 1)

∫
suppα

|u|2eψ−ϕdλ

+

∫
Ω\suppα

|u|2heψ−ϕdλ.

Therefore∫
Ω\suppα

(1− h)|u|2eψ−ϕdλ +
(
1− δ(t+ 1)

) ∫
suppα

|u|2eψ−ϕdλ

≤ (1 + t−1)

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕdλ.
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Since the left-hand side is bounded below by(
1− δ(t+ 1)

) ∫
Ω

(1− h)|u|2eψ−ϕdλ

for t = δ−1/2 − 1 we get (6).

Note that, after replacing ψ by δψ, Theorem 1 gives the Berndtsson esti-
mate (5) with the constant

1

δ(1− δ)(1−
√
δ)2

.

3. The Ohsawa–Takegoshi extension theorem. The following lemma
is essentially contained in [8]:

Lemma 2. For ζ ∈ C with |ζ| ≤ (2e)−1/2 and ε > 0 sufficiently small, set

ψ(ζ) := − log
[
− log(|ζ|2 + ε2) + log

(
− log(|ζ|2 + ε2)

)]
.

Then ψ is subharmonic in {|ζ| < (2e)−1/2} and there exist constants C1, C2,
C3 such that

i)
(
1−
|ψζ |2

ψζζ̄

)
eψ ≥ 1

C1 log2(|ζ|2 + ε2)
on {|ζ| ≤ (2e)−1/2};

ii)
|ψζ |2

ψζζ̄
≤ C2

− log ε
on {|ζ| ≤ ε};

iii)
eψ

|ζ|2ψζζ̄
≤ C3 on {ε/2 ≤ |ζ| ≤ ε}.

Using Theorem 1 and Lemma 2 similarly as in [8] we can easily prove an
extended version of the Ohsawa–Takegoshi theorem:

Theorem 3. Assume that Ω ⊂ Cn−1 × {|zn| < (2e)−1/2} is pseudoconvex
and let ϕ be a plurisubharmonic function in Ω. Then every holomorphic f
in Ω′ := Ω ∩ {zn = 0} (we assume that Ω′ is not empty) has a holomorphic
extension F in Ω satisfying∫

Ω

|F |2e−ϕ

|zn|2 log2 |zn|2
dλ ≤ C

∫
Ω′
|f |2e−ϕdλ′,

where C is a uniform constant.

Proof. We follow the argument from [8]. By standard approximation we
may assume that Ω is bounded with smooth boundary, ϕ is smooth up to the
boundary and f is defined in a neighborhood of Ω′. Let χ ∈ C∞(R) be such
that χ = 1 on {t ≤ 1/2} and χ = 0 on {t ≥ 1}. For small ε > 0 set

α := ∂̄
(
f(z′)χ(|zn|2/ε2)

)
= f(z′)χ′(|zn|2/ε2)zn dz̄n/ε

2.
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We use Theorem 1 with ψ given by Lemma 2 and ϕ̃ = ϕ + 2 log |zn|. With
δ := −C2/ log ε, we get a solution u = uε to (2) with∫

Ω

|u|2e−ϕ

|zn|2 log2(|zn|2 + ε2)
dλ ≤ C1

(1−
√
δ)2

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕ̃dλ.

We have∫
Ω
|α|2i∂∂̄ψe

ψ−ϕ̃dλ ≤ (supχ′)2

ε4

∫
{ ε
2
≤|zn|≤ε}

eψ

ψζζ̄
dλ sup

ε
2
≤|ζ|≤ε

∫
Ω′
ζ

|f |2e−ϕdλ′,

where Ω′ζ = {z′ ∈ Cn−1 : (z′, ζ) ∈ Ω}. It follows that u = 0 on {zn = 0} and

Fε(z) := f(z′)χ(|zn|2/ε2)− uε(z)

is a holomorphic extension of f satisfying

lim sup
ε→0

∫
Ω

|Fε|2e−ϕ

|zn|2 log2 |zn|2
dλ ≤ C

∫
Ω′
|f |2e−ϕdλ′.

The required F is the weak accumulation point of Fε.

4. The Suita conjecture and constants. Similarly as in [11], we con-
sider a decreasing convex η : R+ −→ R− such that

(7) η′′ ≥ (η′)2

η + et

and

(8) C :=
1

− lim
t→∞

η′(t)
<∞.

An example of such an η is −a(t + tb), where 0 < b < 1 and a > 0 is suffi-
ciently small. The smallest C that can be obtained this way (numerically with
Mathematica) is for η satisfying the equality in (7) and the initial condition
η(0) = 0, η′(0) = −2.216715...; then C = 1.95388...

Theorem 4. Assume that Ω ⊂ Cn−1 × D is pseudoconvex, where D is a
bounded domain in C containing the origin. Then for every plurisubharmonic
ϕ in Ω and f holomorphic in Ω′ := Ω ∩ {zn = 0} (we assume that Ω′ is not
empty) there exists a holomorphic F in Ω such that F |Ω′ = f and∫

Ω
|F |2e−ϕ dλ ≤ C π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′,

where C is given by (8).
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Proof. First assume that D = {|ζ| < 1}, so that in particular cD(0) = 1.
Let 0 < ε < 1 and set

α := ∂̄
(
f(z′)χ(−2 log |zn|)

)
= −f(z′)χ′(−2 log |zn|)

dz̄n
z̄n

,

where χ∈ C0,1(R+), such that χ(t) = 0 for t ≤M :=−2 log ε and lim
t→∞

χ(t) = 1,

will be determined later. Further, set ϕ̃ := ϕ+2 log |zn| and ψ := γ(−2 log |zn|),
where a convex decreasing γ ∈ C1,1(R+) will also be determined later. For u
given by Theorem 1 we have∫

Ω
|u|2e−ϕdλ ≤

∫
Ω

(1− |∂̄ψ|2i∂∂̄ψ)|u|2eψ−ϕ̃dλ ≤ 1

(1−
√
δ)2

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕ̃dλ,

provided that

(9)

(
1− (γ′)2

γ′′

)
eγ+t ≥ 1

on R+ (then the first inequality holds), (γ′)2/γ′′ ≤ 1 on R+ and (γ′)2/γ′′ ≤
δ < 1 on {t ≥M} (then the second inequality follows from Theorem 1).

Similarly as in the proof of Theorem 3, we have (recall that α, ϕ̃ and ψ
depend on ε)

lim sup
ε→0+

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕ̃dλ ≤ lim sup
ε→0+

A(ε)

∫
Ω′
|f |2e−ϕdλ′,

where

A(ε) =

∫
{|ζ|≤ε}

(χ′(−2 log |ζ|))2eγ(−2 log |ζ|)

|ζ|2 γ′′(−2 log |ζ|)
dλ(ζ) = π

∫ ∞
M

(χ′)2eγ

γ′′
dt.

The optimal choice of χ with
∫∞
M χ′(t) dt = 1 is

χ(t) :=

0, t ≤M
1

c

∫ t

M
w(s) ds, t > M,

where w = γ′′e−γ and c =
∫∞
M w(s) ds. Then

A(ε) =
π∫ ∞

M
γ′′e−γ dt

.

We now set

γ(t) :=

{
− log(−η(t)), t ≤M
−δ log(t−M + a) + b, t > M,
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where a, b are chosen in such a way that γ ∈ C1,1(R+), that is

a = a(M) = δ
η(M)

η′(M)
,

b = b(M) = − log(−η(M)) + δ log a.

We set δ = δ(M) := M−1/2, so that in particular

(10) lim
M→∞

a(M) =∞.

One can easily check that on {t ≤ M} by (7) γ satisfies (9) and (γ′)2/γ′′ ≤
1. On {t > M} we have (γ′)2/γ′′ = δ and for sufficiently large M , since
−δ log(t−M + a) + t is increasing in t,(

1− (γ′)2

γ′′

)
eγ+t ≥ (1− δ)e− log(−η(M))+M ≥ 1.

Moreover, ∫ ∞
M

γ′′e−γ dt = δe−b
∫ ∞

0
(t+ a)δ−2dt =

−η′(M)

1− δ
and this tends to 1/C as M →∞. Finally, we note that, if 0 < ε̃ ≤ ε,∫

{|ζ|≤ε̃}
(1− |∂̄ψ|2i∂∂̄ψ)eψ−2 log |ζ|dλ = π

∫ ∞
−2 log ε̃

(
1− (γ′)2

γ′′

)
eγdt

= π(1− δ)eb
∫ ∞
−2 log ε̃−M

(t+ a)−δdt

=∞

which ensures that u = 0 on {zn = 0}. Defining the extension F as in the
proof of Theorem 3 gives the required result when D = {|ζ| < 1}.

If D is arbitrary we set G := GD(·, 0), α is defined as before, and we modify
the definitions of ϕ̃, ψ to ϕ̃ := ϕ+ 2G, ψ := γ(−2G). We have to show that

(11) lim sup
ε→0+

∫
{|ζ|≤ε}

(χ′(−2 log |ζ|))2eγ(−2G)−2G

4|ζ|2 |Gζ̄ |2γ′′(−2G)
dλ(ζ) ≤ C π

(cD(0))2
.

We see that

(12) lim
ε→0+

sup
{|ζ|≤ε}

|ζ|2e−2G =
1

(cD(0))2
.

We can write G = log |ζ|+ h, where h is a harmonic function. Then for some
constant A (independent of ε)

(13) 4|ζ|2 |Gζ̄ |2 = |1 + 2ζ̄hζ̄ |2 ≥ (1−Aε)2

if ε is sufficiently small.
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With the notation t = −2 log |ζ|, we have |2G + t| ≤ B for some constant
B. We now modify the definition of M to M := −2 log ε− B and define γ as
before. Then for t ≥ −2 log ε we have −2G ≥ t−B ≥M and

(14) γ(−2G) ≤ γ(t−B) ≤ γ(t) + δ log
a+B

a

(15) γ′′(−2G) ≥ γ′′(t+B) ≥
(
a−B
a

)2

γ′′(t).

We also have

(16)

∫ ∞
M+B

γ′′e−γ dt =
−η′(M)

1− δ

(
a+B

a

)δ a

a−B/η′(M)
.

Combining (12)–(16) with (10) we now get (11).
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Remark. After this paper was completed the optimal constant in the Suita
conjecture and the Ohsawa–Takegoshi extension theorem was finally obtained
in [7] building up on the methods developed here. However, Chen’s proof
from [8] of the extension theorem without optimal constant, presented here in
a slightly different form, is probably the simplest one so far.
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