Regularity of the Pluricomplex Green Function with Several Poles

Zbigniew BŁOCKi

AbSTRACT. We show that if Ω is a $C^{2,1}$ smooth, strictly pseudoconvex domain in \mathbb{C}^{n}, then the pluricomplex Green function for Ω with several fixed poles and positive weights is $C^{1,1}$.

1. Introduction

If Ω is a bounded domain in $\mathbb{C}^{n}, p^{1}, \ldots, p^{k} \in \Omega$ are distinct, and $\mu_{1}, \ldots, \mu_{k}>0$, then the corresponding pluricomplex Green function is given by

$$
g=\sup \mathcal{B},
$$

where

$$
\mathcal{B}=\left\{v \in \operatorname{PSH}(\Omega) \mid v<0, \limsup _{z \rightarrow p^{i}}\left(u(z)-\mu_{i} \log \left|z-p^{i}\right|\right)<\infty, i=1, \ldots, k\right\} .
$$

One can show that $g \in \mathcal{B}, g$ is a maximal plurisubharmonic (psh) function in $\Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\}$, and

$$
M g=\frac{\pi^{n}}{n!2^{n}} \sum_{i} \mu_{i} \delta_{p^{i}}
$$

(see [Le]), where M is the complex Monge-Ampère operator. For smooth u

$$
M u=\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{i} \partial \bar{z}_{j}}\right),
$$

and by [De] $M u$ can be well defined as a nonegative Borel measure if $u \in \operatorname{PSH}(\Omega)$ and u is locally bounded near $\partial \Omega$.

In this paper we want to show the following regularity result.

Theorem 1.1. Assume that Ω is $C^{2,1}$ smooth and strictly pseudoconvex. Then $g \in C^{1,1}\left(\Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\}\right)$, and

$$
\left|\nabla^{2} g(z)\right| \leq \frac{C}{\min _{i}\left|z-p^{i}\right|^{2}}, \quad z \in \Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\},
$$

where C is a constant depending only on $\Omega, p^{1}, \ldots, p^{k}, \mu_{1}, \ldots, \mu_{k}$.
One can treat it as a regularity result for the complex Monge-Ampère operator and indeed, this the main tool in the proof. The obtained regularity is the best possible: as shown in [Co] and [EZ], the Green function for a ball with two poles and equal weights is not C^{2} inside. In the case of one pole it is known from [BD] that the Green function need not be C^{2} up to the boundary, but in this example it is not clear how regular the function is inside. Therefore, a full counterexample is still missing in this case.

The case $k=1$ was treated in [Gu] and [Bł3]. In [Gu] the $C^{1, \alpha}$ regularity for $\alpha<1$ was claimed. However, the proof contained an error (inequality (3.6) on p . 697 in [Gu] is false). Then in [Bł3], using some results from [Gu] and a method similar to the one used in [BT1] involving holomorphic automorphisms of a ball, the $C^{1,1}$ regularity was shown. Afterwards, in the correction to [Gu], a different method was used to show the $C^{1, \alpha}$ regularity.

Here we adapt the methods from [Gu] and [Bł3] for $k \geq 1$. This yields also a slightly different proof for $k=1$, as instead of the lemma from [Bł3] we use a holomorphic mapping

$$
z \longmapsto z+\frac{\left(z_{1}-p_{1}^{1}\right) \cdots\left(z_{1}-p_{1}^{k}\right)}{\left(a_{1}-p_{1}^{1}\right) \cdots\left(a_{1}-p_{1}^{k}\right)} h
$$

(in appriopriate variables given by Lemma 3.2 below), which for $a \notin\left\{p^{1}, \ldots, p^{k}\right\}$ and small $h \in \mathbb{C}^{n}$ fixes p^{i} and maps a to $a+h$.

To get an priori estimate for the second derivative on the boundary, we follow the method from [CKNS] and prove Theorems 4.1 and 4.2 below. In the case of Theorem 4.2 we also use a modification of this method from [Gu]. We present the full proofs of Theorems 4.1 and 4.2 for two reasons: firstly, since given functions are constant on the boundary and their complex Monge-Ampère measure is also constant, the proofs are simpler than in the general setting, and secondly, we get a precise dependence of the a priori constants which was stated neither in [CKNS] nor in $[\mathrm{Gu}]$. In fact, all quantitative estimates necessary to obtain the constant from Theorem 1.1 are included here. We only make use of the existence result - [Gu, Theorem 1.1] (it would even be enough to use [CKNS, Theorem 1] and Theorem 4.1 and 4.2 below instead).

By the way, we are also able to show the following regularity of g.

Theorem 1.2. If Ω is hyperconvex, then g is continuous as a function defined on the set

$$
\begin{equation*}
\left\{\left(z, p^{1}, \ldots, p^{k}, \mu_{1}, \ldots, \mu_{k}\right) \in \bar{\Omega} \times \Omega^{k} \times\left(\mathbb{R}_{+}\right)^{k} \mid z \neq p^{i} \neq p^{j} \text { if } i \neq j\right\} \tag{1.1}
\end{equation*}
$$

where for $z \in \partial \Omega$ we set $g:=0$.
(Recall that Ω is called hyperconvex if there exists $\psi \in \operatorname{PSH}(\Omega)$ with $\psi<0$ and $\lim _{z \rightarrow \partial \Omega} \psi(z)=0$.)

Theorem 1.3. Assume that

$$
\limsup _{z \rightarrow \partial \Omega} \frac{|g(z)|}{\operatorname{dist}(z, \partial \Omega)}<\infty .
$$

Then

$$
|\nabla g(z)| \leq \frac{C}{\min _{i}\left|z-p^{i}\right|}, \quad z \in \Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\}
$$

where C is a constant depending only on $\Omega, p^{1}, \ldots, p^{k}, \mu_{1}, \ldots, \mu_{k}$.
Notation. If $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, then $x_{i}=\operatorname{Re} z_{i}, y_{i}=\operatorname{Im} z_{i}$. If $\zeta \in \mathbb{C}^{n}$, $|\zeta|=1$, then by $\partial_{\zeta}^{m} u(z)$ we will denote the m-th derivative of u in direction ζ at z. For the partial derivatives we will use the notation

$$
u_{x_{i}}=\frac{\partial u}{\partial x_{i}}, \quad u_{y_{i}}=\frac{\partial u}{\partial y_{i}}, \quad u_{i}=\frac{\partial u}{\partial z_{i}}, \quad u_{\bar{i}}=\frac{\partial u}{\partial \bar{z}_{i}} .
$$

If we write

$$
|\nabla u| \leq f \quad \text { in an open } D \subset \mathbb{C}^{n},
$$

where f is locally bounded, nonnegative in D, then we mean that u is locally Lipschitz and the inequality holds almost everywhere $(|\nabla u|$ makes then sense by the Rademacher theorem). If we write $d d^{c} u \geq d d^{c}|z|^{2}$, in fact it means exactly that $u-|z|^{2}$ is psh. When proving the existence of a constant depending only on given quantities, by C_{1}, C_{2}, \ldots we will denote positive constants depending only on those quantities and call them under control.

2. Basic estimates

Given a bounded domain Ω in \mathbb{C}^{n}, distinct poles $p^{1}, \ldots, p^{k} \in \Omega$ and weights μ_{1}, $\ldots, \mu_{k}>0$ fix positive R, r, m, and M so that for $i, j=1, \ldots, k$

$$
\begin{gathered}
\Omega \subset B\left(p^{i}, R\right) \\
\bar{B}\left(p^{i}, r\right) \subset \Omega \quad \text { and } \quad \bar{B}\left(p^{i}, r\right) \cap \bar{B}\left(p^{j}, r\right)=\varnothing \\
m \leq \mu_{i} \leq M
\end{gathered}
$$

One can easily check the following estimates for g :

$$
\begin{gathered}
\sum_{i} \mu_{i} \log \frac{\left|z-p^{i}\right|}{R} \leq g(z)<0, \quad z \in \Omega \\
\mu_{i} \log \frac{\left|z-p^{i}\right|}{R}-(k-1) M \log \frac{R}{r} \leq g(z) \leq \mu_{i} \log \frac{\left|z-p^{i}\right|}{r}, \quad z \in \bar{B}\left(p^{i}, r\right) .
\end{gathered}
$$

For ε with $0<\varepsilon<r$, define

$$
\Omega^{\varepsilon}:=\Omega \backslash \bigcup_{i} \bar{B}\left(p^{i}, \varepsilon\right),
$$

and

$$
g^{\varepsilon}:=\sup \left\{v \in \operatorname{PSH}(\Omega)|v<0, v|_{\vec{B}\left(p^{i}, \varepsilon\right)} \leq \mu_{i} \log \frac{\varepsilon}{r}, i=1, \ldots, k,\right\} .
$$

One can easily check that

$$
\begin{equation*}
g^{\varepsilon}(z) \leq \mu_{i} \log \frac{\max \left\{\left|z-p^{i}\right|, \varepsilon\right\}}{r}, \quad z \in \bar{B}\left(p^{i}, r\right), \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
g \leq g^{\varepsilon} \leq \frac{\log (r / \varepsilon)}{\log (R / \varepsilon)+(k-1)(M / m) \log (R / r)} g \quad \text { in } \Omega^{\varepsilon}, \tag{2.2}
\end{equation*}
$$

$g^{\varepsilon} \downharpoonright g^{0}:=g$ as $\varepsilon \downarrow 0$, and the convergence is locally uniform in $\Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\}$.
Proposition 2.1. Assume that Ω is C^{∞} smooth and strictly pseudoconvex. Then there exists r_{0} depending only on k, r, R, m, and $M, 0<r_{0} \leq r$, such that for ε with $0<\varepsilon<r_{0}$ we can find $v \in \operatorname{PSH}(\Omega) \cap C^{\infty}(\bar{\Omega})$ with $d d^{c} v \geq d d^{c}|z|^{2}$ in Ω, $v=0$ on $\partial \Omega$, and for $i=1, \ldots, k$

$$
\mu_{i} \log \frac{\varepsilon}{r} \leq v(z) \leq \mu_{i} \log \frac{\left|z-p^{i}\right|}{r} \quad \text { if } \varepsilon \leq\left|z-p^{i}\right| \leq r .
$$

Proof. Set

$$
w(z):=\sum_{i} \mu_{i} \log \frac{\left|z-p^{i}\right|}{R}+\left|z-p^{1}\right|^{2}-R^{2},
$$

so that $w<0$ on $\bar{\Omega}, d d^{c} v \geq d d^{c}|z|^{2}$, and $w<\mu_{i} \log (\varepsilon / r)$ on $\partial B\left(p^{i}, \varepsilon\right)$. On the other hand, for $z \in \partial B\left(p^{i}, r\right)$ we have

$$
w(z) \geq k M \log \frac{r}{R}+r^{2}-R^{2}>\mu_{i} \log \frac{\varepsilon}{r}+\left|z-p^{i}\right|^{2}-\varepsilon^{2},
$$

provided that ε is such that

$$
m \log \frac{\varepsilon}{r}-\varepsilon^{2}<k M \log \frac{r}{R}-R^{2} .
$$

Similarly as in [Bł2], let $\chi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{∞} smooth and such that

$$
\begin{aligned}
\chi(t)=0, & t \leq-1, \\
x(t)=t, & t \geq 1, \\
0 \leq \chi^{\prime}(t) \leq 1, & t \in \mathbb{R}, \\
x^{\prime \prime}(t) \geq 0, & t \in \mathbb{R} .
\end{aligned}
$$

For $x, y \in \mathbb{R}$ set

$$
f_{j}(x, y):=x+\frac{1}{j} x(j(y-x)),
$$

so that

$$
f_{j}(x, y)=\max \{x, y\} \quad \text { if }|x-y| \geq \frac{1}{j} .
$$

If u, v are psh functions with $d d^{c} u, d d^{c} v \geq d d^{c}|z|^{2}$, then

$$
d d^{c} f_{j}(u, v) \geq\left(1-x^{\prime}(j(v-u))\right) d d^{c} u+x^{\prime}(j(v-u)) d d^{c} v \geq d d^{c}|z|^{2} .
$$

Let ψ be a defining function for Ω. If we choose j, A sufficiently big, then the function

$$
v(z)= \begin{cases}f_{j}\left(w(z), \mu_{i} \log \frac{\varepsilon}{r}+\left|z-p^{i}\right|^{2}-\varepsilon^{2}\right), & z \in \bigcup_{i} \bar{B}\left(p^{i}, r\right) \\ f_{j}(w(z), A \psi(z)), & z \in \bar{\Omega} \backslash \bigcup_{i} \bar{B}\left(p^{i}, r\right)\end{cases}
$$

has all the required properties.
Note that if $k=1$, then we may choose $r_{0}=r$ in Proposition 2.1.
Proof of Theorem 1.2. By (2.2) $g^{\varepsilon} \rightarrow g$ locally uniformly on the set (1.1) as $\varepsilon \rightarrow 0$. It is thus enough to show that for a fixed small $\varepsilon, g^{\varepsilon}$ is continuous as a function defined on

$$
\bar{\Omega} \times\left\{\left(p^{1}, \ldots, p^{k}\right) \in \Omega^{k}\left|\operatorname{dist}\left(p^{i}, \partial \Omega\right)>\varepsilon,\left|p^{i}-p^{j}\right|>2 \varepsilon \text { if } i \neq j\right\} \times\left(\mathbb{R}_{+}\right)^{k} .\right.
$$

Let $p^{i, j} \rightarrow p^{i}, \mu_{i, j} \rightarrow \mu_{i}$ as $j \rightarrow \infty, i=1, \ldots, k$, and

$$
g_{j}^{\varepsilon}:=\sup \left\{v \in \operatorname{PSH}(\Omega)|v<0, v|_{\bar{B}\left(p^{p, j, \varepsilon)}\right.} \leq \mu_{i, j} \log \frac{\varepsilon}{r}\right\} .
$$

Note that if $0<\varepsilon<r_{0}$ and j is big enough, then by Proposition 2.1 applied to a ball containing Ω we have $\lim _{z \rightarrow \partial B\left(p^{i}, \varepsilon\right)} g_{j}^{\varepsilon}(z)=\mu_{i} \log (\varepsilon / r)$. Moreover, $\lim _{z \rightarrow \partial \Omega} g_{j}^{\varepsilon}(z)=0$, since Ω is hyperconvex. Therefore, by a result from [Wa] (see also [Bł1, Theorem 1.5]), g_{j}^{ε} is continuous on $\bar{\Omega}$.

To finish the proof it is enough to show that $g_{j}^{\varepsilon} \rightarrow g^{\varepsilon}$ uniformly as $j \rightarrow \infty$ in $\bar{\Omega}$. Fix $c>0$. For $z \in \bar{B}\left(p^{i}, \varepsilon\right)$ and j big enough, by (2.1) we have

$$
g_{j}^{\varepsilon}(z) \leq \mu_{i, j} \log \frac{\max \left\{\left|z-p^{i, j}\right|, \varepsilon\right\}}{r} \leq \mu_{i, j} \log \frac{\varepsilon+\left|p^{i}-p^{i, j}\right|}{r} \leq \mu_{i} \log \frac{\varepsilon}{r}+c,
$$

whereas for $z \in \bar{B}\left(p^{i, j}, \varepsilon\right)$

$$
g^{\varepsilon}(z) \leq \mu_{i} \log \frac{\max \left\{\left|z-p^{i}\right|, \varepsilon\right\}}{r} \leq \mu_{i} \log \frac{\varepsilon+\left|p^{i}-p^{i, j}\right|}{r} \leq \mu_{i, j} \log \frac{\varepsilon}{r}+c .
$$

Thus for those j

$$
g^{\varepsilon}-c \leq g_{j}^{\varepsilon} \leq g^{\varepsilon}+c \quad \text { on } \bar{\Omega},
$$

and the theorem follows.
In the proof of Theorem 1.1 we will also need to approximate g^{ε}. If $0 \leq \varepsilon<r$ and $0 \leq \delta \leq 1$, define

$$
g^{\varepsilon, \delta}:=\sup \left\{v \in P S H \cap L^{\infty}(\Omega) \mid v \leq g^{\varepsilon}, M v \geq \delta \text { in } \Omega^{\varepsilon}\right\} .
$$

Note that $g^{\varepsilon, \delta}$ is increasing in ε and decreasing in δ. We also have

$$
\begin{equation*}
g^{\varepsilon}+\delta\left(\left|z-p^{1}\right|^{2}-R^{2}\right) \leq g^{\varepsilon, \delta} \leq g^{\varepsilon} . \tag{2.3}
\end{equation*}
$$

Proposition 2.2. $g^{\varepsilon, \delta} \in \operatorname{PSH}(\Omega), M^{\varepsilon, \delta}=\delta$ in Ω^{ε}. If Ω is hyperconvex and $0<\varepsilon<r_{0}$, then $g^{\varepsilon, \delta}$ is continuous on $\bar{\Omega}$. If Ω is C^{∞} smooth and strictly pseudoconvex, $0<\varepsilon<r_{0}$ and $0<\delta \leq 1$, then $g^{\varepsilon, \delta} \in C^{\infty}\left(\overline{\Omega^{\varepsilon}}\right)$.

Proof. We use standard procedures. Let

$$
\mathcal{B}=\left\{v \in \operatorname{PSH}(\Omega) \mid v \leq g^{\varepsilon}, M v \geq \delta \text { in } \Omega^{\varepsilon}\right\} .
$$

By the Choquet lemma there exists a sequence $v_{j} \in \mathcal{B}$ such that $\left(g^{\varepsilon, \delta}\right)^{*}=$ $\left(\sup _{j} v_{j}\right)^{*} .\left(u^{*}\right.$ denotes the upper semicontinuous regularization of u.) If $w_{j}=$ $\max \left\{v_{1}, \ldots, v_{j}\right\}$, then $M w_{j} \geq \delta$ in Ω^{ε} (see e.g. [Bł2]) and thus $w_{j} \in \mathcal{B}$. Therefore $w_{j} \uparrow\left(g^{\varepsilon, \delta}\right)^{*}$ almost everywhere, and by the approximation theorem from [BT2] $M\left(g^{\varepsilon, \delta}\right)^{*} \geq \delta$ in Ω^{ε}. We conclude that $g^{\varepsilon, \delta} \in \operatorname{PSH}(\Omega)$ and $M g^{\varepsilon, \delta} \geq \delta$ in Ω^{ε}. The balayage procedure gives $M g^{\varepsilon, \delta}=\delta$ in Ω^{ε}.

Now assume that Ω is hyperconvex and $0<\varepsilon<r_{0}$. By [Bł1] there exists $\psi \in \operatorname{PSH}(\Omega) \cap C(\bar{\Omega})$ with $\psi=0$ on $\partial \Omega$ and $M \psi \geq 1$ in Ω. For A big enough

$$
\begin{equation*}
A \psi \leq g^{\varepsilon, \delta} \leq 0 \quad \text { in } \Omega . \tag{2.4}
\end{equation*}
$$

Let v be given by Proposition 2.1 applied to a ball containing Ω. Then

$$
\begin{equation*}
v(z) \leq g^{\varepsilon, \delta}(z) \leq \mu_{i} \log \frac{\left|z-p^{i}\right|}{r} \quad \text { if } \varepsilon \leq\left|z-p^{i}\right| \leq r . \tag{2.5}
\end{equation*}
$$

For small $h \in \mathbb{C}^{n}$ and $z \in \Omega^{\varepsilon}$ with $|h|<\operatorname{dist}\left(z, \partial \Omega^{\varepsilon}\right)<2|h|$ we have

$$
\left|g^{\varepsilon, \delta}(z+h)-g^{\varepsilon, \delta}(z)\right| \leq C(|h|) .
$$

By the comparison principle (see [BT2]) applied to $g^{\varepsilon, \delta}$ and $g^{\varepsilon, \delta}(\cdot+h)$, the above inequality holds for all z with $\operatorname{dist}\left(z, \partial \Omega^{\varepsilon}\right)>|h|$. By (2.4) and (2.5)

$$
\lim _{h \rightarrow 0} C(|h|)=0,
$$

which means that $g^{\varepsilon, \delta}$ is continuous.
The last part of the proposition follows from Proposition 2.1 and [Gu, Theorem 1.1].

3. Gradient estimates

Theorem 1.3 will follow immediately from the next result applied to $\delta=0$.
Theorem 3.1. Fix $0 \leq \delta \leq 1$. Assume that

$$
\limsup _{z \rightarrow \partial \Omega} \frac{\left|g^{0, \delta}(z)\right|}{\operatorname{dist}(z, \partial \Omega)} \leq B<\infty .
$$

Then for ε satisfying Proposition 2.1 we have

$$
\left|\nabla g^{\varepsilon, \delta}(z)\right| \leq \frac{C}{\min _{i}\left|z-p^{i}\right|}, \quad z \in \Omega^{\varepsilon},
$$

where C is a constant depending only on n, k, R, r, m, M, and B.
The assumption of Theorem 3.1 is satisfied uniformly for $\delta \leq 1$ for example, if Ω is smooth and strictly pseudoconvex.

Proof of Theorem 3.1. Let $\rho>0$ be such that

$$
-g^{\varepsilon, \delta}(z) \leq-g^{0, \delta}(z) \leq 2 B \operatorname{dist}(z, \partial \Omega) \quad \text { if } \operatorname{dist}(z, \partial \Omega) \leq \rho
$$

For h sufficiently small

$$
g^{\varepsilon, \delta}(z+h)-g^{\varepsilon, \delta}(z) \leq 2 B|h| \quad \text { if } \operatorname{dist}(z, \partial \Omega)=|h|
$$

and, since by Proposition 2.1

$$
\mu_{i} \log \frac{\varepsilon}{r} \leq g^{\varepsilon, \delta}(z) \leq \mu_{i} \log \frac{\left|z-p^{i}\right|}{r} \quad \text { if } \varepsilon \leq\left|z-p^{i}\right| \leq r
$$

we have

$$
\begin{aligned}
g^{\varepsilon, \delta}(z+h)-g^{\varepsilon, \delta}(z) \leq \mu_{i} \log \frac{\left|z-p^{i}+h\right|}{\varepsilon} & \leq 2 \frac{\mu_{i}}{\varepsilon}|h| \\
\text { if } z & \in \partial B\left(p^{i}, \varepsilon+|h|\right), i=1, \ldots, k
\end{aligned}
$$

From the comparison principle we get

$$
g^{\varepsilon, \delta}(z+h)-g^{\varepsilon, \delta}(z) \leq 2 \max \left\{B, \frac{M}{\varepsilon}\right\}|h| \quad \text { if }|h| \leq \min \left\{\rho, \operatorname{dist}\left(z, \partial \Omega^{\varepsilon}\right)\right\}
$$

and thus

$$
\begin{equation*}
\left|\nabla g^{\varepsilon, \delta}\right| \leq \frac{C_{1}}{\varepsilon} \quad \text { in } \Omega^{\varepsilon} \tag{3.1}
\end{equation*}
$$

We will need a lemma.
Lemma 3.2. There exists a constant $\tilde{C}=\tilde{C}(k, n)$ such that for given p^{1}, \ldots, $p^{k} \in \mathbb{C}^{n}, a \in \mathbb{C}^{n} \backslash\left\{p^{1}, \ldots, p^{k}\right\}$ we can orthonormally change variables in \mathbb{C}^{n} so that

$$
\left|a-p^{i}\right| \leq \tilde{C}\left|a_{1}-p_{1}^{i}\right|, \quad i=1, \ldots, k
$$

Proof. By S denote the unit sphere in \mathbb{C}^{n}. We have to show that there exists $b \in S$ such that

$$
\left|a-p^{i}\right| \leq \widetilde{C}\left|\left\langle a-p^{i}, b\right\rangle\right|, \quad i=1, \ldots, k
$$

that is,

$$
\left|\left\langle\frac{a-p^{i}}{\left|a-p^{i}\right|}, b\right\rangle\right| \geq \frac{1}{\widetilde{C}}
$$

Define

$$
\widetilde{C}:=\frac{1}{\min _{S^{k}} f}
$$

where

$$
f\left(\zeta^{1}, \ldots, \zeta^{k}\right):=\max _{b \in S} \min _{i}\left|\left\langle\zeta^{i}, b\right\rangle\right|
$$

is a continuous function on S^{k}. It remains to show that $f>0$ on S^{k}. Fix ζ^{1}, \ldots, $\zeta^{k} \in S$ and define $K_{i}:=\left\{b \in S \mid\left\langle b, \zeta^{i}\right\rangle=0\right\}, i=1, \ldots, k$. Then $\cup_{i} K_{i} \neq S$, and thus for $b \in S \backslash \cup_{i} K_{i}$ we have

$$
f\left(\zeta^{1}, \ldots, \zeta^{k}\right) \geq \min _{i}\left|\left\langle\zeta^{i}, b\right\rangle\right|>0
$$

End of proof of Theorem 3.1. Fix $a \in \Omega^{\varepsilon}$ and choose variables as in Lemma 3.2. Set

$$
P(\lambda):=\left(\lambda-p_{1}^{1}\right) \cdots\left(\lambda-p_{1}^{k}\right),
$$

so that

$$
\frac{\left|P\left(z_{1}\right)\right|}{\left|P\left(a_{1}\right)\right|} \leq C_{2} \frac{\max _{i}\left|z-p^{i}\right|}{\min _{i}\left|a-p^{i}\right|} \leq \frac{C_{3}}{\min _{i}\left|a-p^{i}\right|}, \quad z \in \Omega .
$$

For h sufficiently small let

$$
\Omega^{\prime \prime}:=\left\{z \in \Omega \left\lvert\, z+\frac{P\left(z_{1}\right)}{P\left(a_{1}\right)} h \in \Omega\right.\right\}
$$

and

$$
\Omega^{\prime}:=\Omega^{\prime \prime} \backslash \bigcup_{i} \bar{B}\left(p^{i}, \varepsilon+\varepsilon^{\prime}\right),
$$

where

$$
\varepsilon^{\prime}=\min \left\{\varepsilon, r-\varepsilon, \operatorname{dist}\left(a, \partial \Omega^{\varepsilon}\right), \rho\right\} .
$$

Set

$$
v(z):=g^{\varepsilon, \delta}\left(z+\frac{P\left(z_{1}\right)}{P\left(a_{1}\right)} h\right)+\frac{C_{4}}{\min _{i}\left|a-p^{i}\right|}\left(\left|z-p^{1}\right|^{2}-R^{2}\right)|h|,
$$

so that if C_{4} is big enough, then

$$
M v \geq\left|1+\frac{P^{\prime}\left(z_{1}\right)}{P\left(a_{1}\right)} h_{1}\right|^{2} \delta+\frac{C_{4}}{\min _{i}\left|a-p^{i}\right|}|h| \geq \delta .
$$

For $z \in \partial \Omega^{\prime \prime}$ we have

$$
v(z)-g^{\varepsilon, \delta}(z) \leq 2 B \operatorname{dist}(z, \partial \Omega) \leq 2 B \frac{C_{3}}{\min _{i}\left|a-p^{i}\right|}|h|
$$

whereas for $z \in \partial B\left(p^{i}, \varepsilon+\varepsilon^{\prime}\right)$

$$
v(z)-g^{\varepsilon}(z) \leq \frac{C_{1}}{\varepsilon} \frac{\left|P\left(z_{1}\right)\right|}{\left|P\left(a_{1}\right)\right|}|h| \leq C_{1} C_{2} \frac{\varepsilon+\varepsilon^{\prime}}{\varepsilon \min _{i}\left|a-p^{i}\right|} \leq \frac{C_{5}}{\min _{i}\left|a-p^{i}\right|}|h| .
$$

Therefore, the comparison principle gives

$$
g^{\varepsilon}(a+h)-g^{\varepsilon}(a) \leq \frac{C_{6}}{\min _{i}\left|a-p^{i}\right|}|h| \quad \text { if }|h| \leq \varepsilon^{\prime} \frac{\min _{i}\left|a-p^{i}\right|}{C_{3}}
$$

and the theorem follows.

4. Estimates of the second derivative

Our goal will be to estimate $\left|\nabla^{2} g^{\varepsilon, \delta}\right|$ for small ε, δ. First, we need such an estimate on $\partial \Omega^{\varepsilon}$. We will follow the method from [CKNS] (see also [Gu]). We shall prove two theorems.

Theorem 4.1. Let Ω be a bounded strictly pseudoconvex domain in \mathbb{C}^{n} and ψ a C^{∞} psh defining function for Ω. Assume that $d d^{c} \psi \geq d d^{c}|z|^{2}$ and that there are positive constants A, a such that

$$
\begin{gathered}
|\psi|,|\nabla \psi|,\left|\nabla^{2} \psi\right|,\left|\nabla^{3} \psi\right| \leq A \quad \text { on } \bar{\Omega} \\
|\nabla \psi| \geq a \quad \text { on } \partial \Omega
\end{gathered}
$$

For $\rho>0$ denote $U=\left\{z \in \mathbb{C}^{n} \mid \operatorname{dist}(z, \partial \Omega)<\rho\right\}$. Let $u \in \operatorname{PSH}(\Omega \cap U) \cap$ $C^{\infty}(\bar{\Omega} \cap U)$ be such that $u=0$ on $\partial \Omega$ and $u<0, M u=\delta$ in $\Omega \cap U$, where $0<\delta \leq \delta_{0}$. Assume also that there are positive constants b, B such that

$$
\begin{array}{ll}
|\nabla u| \geq b & \text { on } \partial \Omega, \\
|\nabla u| \leq B & \text { on } \bar{\Omega} \cap U .
\end{array}
$$

Then there is a constant $C=C\left(n, \rho, a, A, b, B, \delta_{0}\right)$ such that

$$
\left|\nabla^{2} u\right| \leq C \quad \text { on } \partial \Omega
$$

Theorem 4.2. Fix $\alpha>1$ and let $\Omega=\left\{z \in \mathbb{C}^{n}|1<|z|<\alpha\}\right.$. Assume that $u \in \operatorname{PSH}(\Omega) \cap C^{\infty}(\bar{\Omega})$ is such that $u=0$ on $\partial B_{1}\left(B_{\alpha}=B(0, \alpha)\right), u>0$,
$M u=\delta>0$ in Ω. Suppose, moreover, that there are positive constants β, b, B such that

$$
\begin{aligned}
u \geq \beta & \text { on } \partial B_{\alpha}, \\
|\nabla u| \geq b & \text { on } \partial B_{1}, \\
|\nabla u| \leq B & \text { on } \bar{\Omega} .
\end{aligned}
$$

Then there exist positive constants $\delta_{0}=\delta_{0}(n, \alpha, \beta)$ and $C=C(n, \alpha, \beta, b, B)$ such that if $0<\delta \leq \delta_{0}$, we have

$$
\left|\nabla^{2} u\right| \leq C \quad \text { on } \partial B_{1} .
$$

Proof of Theorem 4.1. Fix $z_{0} \in \partial \Omega$. We may assume that $N_{z_{0}}=(0, \ldots, 0,1)$, so that $\partial_{N z_{0}}=\partial / \partial x_{n}$. Since both ψ and u are C^{∞} defining functions for Ω, there exists a C^{∞} function v, defined in a neighborhood of $\partial \Omega$, such that $u=v \psi$ and $v>0$ on $\bar{\Omega} \cap U$. Therefore, if $t, s \in\left\{x_{1}, y_{1}, \ldots, x_{n-1}, y_{n-1}, y_{n}\right\}$, then

$$
\begin{equation*}
u_{t s}\left(z_{0}\right)=\frac{u_{x_{n}}\left(z_{0}\right) \psi_{t s}\left(z_{0}\right)}{\psi_{x_{n}}\left(z_{0}\right)} \tag{4.1}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left|u_{t s}\left(z_{0}\right)\right| \leq C_{1} . \tag{4.2}
\end{equation*}
$$

Suppose now that we know that

$$
\begin{equation*}
\left|u_{t x_{n}}\left(z_{0}\right)\right| \leq C_{2}, \tag{4.3}
\end{equation*}
$$

and we want to estimate $\left|u_{x_{n} x_{n}}\left(z_{0}\right)\right|$. We have

$$
u_{x_{n} x_{n}}=4 u_{n \bar{n}}-u_{y_{n} y_{n}},
$$

and by (4.1), (4.2), (4.3), and since $d d^{c} \psi \geq d d^{c}|z|^{2}$,

$$
\delta_{0} \geq \delta=\operatorname{det}\left(u_{i \bar{j}}\left(z_{0}\right)\right) \geq u_{n \bar{n}}\left(z_{0}\right)\left(\frac{a}{A}\right)^{n-1}-C_{3}
$$

It thus remains to show (4.3). For $z \in \bar{\Omega}$ we have

$$
\begin{aligned}
\psi_{x_{n}}(z) & =\operatorname{Re}\left\langle\nabla \psi(z), \frac{\nabla \psi\left(z_{0}\right)}{\left|\nabla \psi\left(z_{0}\right)\right|}\right\rangle \\
& \geq\left|\nabla \psi\left(z_{0}\right)\right|-A\left|z-z_{0}\right| \geq a-A\left|z-z_{0}\right|
\end{aligned}
$$

On $\bar{\Omega} \cap \bar{B}\left(z_{0}, \tilde{\rho}\right)$ define

$$
T:=u_{t}-\frac{\psi_{t}}{\psi_{x_{n}}} u_{x_{n}},
$$

so that

$$
\begin{equation*}
T=0 \quad \text { on } \partial \Omega \cap \bar{B}\left(z_{0}, \tilde{\rho}\right) . \tag{4.4}
\end{equation*}
$$

We have

$$
T_{x_{n}}\left(z_{0}\right)=u_{t x_{n}}\left(z_{0}\right)-\frac{\psi_{t x_{n}}\left(z_{0}\right)}{\psi_{x_{n}}\left(z_{0}\right)} u_{x_{n}}\left(z_{0}\right),
$$

and thus it is enough to prove that

$$
\left|T_{x_{n}}\left(z_{0}\right)\right| \leq C_{4} .
$$

Set $f:=\psi_{t} / \psi_{x_{n}}$; then

$$
\begin{equation*}
|\nabla f|,\left|\nabla^{2} f\right| \leq C_{5} \quad \text { in } \bar{\Omega} \cap \bar{B}\left(z_{0}, \tilde{\rho}\right) . \tag{4.5}
\end{equation*}
$$

Since $\operatorname{det}\left(u_{i \bar{j}}\right)$ is constant, one can show that

$$
u^{i \bar{j}} u_{i j t}=u^{i \bar{j}} u_{i j x_{n}}=0 .
$$

(Here $\left(u^{i \bar{j}}\right)$ denotes the inverse transposed matrix of $\left(u_{i \bar{j}}\right)$.) Hence, we can compute
$u^{i \bar{j}} T_{i \bar{j}}=-u_{x_{n}} u^{i \bar{j}} f_{i \bar{j}}-2 \operatorname{Re} u^{i \bar{j}} u_{i x_{n}} f_{\bar{j}}=-u_{x_{n}} u^{i \bar{j}} f_{i \bar{j}}-2 f_{x_{n}}-2 \operatorname{Im} u^{i \bar{j}} u_{i y_{n}} f_{\bar{j}}$.
Since

$$
u^{i \bar{j}}\left(u_{y_{n}}^{2}\right)_{i \bar{j}}=2 u^{i \bar{j}} u_{i y_{n}} u_{\bar{j} y_{n}},
$$

the Schwarz inequality and (4.5) give

$$
u^{i \bar{j}}\left(\pm T+\frac{1}{2} u_{y_{n}}^{2}\right)_{i \bar{j}} \geq \mp u_{x_{n}} u^{i \bar{j}} f_{i \bar{j}} \mp 2 f_{x_{n}}-u^{i \bar{j}} f_{i} f_{\bar{j}} \geq-C_{6}\left(\sum_{i} u^{i \bar{i}}+1\right) .
$$

On $\partial \Omega$ we have $u_{y_{n}}=u_{x_{n}} \psi_{y_{n}} / \psi_{x_{n}}$, and thus by (4.4)

$$
\left| \pm T+\frac{1}{2} u_{y_{n}}^{2}\right| \leq C_{7}\left|z-z_{0}\right|^{2}, \quad z \in \partial \Omega \cap \bar{B}\left(z_{0}, \tilde{\rho}\right) .
$$

Moreover,

$$
\left| \pm T+\frac{1}{2} u_{y_{n}}^{2}\right| \leq C_{8} \quad \text { in } \bar{\Omega} \cap \bar{B}\left(z_{0}, \tilde{\rho}\right),
$$

and we obtain that if $w= \pm T+\frac{1}{2} u_{y_{n}}^{2}-C_{9}\left|z-z_{0}\right|^{2}$, where C_{9} is big enough, then $w \leq 0$ on $\partial\left(\Omega \cap B\left(z_{0}, \tilde{\rho}\right)\right.$, and

$$
u^{i \bar{j}} w_{i \bar{j}} \geq-C_{10}\left(\sum_{i} u^{i \bar{i}}+1\right) .
$$

Therefore, if C_{11} and C_{12} are big enough, then $w+C_{11} \psi+C_{12} u \leq 0$ on $\partial\left(\Omega \cap B\left(z_{0}, \tilde{\rho}\right)\right)$ and $u^{i \bar{j}}\left(w+C_{11} \psi+C_{12} u\right)_{i \bar{j}} \geq 0$ in $\Omega \cap B\left(z_{0}, \tilde{\rho}\right)$. By the maximum principle

$$
w+C_{11} \psi+C_{12} u \leq 0 \quad \text { in } \Omega \cap B\left(z_{0}, \tilde{\rho}\right),
$$

and thus

$$
\left|T_{x_{n}}\left(z_{0}\right)\right| \leq C_{11} A+C_{12} B .
$$

Proof of Theorem 4.2. Set

$$
\psi(z)=\lambda\left(|z|^{2}-1\right),
$$

where $\lambda=\beta /\left(\alpha^{2}-1\right)$, so that $\psi \leq u$ in Ω for δ sufficiently small. We now follow the proof of Theorem 4.1. Fix $z_{0} \in \partial B_{1}$, we may assume that $z_{0}=(0, \ldots, 0,1)$. We may reduce the problem to the estimate

$$
\left|u_{t x_{n}}\left(z_{0}\right)\right| \leq C_{1} .
$$

Similarly as before we get that if $w= \pm T+\frac{1}{2} u_{y_{n}}^{2}-C_{2}\left|z-z_{0}\right|^{2}$, where C_{2} is big enough, then

$$
u^{i \bar{j}} w_{i \bar{j}} \geq-C_{3}\left(\sum_{i} u^{i \bar{i}}+1\right) \quad \text { in } \Omega \cap B\left(z_{0}, 1\right),
$$

and $w \leq 0$ on $\partial\left(\Omega \cap B\left(z_{0}, 1\right)\right)$.
Now by the inequality between arithmetic and geometric means we have

$$
u^{i \bar{j}}(\psi-u)_{i \bar{j}} \geq \lambda \sum_{i} u^{i \bar{i}}-n \geq \frac{\lambda}{2} \sum_{i} u^{i \bar{i}}+n\left(\frac{\lambda}{2 \delta^{1 / n}}-1\right) \geq \frac{\lambda}{2}\left(\sum_{i} u^{i \bar{i}}+1\right),
$$

for δ small enough. Thus

$$
u^{i \bar{j}}\left(w+C_{4}(\psi-u)\right)_{i j} \geq 0 \quad \text { in } \Omega \cap B\left(z_{0}, 1\right)
$$

if C_{4} is sufficiently big, and by the maximum principle we conclude that

$$
\left|T_{x_{n}}\left(z_{0}\right)\right| \leq C_{4} B .
$$

Proof of Theorem 1.1. Let ψ be a $C^{2,1}$ defining function for Ω with $d d^{c} \psi \geq$ $d d^{c}|z|^{2}$ in Ω and

$$
\begin{gathered}
|\psi|,|\nabla \psi|,\left|\nabla^{2} \psi\right|,\left|\nabla^{3} \psi\right| \leq A \quad \text { on } \bar{\Omega}, \\
|\nabla \psi|>a \quad \text { on } \partial \Omega,
\end{gathered}
$$

for some positive a and A. We can find $\tilde{r}>0$ such that for every $z_{0} \in \partial \Omega$ there exists a ball $B\left(z_{1}, 2 \tilde{r}\right)$, contained in Ω and tangent to $\partial \Omega$ at z_{0}. Then

$$
g(z) \leq-\frac{\gamma}{\log 2} \log \frac{\left|z-z_{1}\right|}{2 \tilde{r}} \quad \text { if } \tilde{r} \leq\left|z-z_{1}\right| \leq 2 \tilde{r},
$$

where

$$
\gamma=\max _{\operatorname{dist}(z, \partial \Omega) \geq \check{r}} g(z) .
$$

Therefore we can find b with

$$
\liminf _{z \rightarrow \partial \Omega} \frac{|g(z)|}{\operatorname{dist}(z, \partial \Omega)}>b>0 .
$$

Let $\psi_{j}=\psi * \rho_{1 / j}$ be the standard regularization of ψ and let $\Omega_{j}=\left\{\psi_{j}<0\right\}$. If j is big enough, then the constants A, a, and b are good also for ψ_{j} and Ω_{j}. Thus, we may assume that ψ (and thus Ω) is C^{∞}, provided that we prove that the constant in Theorem 1.1 depends only on n, k, r, R, m, M, A, a, and b.

By Proposition 2.2, $g^{\varepsilon, \delta} \in C^{\infty}\left(\overline{\Omega^{\varepsilon}}\right)$ if $0<\varepsilon<r_{0}, 0<\delta \leq 1$. It is enough to show that for small positive ε and δ we have

$$
\left|\nabla^{2} g^{\varepsilon, \delta}(z)\right| \leq \frac{C_{1}}{\min _{i}\left|z-p^{i}\right|^{2}}, \quad z \in \Omega^{\varepsilon} .
$$

Since $\left|\nabla g^{\varepsilon, \delta}\right| \geq b$ on $\partial \Omega$, by Theorems 3.1 and 4.1 we have

$$
\begin{equation*}
\left|\nabla^{2} g^{\varepsilon, \delta}\right| \leq C_{2} \quad \text { on } \partial \Omega . \tag{4.6}
\end{equation*}
$$

For $|w| \geq 1$ and fixed $i=1, \ldots, k$ set

$$
u(w):=g^{\varepsilon, \delta}\left(p^{i}+\varepsilon w\right)-\mu_{i} \log \frac{\varepsilon}{r} .
$$

By (2.2) and (2.3)

$$
u(w) \geq \mu_{i} \log |w|-C_{3}
$$

Thus, if α is so big that $\beta:=m \log \alpha-C_{3}>0$, then for sufficiently small $\varepsilon, u \geq \beta$ on ∂B_{α}. Moreover, $g^{\varepsilon, \delta} \geq-C_{4}$ on $\partial B\left(p^{i}, r\right)$. Thus by the comparison principle, for sufficiently small ε we have

$$
\frac{\mu_{i}}{2} \log \frac{\left|z-p^{i}\right|}{r}+\frac{\mu_{i}}{2} \log \frac{\varepsilon}{r}+\left|z-p^{i}\right|^{2}-\varepsilon^{2} \leq g^{\varepsilon, \delta}(z) \quad \text { if } \varepsilon \leq\left|z-p^{i}\right| \leq r .
$$

Therefore

$$
\left|\nabla g^{\varepsilon, \delta}\right| \geq \frac{\mu_{i}}{2 \varepsilon} \quad \text { on } \partial B\left(p^{i}, \varepsilon\right)
$$

and $|\nabla u| \geq \mu_{i} / 2$ on ∂B_{1}. From Theorem 4.2 it follows that for δ small enough

$$
\left|\nabla^{2} u\right| \leq C_{5} \quad \text { on } \partial B_{1}
$$

which means that

$$
\begin{equation*}
\left|\nabla^{2} g^{\varepsilon, \delta}\right| \leq \frac{C_{5}}{\varepsilon^{2}} \quad \text { on } \partial B\left(p^{i}, \varepsilon\right) \tag{4.7}
\end{equation*}
$$

The rest of the proof will be a compilation of the methods from [Bł3] and from the proof of Theorem 3.1. Fix $a \in \Omega \backslash\left\{p^{1}, \ldots, p^{k}\right\}$. From the fact that $g^{\varepsilon, \delta}$ is psh it follows that

$$
\begin{equation*}
\left|\nabla^{2} g^{\varepsilon, \delta}(a)\right|=\limsup _{h \rightarrow 0} \frac{g^{\varepsilon, \delta}(a+h)+g^{\varepsilon, \delta}(a-h)-2 g^{\varepsilon, \delta}(a)}{|h|^{2}} \tag{4.8}
\end{equation*}
$$

Let P be as in the proof of Theorem 3.1 and let $\Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega, \varepsilon^{\prime}>0$. For $z \in \overline{\Omega^{\prime}} \backslash \bigcup_{i} B\left(p^{i}, \varepsilon+\varepsilon^{\prime}\right)$ and small h set

$$
D(z, h):=g^{\varepsilon, \delta}\left(z+\frac{P\left(z_{1}\right)}{P\left(a_{1}\right)} h\right)
$$

and

$$
v(z, h)=D(z, h)+D(z,-h)+\frac{C_{6}}{\left|P\left(a_{1}\right)\right|^{2}}\left(\left|z-p^{1}\right|^{2}-R^{2}\right)|h|^{2}
$$

so that

$$
\begin{aligned}
D(z, 0) & =g^{\varepsilon, \delta}(z) \\
D(a, h) & =g^{\varepsilon, \delta}(a+h)
\end{aligned}
$$

v is psh in z, and

$$
\begin{equation*}
v(a, h) \geq g^{\varepsilon, \delta}(a+h)+g^{\varepsilon, \delta}(a-h)-\frac{C_{6} R^{2}}{\left|P\left(a_{1}\right)\right|^{2}}|h|^{2} \tag{4.9}
\end{equation*}
$$

If C_{6} is sufficiently big and h sufficiently small, then

$$
\begin{aligned}
&(M v(\cdot, h))^{1 / n} \geq\left(\left|1+\frac{P^{\prime}\left(z_{1}\right)}{P\left(a_{1}\right)} h_{1}\right|^{2 / n}+\left|1-\frac{P^{\prime}\left(z_{1}\right)}{P\left(a_{1}\right)} h_{1}\right|^{2 / n}\right) \delta^{1 / n} \\
&+\frac{C_{6}}{\left|P\left(a_{1}\right)\right|^{2}}|h|^{2} \geq(2 \delta)^{1 / n}
\end{aligned}
$$

The Taylor expansion of $D(z, \cdot)$ about the origin gives

$$
v(z, h) \leq D(z, h)+D(z,-h) \leq 2 g^{\varepsilon, \delta}(z)+\left\|\nabla^{2}(D(z, \cdot))\right\|_{\bar{B}(0,|h|)}|h|^{2} .
$$

Since

$$
\left|\nabla^{2}(D(z, \cdot))(\tilde{h})\right|=\frac{\left|P\left(z_{1}\right)\right|^{2}}{\left|P\left(a_{1}\right)\right|^{2}}\left|\nabla^{2} g^{\varepsilon, \delta}\left(z+\frac{P\left(z_{1}\right)}{P\left(a_{1}\right)} \tilde{h}\right)\right|
$$

we get

$$
\begin{array}{ll}
v(z, h) \leq 2 g^{\varepsilon, \delta}(z)+C^{\prime}|h|^{2}, & z \in \partial \Omega^{\prime} \\
v(z, h) \leq 2 g^{\varepsilon, \delta}(z)+C_{i}^{\prime}|h|^{2}, & z \in \partial B\left(p^{i}, \varepsilon+\varepsilon^{\prime}\right)
\end{array}
$$

where

$$
\begin{aligned}
& C^{\prime}=C_{7} \frac{\left\|\nabla^{2} g^{\varepsilon, \delta}\right\|_{\Omega \backslash \overline{\Omega^{\prime \prime}}}}{\left|P\left(a_{1}\right)\right|^{2}}, \\
& C_{i}^{\prime}=C_{8} \frac{\left(\varepsilon+\varepsilon^{\prime}\right)^{2}\left\|\nabla^{2} g^{\varepsilon, \delta}\right\|_{B\left(p^{i}, \varepsilon+2 \varepsilon^{\prime}\right) \cap \Omega^{\varepsilon}}}{\left|P\left(a_{1}\right)\right|^{2}}
\end{aligned}
$$

for h small enough. Now we can apply the comparison principle to v and $2 g^{\varepsilon, \delta}$. We obtain

$$
v(a, h) \leq 2 g^{\varepsilon, \delta}(a)+\max \left\{C^{\prime}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right\}|h|^{2}
$$

By (4.8) and (4.9)

$$
\left|\nabla^{2} g^{\varepsilon, \delta}(a)\right| \leq \max \left\{C^{\prime}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right\}+\frac{C_{6} R^{2}}{\left|P\left(a_{1}\right)\right|^{2}}
$$

If we let $\Omega^{\prime \prime} \uparrow \Omega, \varepsilon^{\prime} \downarrow 0$, and use (4.6), (4.7), then the desired estimate follows.

References

[BD] E. BEDFORD \& J.-P. DEmAILLY, Two counterexamples concerning the pluri-complex Green function in \mathbb{C}^{n}, Indiana Univ. Math. J. 37 (1988), 865-867.
[BT1] E. BEDFORD \& B.A. TAYLOR, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
[BT2] , A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-41.
[Bł1] Z. BŁOCKI, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa 23 (1996), 721-747.
[Bł2] , Equlibrium measure of a product subset of \mathbb{C}^{n}, Proc. Amer. Math. Soc. 128 (2000), 3595-3599.
[Bł3] , The $C^{1,1}$ regularity of the pluricomplex Green function, Michigan Math. J. 47 (2000), 211-215.
[CKNS] L. Caffarelli, J.J. Kohn, L. Nirenberg \& J. Spruck, The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère, and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252.
[Co] D. COMAN, The pluricomplex Green function with two poles of the unit ball of \mathbb{C}^{n}, Pacific J. Math. 194 (2000), 257-283.
[De] J.-P. Demailly, Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z. 194 (1987), 519-564.
[EZ] A. EDIGARIAN \& W. ZWONEK, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), 367-380.
[Gu] BO GUAN, The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998), 687-703, correction: ibid. 8 (2000), 213-218.
[Le] P. LeLong, Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl. 68 (1989), 319-347.
[Wa] J.B. WALSH, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143-148.

Jagiellonian University
Institute of Mathematics
Reymonta 4, 30-059 Kraków
POLAND
E-MAIL: blocki@im.uj.edu.pl
ACKNOWLEDGMENT: Partially supported by KBN Grant \#2 PO3A 00313.

KEY WORDS AND PHRASES:
pluricomplex Green function with several poles, complex Monge-Ampère operator. 1991 Mathematics Subject Classification: Primary 32U35; Secondary 32W20
Received: March 14th, 2000; revised: September 8th, 2000.

