
Regularity of the Pluricomplex Green Function
with Several Poles

ZBIGNIEW BŁOCKI

ABSTRACT. We show that if Ω is a C2,1 smooth, strictly pseu-
doconvex domain in Cn, then the pluricomplex Green function
for Ω with several fixed poles and positive weights is C1,1.

1. INTRODUCTION

If Ω is a bounded domain in Cn, p1, . . . , pk ∈ Ω are distinct, and µ1, . . . , µk > 0,
then the corresponding pluricomplex Green function is given by

g = supB,

where

B = {v ∈ PSH(Ω) | v < 0, lim sup
z→pi

(u(z)− µi log |z − pi|) <∞, i = 1, . . . , k
}
.

One can show that g ∈ B, g is a maximal plurisubharmonic (psh) function inΩ \ {p1, . . . , pk}, and

Mg = πn

n!2n
∑
i
µiδpi

(see [Le]), where M is the complex Monge-Ampère operator. For smooth u

Mu = det

(
∂2u
∂zi∂z̄j

)
,

and by [De]Mu can be well defined as a nonegative Borel measure ifu ∈ PSH(Ω)
and u is locally bounded near ∂Ω.

In this paper we want to show the following regularity result.
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Theorem 1.1. Assume that Ω is C2,1 smooth and strictly pseudoconvex. Then
g ∈ C1,1(Ω \ {p1, . . . , pk}), and

|∇2g(z)| ≤ C
mini |z − pi|2

, z ∈ Ω \ {p1, . . . , pk},

where C is a constant depending only on Ω, p1, . . . , pk, µ1, . . . , µk.

One can treat it as a regularity result for the complex Monge-Ampère operator
and indeed, this the main tool in the proof. The obtained regularity is the best
possible: as shown in [Co] and [EZ], the Green function for a ball with two poles
and equal weights is not C2 inside. In the case of one pole it is known from [BD]
that the Green function need not be C2 up to the boundary, but in this example
it is not clear how regular the function is inside. Therefore, a full counterexample
is still missing in this case.

The case k = 1 was treated in [Gu] and [Bł3]. In [Gu] the C1,α regularity for
α < 1 was claimed. However, the proof contained an error (inequality (3.6) on p.
697 in [Gu] is false). Then in [Bł3], using some results from [Gu] and a method
similar to the one used in [BT1] involving holomorphic automorphisms of a ball,
the C1,1 regularity was shown. Afterwards, in the correction to [Gu], a different
method was used to show the C1,α regularity.

Here we adapt the methods from [Gu] and [Bł3] for k ≥ 1. This yields also
a slightly different proof for k = 1, as instead of the lemma from [Bł3] we use a
holomorphic mapping

z 7 -→ z + (z1 − p1
1) · · · (z1 − pk1)

(a1 − p1
1) · · · (a1 − pk1)

h

(in appriopriate variables given by Lemma 3.2 below), which for a ∉ {p1, . . . , pk}
and small h ∈ Cn fixes pi and maps a to a+ h.

To get an priori estimate for the second derivative on the boundary, we follow
the method from [CKNS] and prove Theorems 4.1 and 4.2 below. In the case of
Theorem 4.2 we also use a modification of this method from [Gu]. We present the
full proofs of Theorems 4.1 and 4.2 for two reasons: firstly, since given functions
are constant on the boundary and their complex Monge-Ampère measure is also
constant, the proofs are simpler than in the general setting, and secondly, we get a
precise dependence of the a priori constants which was stated neither in [CKNS]
nor in [Gu]. In fact, all quantitative estimates necessary to obtain the constant
from Theorem 1.1 are included here. We only make use of the existence result
– [Gu, Theorem 1.1] (it would even be enough to use [CKNS, Theorem 1] and
Theorem 4.1 and 4.2 below instead).

By the way, we are also able to show the following regularity of g.
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Theorem 1.2. If Ω is hyperconvex, then g is continuous as a function defined on
the set

{(z,p1, . . . , pk, µ1, . . . , µk) ∈ Ω̄×Ωk × (R+)k | z ≠ pi ≠ pj if i ≠ j},(1.1)

where for z ∈ ∂Ω we set g := 0.

(Recall that Ω is called hyperconvex if there exists ψ ∈ PSH(Ω) with ψ < 0 and
limz→∂Ωψ(z) = 0.)

Theorem 1.3. Assume that

lim sup
z→∂Ω

|g(z)|
dist(z, ∂Ω) < ∞.

Then

|∇g(z)| ≤ C
mini |z − pi|

, z ∈ Ω \ {p1, . . . , pk},

where C is a constant depending only on Ω, p1, . . . , pk, µ1, . . . , µk.

Notation. If z = (z1, . . . , zn) ∈ Cn, then xi = Rezi, yi = Imzi. If ζ ∈ Cn,
|ζ| = 1, then by ∂mζ u(z) we will denote the m-th derivative of u in direction ζ
at z. For the partial derivatives we will use the notation

uxi =
∂u
∂xi

, uyi =
∂u
∂yi

, ui = ∂u∂zi
, uī =

∂u
∂z̄i
.

If we write

|∇u| ≤ f in an open D ⊂ Cn,

where f is locally bounded, nonnegative in D, then we mean that u is locally
Lipschitz and the inequality holds almost everywhere (|∇u| makes then sense by
the Rademacher theorem). If we write ddcu ≥ ddc|z|2, in fact it means exactly
that u−|z|2 is psh. When proving the existence of a constant depending only on
given quantities, by C1, C2, . . . we will denote positive constants depending only
on those quantities and call them under control.

2. BASIC ESTIMATES

Given a bounded domain Ω in Cn, distinct poles p1, . . . , pk ∈ Ω and weights µ1,
. . . , µk > 0 fix positive R, r ,m, and M so that for i, j = 1, . . . , k

Ω ⊂ B(pi, R),
B̄(pi, r) ⊂ Ω and B̄(pi, r)∩ B̄(pj, r) = ∅,

m ≤ µi ≤M.
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One can easily check the following estimates for g:

∑
i
µi log

|z − pi|
R

≤ g(z) < 0, z ∈ Ω,
µi log

|z − pi|
R

− (k− 1)M log
R
r
≤ g(z) ≤ µi log

|z − pi|
r

, z ∈ B̄(pi, r).

For ε with 0 < ε < r , define

Ωε := Ω \⋃
i
B̄(pi, ε),

and

gε := sup
{
v ∈ PSH(Ω) ∣∣∣ v < 0, v

∣∣
B̄(pi,ε) ≤ µi log

ε
r
, i = 1, . . . , k,

}
.

One can easily check that

gε(z) ≤ µi log
max{|z − pi|, ε}

r
, z ∈ B̄(pi, r),(2.1)

gε ∈ PSH(Ω),
g ≤ gε ≤ log(r/ε)

log(R/ε)+ (k− 1)(M/m) log(R/r)
g in Ωε,(2.2)

gε ↓ g0 := g as ε ↓ 0, and the convergence is locally uniform in Ω \ {p1, . . . , pk}.
Proposition 2.1. Assume that Ω is C∞ smooth and strictly pseudoconvex. Then

there exists r0 depending only on k, r , R, m, and M, 0 < r0 ≤ r , such that for ε
with 0 < ε < r0 we can find v ∈ PSH(Ω)∩ C∞(Ω̄) with ddcv ≥ ddc|z|2 in Ω,
v = 0 on ∂Ω, and for i = 1, . . . , k

µi log
ε
r
≤ v(z) ≤ µi log

|z − pi|
r

if ε ≤ |z − pi| ≤ r .

Proof. Set

w(z) :=
∑
i
µi log

|z − pi|
R

+ |z − p1|2 − R2,

so that w < 0 on Ω̄, ddcv ≥ ddc|z|2, and w < µi log(ε/r) on ∂B(pi, ε). On
the other hand, for z ∈ ∂B(pi, r) we have

w(z) ≥ kM log
r
R
+ r 2 − R2 > µi log

ε
r
+ |z − pi|2 − ε2,
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provided that ε is such that

m log
ε
r
− ε2 < kM log

r
R
− R2.

Similarly as in [Bł2], let χ : R→ R be C∞ smooth and such that

χ(t) = 0, t ≤ −1,
χ(t) = t, t ≥ 1,

0 ≤ χ′(t) ≤ 1, t ∈ R,

χ′′(t) ≥ 0, t ∈ R.

For x, y ∈ R set

fj(x,y) := x + 1
j
χ(j(y − x)),

so that

fj(x,y) = max{x,y} if |x −y| ≥ 1
j
.

If u, v are psh functions with ddcu, ddcv ≥ ddc|z|2, then

ddcfj(u,v) ≥ (1− χ′(j(v −u)))ddcu+ χ′(j(v −u))ddcv ≥ ddc|z|2.

Let ψ be a defining function for Ω. If we choose j, A sufficiently big, then
the function

v(z) =

fj
(
w(z), µi log

ε
r
+ |z − pi|2 − ε2

)
, z ∈ ⋃i B̄(pi, r),

fj(w(z),Aψ(z)), z ∈ Ω̄ \⋃i B̄(pi, r)
has all the required properties. ❐

Note that if k = 1, then we may choose r0 = r in Proposition 2.1.

Proof of Theorem 1.2. By (2.2) gε → g locally uniformly on the set (1.1) as
ε → 0. It is thus enough to show that for a fixed small ε, gε is continuous as a
function defined on

Ω̄× {(p1, . . . , pk) ∈ Ωk | dist(pi, ∂Ω) > ε, |pi − pj| > 2ε if i ≠ j} × (R+)k.

Let pi,j → pi, µi,j → µi as j →∞, i = 1, . . . , k, and

gεj := sup
{
v ∈ PSH(Ω) ∣∣∣ v < 0, v

∣∣
B̄(pi,j ,ε) ≤ µi,j log

ε
r

}
.
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Note that if 0 < ε < r0 and j is big enough, then by Proposition 2.1 applied
to a ball containing Ω we have limz→∂B(pi,ε) gεj (z) = µi log(ε/r). Moreover,
limz→∂Ω gεj(z) = 0, since Ω is hyperconvex. Therefore, by a result from [Wa] (see
also [Bł1, Theorem 1.5]), gεj is continuous on Ω̄.

To finish the proof it is enough to show that gεj → gε uniformly as j → ∞ inΩ̄. Fix c > 0. For z ∈ B̄(pi, ε) and j big enough, by (2.1) we have

gεj(z) ≤ µi,j log
max{|z − pi,j|, ε}

r
≤ µi,j log

ε + |pi − pi,j|
r

≤ µi log
ε
r
+ c,

whereas for z ∈ B̄(pi,j, ε)

gε(z) ≤ µi log
max{|z − pi|, ε}

r
≤ µi log

ε + |pi − pi,j|
r

≤ µi,j log
ε
r
+ c.

Thus for those j

gε − c ≤ gεj ≤ gε + c on Ω̄,
and the theorem follows. ❐

In the proof of Theorem 1.1 we will also need to approximate gε. If 0 ≤ ε < r
and 0 ≤ δ ≤ 1, define

gε,δ := sup{v ∈ PSH ∩ L∞(Ω) | v ≤ gε, Mv ≥ δ in Ωε}.
Note that gε,δ is increasing in ε and decreasing in δ. We also have

gε + δ(|z − p1|2 − R2) ≤ gε,δ ≤ gε.(2.3)

Proposition 2.2. gε,δ ∈ PSH(Ω), Mgε,δ = δ in Ωε. If Ω is hyperconvex
and 0 < ε < r0, then gε,δ is continuous on Ω̄. If Ω is C∞ smooth and strictly
pseudoconvex, 0 < ε < r0 and 0 < δ ≤ 1, then gε,δ ∈ C∞(Ωε).

Proof. We use standard procedures. Let

B = {v ∈ PSH(Ω) | v ≤ gε, Mv ≥ δ in Ωε}.
By the Choquet lemma there exists a sequence vj ∈ B such that (gε,δ)∗ =
(supj vj)

∗. (u∗ denotes the upper semicontinuous regularization of u.) If wj =
max{v1, . . . , vj}, then Mwj ≥ δ in Ωε (see e.g. [Bł2]) and thus wj ∈ B. There-
fore wj ↑ (gε,δ)∗ almost everywhere, and by the approximation theorem from
[BT2] M(gε,δ)∗ ≥ δ in Ωε. We conclude that gε,δ ∈ PSH(Ω) and Mgε,δ ≥ δ inΩε. The balayage procedure gives Mgε,δ = δ in Ωε.
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Now assume that Ω is hyperconvex and 0 < ε < r0. By [Bł1] there exists
ψ ∈ PSH(Ω)∩ C(Ω̄) with ψ = 0 on ∂Ω and Mψ ≥ 1 in Ω. For A big enough

Aψ ≤ gε,δ ≤ 0 in Ω.(2.4)

Let v be given by Proposition 2.1 applied to a ball containing Ω. Then

v(z) ≤ gε,δ(z) ≤ µi log
|z − pi|
r

if ε ≤ |z − pi| ≤ r .(2.5)

For small h ∈ Cn and z ∈ Ωε with |h| < dist(z, ∂Ωε) < 2|h| we have

|gε,δ(z + h)− gε,δ(z)| ≤ C(|h|).

By the comparison principle (see [BT2]) applied to gε,δ and gε,δ(·+h), the above
inequality holds for all z with dist(z, ∂Ωε) > |h|. By (2.4) and (2.5)

lim
h→0

C(|h|) = 0,

which means that gε,δ is continuous.
The last part of the proposition follows from Proposition 2.1 and [Gu, Theo-

rem 1.1]. ❐

3. GRADIENT ESTIMATES

Theorem 1.3 will follow immediately from the next result applied to δ = 0.

Theorem 3.1. Fix 0 ≤ δ ≤ 1. Assume that

lim sup
z→∂Ω

|g0,δ(z)|
dist(z, ∂Ω) ≤ B <∞.

Then for ε satisfying Proposition 2.1 we have

|∇gε,δ(z)| ≤ C
mini |z − pi|

, z ∈ Ωε,
where C is a constant depending only on n, k, R, r ,m, M, and B.

The assumption of Theorem 3.1 is satisfied uniformly for δ ≤ 1 for example,
if Ω is smooth and strictly pseudoconvex.

Proof of Theorem 3.1. Let ρ > 0 be such that

−gε,δ(z) ≤ −g0,δ(z) ≤ 2B dist(z, ∂Ω) if dist(z, ∂Ω) ≤ ρ.
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For h sufficiently small

gε,δ(z + h)− gε,δ(z) ≤ 2B|h| if dist(z, ∂Ω) = |h|,
and, since by Proposition 2.1

µi log
ε
r
≤ gε,δ(z) ≤ µi log

|z − pi|
r

if ε ≤ |z − pi| ≤ r ,

we have

gε,δ(z + h)− gε,δ(z) ≤ µi log
|z − pi + h|

ε
≤ 2

µi
ε
|h|,

if z ∈ ∂B(pi, ε + |h|), i = 1, . . . , k.

From the comparison principle we get

gε,δ(z + h)− gε,δ(z) ≤ 2 max
{
B,
M
ε

}
|h| if |h| ≤ min{ρ,dist(z, ∂Ωε)},

and thus

|∇gε,δ| ≤ C1

ε
in Ωε.(3.1)

We will need a lemma.

Lemma 3.2. There exists a constant C̃ = C̃(k,n) such that for given p1, . . . ,
pk ∈ Cn, a ∈ Cn \ {p1, . . . , pk} we can orthonormally change variables in Cn so
that

|a− pi| ≤ C̃|a1 − pi1|, i = 1, . . . , k.

Proof. By S denote the unit sphere in Cn. We have to show that there exists
b ∈ S such that

|a− pi| ≤ C̃|〈a− pi, b〉|, i = 1, . . . , k,

that is, ∣∣∣∣∣
〈
a− pi
|a− pi| , b

〉∣∣∣∣∣ ≥ 1
C̃
.

Define

C̃ := 1
minSk f

,
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where

f(ζ1, . . . , ζk) := max
b∈S

min
i
|〈ζi, b〉|

is a continuous function on Sk. It remains to show that f > 0 on Sk. Fix ζ1, . . . ,
ζk ∈ S and define Ki := {b ∈ S | 〈b,ζi〉 = 0}, i = 1, . . . , k. Then

⋃
i Ki ≠ S,

and thus for b ∈ S \⋃i Ki we have

f(ζ1, . . . , ζk) ≥ min
i
|〈ζi, b〉| > 0.

❐

End of proof of Theorem 3.1. Fix a ∈ Ωε and choose variables as in Lemma
3.2. Set

P(λ) := (λ− p1
1) · · · (λ− pk1 ),

so that

|P(z1)|
|P(a1)|

≤ C2
maxi |z − pi|
mini |a− pi|

≤ C3

mini |a− pi|
, z ∈ Ω.

For h sufficiently small let

Ω′′ :=
{
z ∈ Ω ∣∣∣ z + P(z1)

P(a1)
h ∈ Ω}

and

Ω′ := Ω′′ \⋃
i
B̄(pi, ε + ε′),

where

ε′ = min{ε, r − ε,dist(a, ∂Ωε), ρ}.
Set

v(z) := gε,δ
(
z + P(z1)

P(a1)
h
)
+ C4

mini |a− pi|
(|z − p1|2 − R2)|h|,

so that if C4 is big enough, then

Mv ≥
∣∣∣∣1+ P

′(z1)
P(a1)

h1

∣∣∣∣2

δ+ C4

mini |a− pi|
|h| ≥ δ.
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For z ∈ ∂Ω′′ we have

v(z)− gε,δ(z) ≤ 2B dist(z, ∂Ω) ≤ 2B
C3

mini |a− pi|
|h|,

whereas for z ∈ ∂B(pi, ε + ε′)

v(z)− gε(z) ≤ C1

ε
|P(z1)|
|P(a1)|

|h| ≤ C1C2
ε + ε′

εmini |a− pi|
≤ C5

mini |a− pi|
|h|.

Therefore, the comparison principle gives

gε(a+ h)− gε(a) ≤ C6

mini |a− pi|
|h| if |h| ≤ ε′mini |a− pi|

C3
,

and the theorem follows. ❐

4. ESTIMATES OF THE SECOND DERIVATIVE

Our goal will be to estimate |∇2gε,δ| for small ε, δ. First, we need such an
estimate on ∂Ωε. We will follow the method from [CKNS] (see also [Gu]). We
shall prove two theorems.

Theorem 4.1. Let Ω be a bounded strictly pseudoconvex domain in Cn and ψ
a C∞ psh defining function for Ω. Assume that ddcψ ≥ ddc|z|2 and that there are
positive constants A, a such that

|ψ|, |∇ψ|, |∇2ψ|, |∇3ψ| ≤ A on Ω̄,
|∇ψ| ≥ a on ∂Ω.

For ρ > 0 denote U = {z ∈ Cn | dist(z, ∂Ω) < ρ}. Let u ∈ PSH(Ω ∩ U) ∩
C∞(Ω̄ ∩ U) be such that u = 0 on ∂Ω and u < 0, Mu = δ in Ω ∩ U , where
0 < δ ≤ δ0. Assume also that there are positive constants b, B such that

|∇u| ≥ b on ∂Ω,
|∇u| ≤ B on Ω̄∩ U.

Then there is a constant C = C(n,ρ,a,A, b, B, δ0) such that

|∇2u| ≤ C on ∂Ω.
Theorem 4.2. Fix α > 1 and let Ω = {z ∈ Cn | 1 < |z| < α}. Assume

that u ∈ PSH(Ω) ∩ C∞(Ω̄) is such that u = 0 on ∂B1 (Bα = B(0, α)), u > 0,
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Mu = δ > 0 in Ω. Suppose, moreover, that there are positive constants β, b, B such
that

u ≥ β on ∂Bα,
|∇u| ≥ b on ∂B1,

|∇u| ≤ B on Ω̄.
Then there exist positive constants δ0 = δ0(n,α,β) and C = C(n,α,β, b, B)

such that if 0 < δ ≤ δ0, we have

|∇2u| ≤ C on ∂B1.

Proof of Theorem 4.1. Fix z0 ∈ ∂Ω. We may assume that Nz0 = (0, . . . ,0,1),
so that ∂Nz0

= ∂/∂xn. Since both ψ and u are C∞ defining functions for Ω, there
exists a C∞ function v, defined in a neighborhood of ∂Ω, such that u = vψ and
v > 0 on Ω̄∩ U . Therefore, if t, s ∈ {x1, y1, . . . , xn−1, yn−1, yn}, then

uts(z0) =
uxn(z0)ψts(z0)

ψxn(z0)
(4.1)

and thus

|uts(z0)| ≤ C1.(4.2)

Suppose now that we know that

|utxn(z0)| ≤ C2,(4.3)

and we want to estimate |uxnxn(z0)|. We have

uxnxn = 4unn̄ −uynyn,

and by (4.1), (4.2), (4.3), and since ddcψ ≥ ddc|z|2,

δ0 ≥ δ = det(uij̄(z0)) ≥ unn̄(z0)
(
a
A

)n−1
− C3.

It thus remains to show (4.3). For z ∈ Ω̄ we have

ψxn(z) = Re

〈
∇ψ(z), ∇ψ(z0)

|∇ψ(z0)|

〉
≥ |∇ψ(z0)| −A|z − z0| ≥ a−A|z − z0|.



346 ZBIGNIEW BŁOCKI

On Ω̄∩ B̄(z0, ρ̃) define

T := ut − ψt
ψxn

uxn,

so that

T = 0 on ∂Ω∩ B̄(z0, ρ̃).(4.4)

We have

Txn(z0) = utxn(z0)−
ψtxn(z0)
ψxn(z0)

uxn(z0),

and thus it is enough to prove that

|Txn(z0)| ≤ C4.

Set f := ψt/ψxn ; then

|∇f |, |∇2f | ≤ C5 in Ω̄∩ B̄(z0, ρ̃).(4.5)

Since det(uij̄) is constant, one can show that

uij̄uij̄t = uij̄uij̄xn = 0.

(Here (uij̄) denotes the inverse transposed matrix of (uij̄).) Hence, we can com-
pute

uij̄Tij̄ = −uxnuij̄fij̄ − 2 Reuij̄uixnfj̄ = −uxnuij̄fij̄ − 2fxn − 2 Imuij̄uiynfj̄.

Since

uij̄(u2
yn)ij̄ = 2uij̄uiynuj̄yn,

the Schwarz inequality and (4.5) give

uij̄
(
±T + 1

2
u2
yn

)
ij̄
≥ ∓uxnuij̄fij̄ ∓ 2fxn −uij̄fifj̄ ≥ −C6

(∑
i
uiī + 1

)
.

On ∂Ω we have uyn = uxnψyn/ψxn , and thus by (4.4)∣∣∣∣±T + 1
2
u2
yn

∣∣∣∣ ≤ C7|z − z0|2, z ∈ ∂Ω∩ B̄(z0, ρ̃).
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Moreover, ∣∣∣∣±T + 1
2
u2
yn

∣∣∣∣ ≤ C8 in Ω̄∩ B̄(z0, ρ̃),

and we obtain that if w = ±T + 1
2u

2
yn − C9|z − z0|2, where C9 is big enough,

then w ≤ 0 on ∂(Ω∩ B(z0, ρ̃)), and

uij̄wij̄ ≥ −C10

(∑
i
uiī + 1

)
.

Therefore, if C11 and C12 are big enough, then w + C11ψ + C12u ≤ 0 on
∂(Ω ∩ B(z0, ρ̃)) and uij̄(w + C11ψ + C12u)ij̄ ≥ 0 in Ω ∩ B(z0, ρ̃). By the
maximum principle

w + C11ψ+ C12u ≤ 0 in Ω∩ B(z0, ρ̃),

and thus

|Txn(z0)| ≤ C11A+ C12B. ❐

Proof of Theorem 4.2. Set

ψ(z) = λ(|z|2 − 1),

where λ = β/(α2−1), so thatψ ≤ u in Ω for δ sufficiently small. We now follow
the proof of Theorem 4.1. Fix z0 ∈ ∂B1, we may assume that z0 = (0, . . . ,0,1).
We may reduce the problem to the estimate

|utxn(z0)| ≤ C1.

Similarly as before we get that if w = ±T + 1
2u

2
yn − C2|z − z0|2, where C2 is big

enough, then

uij̄wij̄ ≥ −C3

(∑
i
uiī + 1

)
in Ω∩ B(z0,1),

and w ≤ 0 on ∂(Ω∩ B(z0,1)).
Now by the inequality between arithmetic and geometric means we have

uij̄(ψ−u)ij̄ ≥ λ
∑
i
uiī −n ≥ λ

2

∑
i
uiī +n

(
λ

2δ1/n − 1
)
≥ λ

2

(∑
i
uiī + 1

)
,

for δ small enough. Thus

uij̄(w + C4(ψ−u))ij̄ ≥ 0 in Ω∩ B(z0,1)
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if C4 is sufficiently big, and by the maximum principle we conclude that

|Txn(z0)| ≤ C4B. ❐

Proof of Theorem 1.1. Let ψ be a C2,1 defining function for Ω with ddcψ ≥
ddc|z|2 in Ω and

|ψ|, |∇ψ|, |∇2ψ|, |∇3ψ| ≤ A on Ω̄,
|∇ψ| > a on ∂Ω,

for some positive a and A. We can find r̃ > 0 such that for every z0 ∈ ∂Ω there
exists a ball B(z1,2r̃ ), contained in Ω and tangent to ∂Ω at z0. Then

g(z) ≤ − γ
log 2

log
|z − z1|

2r̃
if r̃ ≤ |z − z1| ≤ 2r̃ ,

where

γ = max
dist(z,∂Ω)≥r̃ g(z).

Therefore we can find b with

lim inf
z→∂Ω

|g(z)|
dist(z, ∂Ω) > b > 0.

Let ψj = ψ ∗ ρ1/j be the standard regularization of ψ and let Ωj = {ψj < 0}.
If j is big enough, then the constants A, a, and b are good also for ψj and Ωj.
Thus, we may assume that ψ (and thus Ω) is C∞, provided that we prove that the
constant in Theorem 1.1 depends only on n, k, r , R,m, M, A, a, and b.

By Proposition 2.2, gε,δ ∈ C∞(Ωε) if 0 < ε < r0, 0 < δ ≤ 1. It is enough to
show that for small positive ε and δ we have

|∇2gε,δ(z)| ≤ C1

mini |z − pi|2
, z ∈ Ωε.

Since |∇gε,δ| ≥ b on ∂Ω, by Theorems 3.1 and 4.1 we have

|∇2gε,δ| ≤ C2 on ∂Ω.(4.6)

For |w| ≥ 1 and fixed i = 1, . . . , k set

u(w) := gε,δ(pi + εw)− µi log
ε
r
.



Regularity of the Pluricomplex Green Function 349

By (2.2) and (2.3)

u(w) ≥ µi log |w| − C3.

Thus, if α is so big that β :=m logα−C3 > 0, then for sufficiently small ε, u ≥ β
on ∂Bα. Moreover, gε,δ ≥ −C4 on ∂B(pi, r). Thus by the comparison principle,
for sufficiently small ε we have

µi
2

log
|z − pi|
r

+ µi
2

log
ε
r
+ |z − pi|2 − ε2 ≤ gε,δ(z) if ε ≤ |z − pi| ≤ r .

Therefore

|∇gε,δ| ≥ µi
2ε

on ∂B(pi, ε),

and |∇u| ≥ µi/2 on ∂B1. From Theorem 4.2 it follows that for δ small enough

|∇2u| ≤ C5 on ∂B1,

which means that

|∇2gε,δ| ≤ C5

ε2 on ∂B(pi, ε).(4.7)

The rest of the proof will be a compilation of the methods from [Bł3] and
from the proof of Theorem 3.1. Fix a ∈ Ω\{p1, . . . , pk}. From the fact that gε,δ
is psh it follows that

|∇2gε,δ(a)| = lim sup
h→0

gε,δ(a+ h)+ gε,δ(a− h)− 2gε,δ(a)
|h|2 .(4.8)

Let P be as in the proof of Theorem 3.1 and let Ω′′ b Ω′ b Ω, ε′ > 0. For
z ∈ Ω′ \⋃i B(pi, ε + ε′) and small h set

D(z,h) := gε,δ
(
z + P(z1)

P(a1)
h
)

and

v(z,h) = D(z,h)+D(z,−h)+ C6

|P(a1)|2
(|z − p1|2 − R2)|h|2,

so that

D(z,0) = gε,δ(z),
D(a,h) = gε,δ(a+ h),
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v is psh in z, and

v(a,h) ≥ gε,δ(a+ h)+ gε,δ(a− h)− C6R2

|P(a1)|2
|h|2.(4.9)

If C6 is sufficiently big and h sufficiently small, then

(Mv(·, h))1/n ≥
(∣∣∣∣1+ P

′(z1)
P(a1)

h1

∣∣∣∣2/n
+
∣∣∣∣1− P

′(z1)
P(a1)

h1

∣∣∣∣2/n
)
δ1/n

+ C6

|P(a1)|2
|h|2 ≥ (2δ)1/n.

The Taylor expansion of D(z, ·) about the origin gives

v(z,h) ≤ D(z,h)+D(z,−h) ≤ 2gε,δ(z)+ ‖∇2(D(z, ·))‖B̄(0,|h|)|h|2.

Since

|∇2(D(z, ·))(h̃)| = |P(z1)|2
|P(a1)|2

∣∣∣∣∇2gε,δ
(
z + P(z1)

P(a1)
h̃
)∣∣∣∣ ,

we get

v(z,h) ≤ 2gε,δ(z)+ C′|h|2, z ∈ ∂Ω′,
v(z,h) ≤ 2gε,δ(z)+ C′i |h|2, z ∈ ∂B(pi, ε + ε′),

where

C′ = C7
‖∇2gε,δ‖Ω\Ω′′
|P(a1)|2

,

C′i = C8
(ε + ε′)2‖∇2gε,δ‖B(pi,ε+2ε′)∩Ωε

|P(a1)|2

for h small enough. Now we can apply the comparison principle to v and 2gε,δ.
We obtain

v(a,h) ≤ 2gε,δ(a)+max{C′, C′1, . . . , C′k}|h|2.

By (4.8) and (4.9)

|∇2gε,δ(a)| ≤ max{C′, C′1, . . . , C′k} +
C6R2

|P(a1)|2
.

If we let Ω′′ ↑ Ω, ε′ ↓ 0, and use (4.6), (4.7), then the desired estimate follows. ❐
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