Regularity of the Pluricomplex Green Function
with Several Poles

ZBIGNIEW BLOCKI
ABSTRACT. We show that if Q is a C*! smooth, strictly pseu-

doconvex domain in C", then the pluricomplex Green function
for Q with several fixed poles and positive weights is C'1.

1. INTRODUCTION

If Q is a bounded domain in C*, pl, ..., p*¥ € Q are distinct, and py, ..., ux > 0,
then the corresponding pluricomplex Green function is given by

g =supB,
where

B={vePSH(Q) |v <0, limsup(u(z) - piloglz — p'|) < o, i =1,...,k}.

z—pt

One can show that g € B, g is a maximal plurisubharmonic (psh) function in
Q\{p',...,p*}, and

.n-n
Mg =S g”iaf’i

(see [Le]), where M is the complex Monge-Ampere operator. For smooth u

2
Mu=det( ou ),

aziaéj

and by [De] Mu can be well defined as a nonegative Borel measure if u € PSH(Q)
and u is locally bounded near 0Q.
In this paper we want to show the following regularity result.
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Theorem 1.1. Assume that Q is C*' smooth and strictly pseudoconvex. Then
g et @Q\ {p',...,p}), and

C

|V2g(2)| = m, zeQ\ {Pl,---,l’k},
1

where C is a constant depending only on Q, p', ..., p*, w1, ..., Uk

One can treat it as a regularity result for the complex Monge-Ampére operator
and indeed, this the main tool in the proof. The obtained regularity is the best
possible: as shown in [Co] and [EZ], the Green function for a ball with two poles
and equal weights is not C? inside. In the case of one pole it is known from [BD]
that the Green function need not be C? up to the boundary, but in this example
it is not clear how regular the function is inside. Therefore, a full counterexample
is still missing in this case.

The case k = 1 was treated in [Gu] and [B}3]. In [Gu] the C1'* regularity for
o < 1 was claimed. However, the proof contained an error (inequality (3.6) on p.
697 in [Gu] is false). Then in [B}3], using some results from [Gu] and a method
similar to the one used in [BT1] involving holomorphic automorphisms of a ball,
the CU! regularity was shown. Afterwards, in the correction to [Gu], a different
method was used to show the C1'* regularity.

Here we adapt the methods from [Gu] and [B}3] for k = 1. This yields also
a slightly different proof for k = 1, as instead of the lemma from [BI3] we use a
holomorphic mapping

(zi-ph) - (z1-pH
(ar-pl)---(a; -pb

z— ZzZ+

(in appriopriate variables given by Lemma 3.2 below), which for a ¢ {p!,..., pk}
and small h € C" fixes p' and maps a to a + h.

To get an priori estimate for the second derivative on the boundary, we follow
the method from [CKNS] and prove Theorems 4.1 and 4.2 below. In the case of
Theorem 4.2 we also use a modification of this method from [Gu]. We present the
full proofs of Theorems 4.1 and 4.2 for two reasons: firstly, since given functions
are constant on the boundary and their complex Monge-Ampere measure is also
constant, the proofs are simpler than in the general setting, and secondly, we get a
precise dependence of the a priori constants which was stated neither in [CKNS]
nor in [Gu]. In fact, all quantitative estimates necessary to obtain the constant
from Theorem 1.1 are included here. We only make use of the existence result
— [Gu, Theorem 1.1] (it would even be enough to use [CKNS, Theorem 1] and
Theorem 4.1 and 4.2 below instead).

By the way, we are also able to show the following regularity of g.
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Theorem 1.2. If Q) is hyperconvex, then g is continuous as a function defined on
the set

(1.1) {(z,p", ., PX e ik) € QX QF X (RO |z = pl # plifi # j},

where for z € 0Q we set g := 0.

(Recall that Q is called hyperconvex if there exists ¢ € PSH(Q) with ¢ < 0 and
lim; .30 @(z) =0.)

Theorem 1.3. Assume that

: 19(2)]
limsup oz o0 <

Then

C i ZEQ\{pI,"'apk},

|v9(2)|5m

where C is a constant depending only on Q, p', ..., p*, p1, ..., .

Notation. 1fz = (z1,...,z,) € T, thenx; =Rez;, yi =Imz;. If € € C*,
|C| = 1, then by 6£”u(z) we will denote the m-th derivative of u in direction T
at z. For the partial derivatives we will use the notation

_ow o _oun o 0w Ou
Coxg” T oy Y 0z hT az

uxi

If we write
IVul < f inanopenD C C",

where f is locally bounded, nonnegative in D, then we mean that u is locally
Lipschitz and the inequality holds almost everywhere (| V| makes then sense by
the Rademacher theorem). If we write ddu > dd€|z|?, in fact it means exactly
that u — |z|? is psh. When proving the existence of a constant depending only on
given quantities, by Ci, C2, ... we will denote positive constants depending only
on those quantities and call them under control.

2. BASIC ESTIMATES
Given a bounded domain Q in C", distinct poles p', ..., p¥ € Q and weights y;,
..» Mk > 0 fix positive R, ¥, m, and M so that for i, j = 1,..., k
Q C B(pL,R),
B(p',¥) cQ and B(p',v)nBpl,r) =0,
m < u; <M.
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One can easily check the following estimates for g:

i
Zuilogu%l <g(2) <0, ze€Q,

Ipl

'Z_’”| (k—l)Mlog—<g(z)<ullog . zeB(pir).

pilog
For € with 0 < &€ < 7, define
=0\ B e),
i
and
gt = sup{v € PSH(Q) | v <0, U] 501 < uilog;, i = lk}
One can easily check that

max{|z — p'|, &}

(2.1) 9%(2) < pilog ———, z¢€ B(p',v),
g% € PSH(Q),
log(/¢€) o
@2 920 =R+ k- DMmlog R Y Y
g% g°:=gasel0,and the convergence is locally uniform in Q\ {p',..., p*}.

Proposition 2.1. Assume that Q is C* smooth and strictly pseudoconvex. Then
there exists vy depending only on k, v, R, m, and M, 0 < vy < v, such that for €
with 0 < € < 1y we mnﬁndv € PSH(Q) N C*(Q) with dd‘v = dd€|z|? in Q,
V=00n0Q, andfori=1,..., k

_ pl )
uilogg <v(z2) suilog% fe<|z-p'l=<r.

Proof. Set

+|Z_pl|2_R2

_ i
w(z) ::Zuilog|z Rp|
i

so that w < 0 on Q, dd°v > dd®|z|? and w < p;log(e/r) on dB(p', &). On
the other hand, for z € 9B(p',r) we have

w(z) > leog% +r2—R? >[,li10g§+ lz - pl|? - &,
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provided that € is such that
£ 2 LY
mlogr &< leogR R~
Similarly as in [Bf2], let x : R — R be C* smooth and such that

xt)=0, t<-1,
xt)y=t, t=1,
0<x'(t) <1, teR,
x"(t)=0, teR.

For x, v € R set
oy,
filx,y) == x + jx(J(y = X)),

so that

. 1
filx,y) =max{x,y} if|x—-y|= I

If u, v are psh functions with dd‘u, dd°v > dd°|z|?, then
ddc fi(u,v) = (1= x' (Glv —w))ddu+ x' (j(v —u))ddv > dd°|z|*.

Let ¢ be a defining function for Q. If we choose j, A sufficiently big, then
the function

i {fj (w(z),uilog; +|z-pi? - 52) , Z€ L_JiB(pi_,V),
fitw(2),Ap(2)), ze Q\U;B(p',7)

has all the required properties. O
Note that if k = 1, then we may choose 7y = ¥ in Proposition 2.1.

Proof of Theorem 1.2. By (2.2) g — g locally uniformly on the set (1.1) as
€ — 0. It is thus enough to show that for a fixed small €, g¢ is continuous as a
function defined on

Qx {(pl,...,p" € QX | dist(p},0Q) > ¢, |p' — p/| > 2 if i = j} x (Ry)E.

Letpi'japi,ui,jauiasj—»oo,izl,...,k,and

£
gj:=sup {v € PSH(Q) ‘ V<0, Ulgpise < Hij log;}.



340 ZBIGNIEW BLOCKI

Note that if 0 < € < 79 and j is big enough, then by Proposition 2.1 applied
to a ball containing Q we have lim,_3p(pi ) g7(2) = pilog(e/r). Moreover,
lim,_30 gj-(z) = 0, since Q is hyperconvex. Therefore, by a result from [Wa] (see
also [BH1, Theorem 1.5]), g5 is continuous on Q.

To finish the proof it is enough to show that g5 — g¢ uniformly as j — oo in
Q. Fix ¢ > 0. For z € B(p', €) and j big enough, by (2.1) we have

max{|z — pbJ]|, e e+ |pt—phi
ax{|z — p*| }—Ui,jlog Pt —p"|

< uilo e
r r = Hilog, 76

g;(2) < pijlog

whereas for z € B(p™, ¢)

9%(z) < pilog max{IZT— p'l. &} < uilogw < [,li,jlog; + c.
Thus for those j
g -c<gi<g-+c onQ,
and the theorem follows. O

In the proof of Theorem 1.1 we will also need to approximate g¢. If 0 < € <
and 0 < 6 < 1, define

g% :=sup{v € PSHNL®(Q) | v < g%, Mv = § in Q¢}.
Note that g&° is increasing in & and decreasing in 5. We also have
(2.3) g5+ 6(lz—p'l* -R?) < g*° < g~.

Proposition 2.2. g&% € PSH(Q), Mg&® = § in QF. If Q is hyperconvex
and 0 < € < 1y, then g&° is continuous on Q. If Q is C™ smooth and strictly
pseudoconvex, 0 < € <1y and 0 < § < 1, then g&° € C*(QF).

Proof. We use standard procedures. Let
B={vePSH(Q)|v < gt Mv =6 in Qf}.

By the Choquet lemma there exists a sequence vj € B such that (ged)* =
(sup; vj)*. (u* denotes the upper semicontinuous regularization of u.) If w; =
max{vy,...,V;}, then Mw; > § in QF (see e.g. [BI2]) and thus w; € B. There-
fore wj 1 (g©°)* almost everywhere, and by the approximation theorem from
[BT2] M(g&%)* = § in Qf. We conclude that g&® € PSH(Q) and Mg&% = § in
Q¢. The balayage procedure gives Mg&? = § in QF.
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Now assume that Q is hyperconvex and 0 < € < 7). By [B}1] there exists
@ € PSH(Q) N C(Q) with ¢ = 0 on dQ and My > 1 in Q. For A big enough

(2.4) AP <g®° <0 inQ.
Let v be given by Proposition 2.1 applied to a ball containing Q. Then

_pl .
(2.5) v(z) < g% (z) < uilog|z1’7p| ife<|z-p'l<r.

For small h € C" and z € Qf with |h| < dist(z,0Q¢) < 2|h| we have
19°(z + h) — g°(2)| < C(lh]).

By the comparison principle (see [BT2]) applied to g& and g&° (- +h), the above
inequality holds for all z with dist(z, 0Q¢) > |h|. By (2.4) and (2.5)

lim C(|h|) =0,
h-0

which means that g€ is continuous.
The last part of the proposition follows from Proposition 2.1 and [Gu, Theo-
rem 1.1]. O

3. GRADIENT ESTIMATES
Theorem 1.3 will follow immediately from the next result applied to 6 = 0.
Theorem 3.1. Fix0 < & < 1. Assume that

. g% (2)]
limsup 7 a0y =B <>

Then for € satisfying Proposition 2.1 we have

Vg0 (2)| < # z € QF,
min; |z — pt|

where C is a constant depending only on n, k, R, v, m, M, and B.

The assumption of Theorem 3.1 is satisfied uniformly for 6 < 1 for example,
if Q is smooth and strictly pseudoconvex.

Proof of Theorem 3.1. Let p > 0 be such that

-g%%(2) < —g»°(z) < 2Bdist(z,0Q) if dist(z,0Q) < p.
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For h sufficiently small

g% (z+h) —g¥%(z) <2B|h| if dist(z,0Q) = |hl,
and, since by Proposition 2.1

_pl .
uilogf <g°°(2) suﬂog'z rp | ife<|z-p'l <,

we have

_pt .
gs,é(z + h) _g£,5(z) < I~li10g|2p75+h| < 2%|h|,

if zedB(pl,e+|h)),i=1,... k.
From the comparison principle we get

g% (z+h) — g¥%(z) < 2max {B, %} |h| if k| < min{p,dist(z, 9Q%)},
and thus

(3.1) |IVgeo| < % in QF.

We will need a lemma.

Lemma 3.2. There exists a constant C = C(k,n) such that for given p', ...,
pkeC, ac )\ {p)...,p*} we can orthonormally change variables in C" so
that

la-pl <Clay -pil, i=1,...,k

Proof. By S denote the unit sphere in C". We have to show that there exists
b € S such that

la - pil < Cl{a - p',b)],

i=1,...,k,
that is,

_ 4l
(azhmy)
la — pt|

l
~.
Define
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where

f@Huuﬁw=%§mpqun

is a continuous function on S¥. It remains to show that f > 0on § kK Fix 1, ...,
Ck € Sand define K; :={b €S| (b,C!)=0},i=1,..., k. Then U;K; # S,
and thus for b € S \ U; K; we have

f@H“”§h2n?H@EMI>Q

O

End of proof of Theorem 3.1. Fix a € Qf and choose variables as in Lemma
3.2. Set

PA):=A—-ph)---(A-ph,
so that

|P(z1)| _ - maxi|z—p'| _ C3

< ; H < g —  zeO.
IP(a1)| = “min;la—pi| ~ minila - p|

For h sufficiently small let

Q" = {z e ‘ z+ g((z))he Q}
and
Q=" \|JB(plLe+e),
i
where
& = min{eg, v — ¢g,dist(a, 0QF), p}.
Set

(Iz=p'I*> = R*Ihl,

P(Zl)h> N C4

— &0
v(z):=g <Z+Pmn ming la — pl|

so that if Cy4 is big enough, then

2 C4

P'(zy) N
min; |a - p|

P(ar)

Mvz‘1+ hy |h| = 6.
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For z € 0Q" we have

v(z2) - g¥9(2) < 2Bdist(z,3Q) < 2B—— > |n),
min; |[a — pt|
whereas for z € 0B(pt, e + €')
Ci |P(z1)| e+¢& Cs
— E E—
V@9 = S pan ™ = emina—ptl < mingla-pil
Therefore, the comparison principle gives
Cs ) ,minila—pil
£ &
ga+h)-g (a)sminila—pH'hl iflh| <¢ s ,
and the theorem follows. O

4. ESTIMATES OF THE SECOND DERIVATIVE

Our goal will be to estimate |V2g&9| for small &, . First, we need such an
estimate on 0Qf. We will follow the method from [CKNS] (see also [Gu]). We

shall prove two theorems.

Theorem 4.1. Ler Q be a bounded strictly pseudoconvex domain in C" and
a C* psh defining function for Q. Assume that Add° @ > ddC|z|* and that there are
positive constants A, a such that

lwl, IV@l, IV2yl, V@l <A onQ,
IVy|=a onoQ.
Forp > 0 denote U = {z € C" | dist(z,0Q) < p}. Letu € PSHQNU) N
C®(QNU) be such that u = 0 on 0Q and u < 0, Mu = § in Q N U, where

0 < & < 8. Assume also that there are positive constants b, B such that

[IVul| >=b onoQ,
IVul|<B onQnU.

Then there is a constant C = C(n, p,a, A, b, B, 8¢) such that
IV2u| < C  on Q.

Theorem 4.2. Fix «x > 1 and let Q = {z € C" | 1 < |z| < «}. Assume
that u € PSH(Q) N C®(Q) s such that u = 0 on 0B; (B = B(0,x)), u > 0,
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Mu = 8 > 0 in Q. Suppose, moreover, that there are positive constants B, b, B such
that

U > onodBy,

|Vu|>b on 0B,
|Vu| <B onQ.

Then there exist positive constants 5o = 6o(n, &, B) and C = C(n, &, B,b,B)
such that if 0 < 6 < 6o, we have

|V2u| < C on 0B;.

Proof of Theorem 4.1. Fix zo € 0Q. We may assume that N, = (0,...,0,1),
so that ON,, = 0/0xy. Since both ¢ and u are C* defining functions for Q, there
exists a C® function v, defined in a neighborhood of 0Q, such that u = vy and
v > 0o0n QnU. Therefore, if t,s € {x1,V1,+++,Xn-1, Vn-1, Yn}, then

(4.1) Ues(20) = —”X"(fj:(";f)(z")
and thus

(4.2) lues (zo)| < (.
Suppose now that we know that

(4.3) [Utx, (20)] < (3,

and we want to estimate |Ux, x, (Z0)|. We have

Uxpxn, = 4“'7'”7" - u’ynynl

and by (4.1), (4.2), (4.3), and since dd°y > dd€|z|?,

n-1
80 = & = det(u;7(20)) = Uni(2o) (%) -G

It thus remains to show (4.3). For z € Q we have

_ Vi (2o)
WYx,(2) =Re <V(I/(Z), |vqj(20)|>

> |Vy(z0)| = Alz — 29|l 2 a - Alz - 2ol.
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On Q N B(zg, p) define

T:=us — ww—;”xn’
so that
(4.4) T=0 ondQnB(zyp).
We have
Ty, (20) = e, (20) muxn(zox
and thus it is enough to prove that
| Tx, (20)] < Cj.
Set f := Yt/ Px,; then
(4.5) IVLl, IV2fl < Cs inQn B(zg,p).

Since det(u; 7) is constant, one can show that

o - = yliy - =
uu; = utu;, = 0.

(Here (") denotes the inverse transposed matrix of (u;7).) Hence, we can com-
pute

YT =~ u fi; = 2ReuV i, f; = —Ua, ™ fi7 = 2fx, — 2Imuuyy, f;.
Since

(12 V.o — 9qyiiy. N

u (uyn)ij =2U Uiy, Uy,

the Schwarz inequality and (4.5) give

. 1 .37 P LT
ut (iT + Eué")ij = Fux, U fi; F 2fx, —u fif; = —Cg(Eu” + 1).
i

On 0Q we have u,,, = Ux, ¥y, /Wx,, and thus by (4.4)

2

Il = Crlz - 20l?, ze€0QnB(z,p).

'iT—F%u




Regularity of the Pluricomplex Green Function 347

Moreover,

2

Vn SCS inQﬂB’(Zo,ﬁ),

'iT—F%u

and we obtain that if w = +T + %u%,n — Colz — z9|?, where Cy is big enough,
then w < 0 on 0(Q N B(zy, p)), and

uijwij > —Clo(Zui{ + 1).
i
Therefore, if Ciy anc! Ci2 are big enough, then w + Cj1y + Ciou < 0 on
QN B(Zo,ﬁ)) and uij(w + Cnhiyp + Clzu)ij >0in QN B(Zo,ﬁ). By the
maximum principle

w+Chiy+Cou<0 inQ ﬂB(Z(),ﬁ),
and thus

[Ty, (z0)] = C11A + C12B. O

Proof of Theorem 4.2. Set

where A = B/ (o> = 1), so that ¢ < u in Q for § sufficiently small. We now follow
the proof of Theorem 4.1. Fix zy € 0B;, we may assume that zg = (0,...,0,1).
We may reduce the problem to the estimate

[Utx, (2o)| < Ci.

Similarly as before we get thatif w = +T + %u%,n — 21z — z9|?, where C, is big

enough, then

uw;

72 -G(Xuf+1) inQnB(z,1),

1

and w <0 0on d(Q N B(zp,1)).
Now by the inequality between arithmetic and geometric means we have

A A A
u (Y —u); = Azi:u”—nz Ezi:ull+n<26l/n - 1) > E(Zi:u”+ 1),

for ¢ small enough. Thus

u(w + Ci(yp -u));;=0 inQnB(z,1)
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if C4 is sufficiently big, and by the maximum principle we conclude that

| Tx, (20)| < C4B. O

Proof of Theorem 1.1. Let  be a C>! defining function for Q with dd‘y >
dde¢|z|? in Q and

ll, IVyl, V2], V3@l <A onQ,
IVy| >a ondQ,

for some positive a and A. We can find # > 0 such that for every zg € 0Q there
exists a ball B(zy, 27), contained in Q and tangent to 0Q at zo. Then

Y lz-zil ... _ .
g(z) < 10g2log 77 ifv <|z-z| <27,
where
y dist(rzr,lgf)l()zfg(Z).
Therefore we can find b with
liminf—92 oo,

z—00 dist(z,0Q)

Let ¢j = @ * p1/; be the standard regularization of ¢ and let Qj = {y; < 0}.
If j is big enough, then the constants A, a, and b are good also for @ and Q;.
Thus, we may assume that ¢ (and thus Q) is C%, provided that we prove that the
constant in Theorem 1.1 depends only on n, k, ¥, R, m, M, A, a, and b.

By Proposition 2.2, g eC®(Q)if0<e<ry,0<d=<1. Itis enough to
show that for small positive € and § we have

&

L i z € Q%
min; |z — /|

|V2g&d(2)| <

Since |Vg&®| = b on 9Q, by Theorems 3.1 and 4.1 we have
(4.6) |V2g¥°| < C;  on 0Q.
For |{w| = 1and fixedi=1, ..., k set

u(w) := g=°(p' + ew) — log;
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By (2.2) and (2.3)
u(w) = piloglwl| — Cs.

Thus, if « is so big that  := mlog & —C3 > 0, then for sufficiently small &, u = B
on 0By. Moreover, g&¢° = —C4 on 0B(p', 7). Thus by the comparison principle,
for sufficiently small € we have

. _ i . _ .
%loglzrip| +%log§ +lz-piP - <g®(z) ife<l|z-pll=r.

Therefore
£,0 & i
[Vge°| = e on 0B(p', ¢),
and |[Vu| = p;/2 on 0B;. From Theorem 4.2 it follows that for 6 small enough
|IV?u| < Cs on 0By,
which means that

(4.7) |V2g&0| < % on 0B(pl, €).

The rest of the proof will be a compilation of the methods from [Bf3] and
from the proof of Theorem 3.1. Fixa € Q\ {p!,..., p*}. From the fact that g&°
is psh it follows that

. ge%(a+h) +g*°(a—h) —2g°°(a)
(4.8) IVzgS"s(a)l = llr}r:ﬁs(t:p e .

Let P be as in the proof of Theorem 3.1 and let Q” € Q" € Q, ¢ > 0. For
ze Q' \U;B(pt e+ &) and small h set

. 5,6 P(Zl)
D(z,h):=g (z + —P(al)h)
and
Cs
v(z,h) =D(z,h) +D(z,~h) + ;5o (12 - p'I* = R)|hP?,
so that

D(z,0) = g&°(z),
D(a,h) = g*%(a + h),
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v is psh in z, and

CsR? 5
|P(0»1)|2|h| '

2/n
) 61/11

[h|? > (28)'/".

(4.9) v(a,h) = g¥°@a+h) + g*°(a - h) —

If Cs is sufficiently big and h sufficiently small, then

P'(z1), 2"

P(ay)

P'(zy)
P(ay)

h,

(MU(',h))l/nZ(‘l-i- h,

+ ‘1—
Cs
|P(ai)]?

+

The Taylor expansion of D(z, -) about the origin gives

v(z,h) < D(z,h) + D(z,—-h) <2g%°(2) + |V*(D(z, )lp,n)l Al

Since
- |P(z1)]? P(z))
v2(D(z,))(h)| = v? 5'5<z+—h) ,
IV2(D(z, ) (W) = 55 | Vg Py
we get
v(z,h) <29%°(z) + C'|h|?, zedQ),
v(z,h) <2g%°(z) + C/|h|?>, z€dB(ple+¢),
where
||vzgg’5||g\w
C =C———>12
7 P(a))?
C{ _ CS (E + 5/)2”vzg&a”B(pi,s+2£’)mQE
! |P(a)|?

for h small enough. Now we can apply the comparison principle to v and 2g%9.
We obtain

v(a,h) <2g%%(a) + max{C’,C;,...,Cr} 1%
By (4.8) and (4.9)

CsR?

v2g&9(a)| < max{C’,C},...,Ci} + )
Vig™"(a)l R AR TTPRIE

Ifwelet Q" 1 Q, & 10, and use (4.6), (4.7), then the desired estimate follows. O
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