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INTERIOR REGULARITY
OF THE DEGENERATE MONGE-AMPERE EQUATION

ZBIGNIEW BLOCKI

We study interior C1'1 regularity of generalised solutions of the Monge-Ampere
equation detD2u = ip, ip ^ 0, on a bounded convex domain ft in Rn with
u = ip on 9ft. We prove in particular that u e C1'1(i7) if either i) <p = 0 and
V,i/(n-i) € C 1 ' 1 ^ ) or ii) ft is C1'1 strongly convex, <p € C 1 ' 1 ^ , V^""1*
€ CM(ft) and V > 0 on U n ft, where U is a neighbourhood of 9ft. The main
tool is an improvement of Pogorelov's well known C1'1 estimate so that it can be
applied to the degenerate case.

1. INTRODUCTION

For an arbitrary convex function u one can define a nonnegative Borel measure
M(u) such that

for smooth, and even W?£ functions (see [17] for details). The Dirichlet problem for M
is solvable in a fairly general situation: let Cl be an arbitrary bounded convex domain
in Rn and ip € C(dQ.) be such that it is convex on any line segment in dfl (we shall
call such a <p admissible). Then for any nonnegative Borel measure (i with /z(fi) < oo
the Dirichlet problem

{ u continuous and convex on fi

M(u) = n in fi

u = ip on d£l

has a unique solution. (This was proven for example in [17] for strictly convex Q where
all continuous tp are admissible, and the general case easily follows from this - see
Proposition 2.1 below.)
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We shall primarily consider measures fj, with continuous, nonnegative densities
ip in fi. Unless otherwise stated, u will always denote the solution of (1.1) (with
fj, = rpdX), whereas v will be the solution of the corresponding homogeneous problem:

{ v continuous and convex on Q

M(v) = 0 in n

v = ip on dti.

Below we list several known regularity results for solutions of (1.1):

(1) <p = 0, V € C°°(ft), V > 0 => u € C°°(n) (Cheng, Yau [8], see also [9]);

(2) H is C1'1 strongly convex, <p € C^fjf) => v € C^ffinC1-1^) (Trudinger,
Urbas [19]);

(3) Q is C1'1 strongly convex, <p e C 1 - 1 ^ , ip € C 1 - 1 ^ , ^ > 0 ^ u € C 1 ' 1 ^ )
(Trudinger, Urbas [19]);

(4) Cl is C°° strongly convex, ip 6 C°°(9n) , V € C r ° ° ( f i ) , ^ > 0 =4> ueC°°(JT)
(Krylov [15] and Caffarelli, Nirenberg and Spruck [6]);

(5) Q is C3 '1 strongly convex, <p € C3<l(Tl), ^l^'1) e C 1 - 1 ^ => u 6 C 1 - 1 ^
(Guan, Trudinger and Wang [13]). One should mention that in [13] the authors several
times use that ^1/2(n~1) e COtl(Tl) which is not always satisfied in this situation. The
general case can be obtained by slight modifications of the method used in [13], except
for Lemma 2.1 but this one had been earlier proved in [12]. All this will be explained
in the upcoming correction to [13].

Pogorelov had claimed to prove (1) earlier but his proof had gaps. However, his
interior C 1 ' 1 estimate remained a crucial step in the proof of (1). We are going to
improve it to the degenerate case (see Theorem 3.1 below).

The following results on the local regularity of the Monge-Ampere operator M are
also known:

(6) u is strictly convex, i}> € C°°, ip > 0 => u e C°° (this follows easily from

(D);
(7) either u € W%J! for some p>n(n- l)/2 or u € Cl'a for some a > 1 - 2/n,

4)€C°°,ip>0=>u€C°° (Urbas [20]).
In this paper we prove two more regularity results:

THEOREM 1 . 1 . If<p = 0and ^ /(n-i) e c 1 - 1 ^) then u e C1-1^) •

THEOREM 1.2 . Suppose that f2 is a C1-1 strongly convex domain, ip e C1'1 (H)

and t/)1/("~1) e C 1 ' 1 ^ . Assume moreover that

(1.3) every connected component of the set {tp — 0} D Q is compact.

Then uGC1-1^).
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Note that in Theorem 1.1 Q, is an arbitrary bounded convex domain in Rn. By
(7), Theorem 1.1 is a generalisation of (1). We also immediately get the following local
regularity which generalises (6):

THEOREM 1 . 3 . Ifuis strictly convex and ^ / ( n - i ) e C M then u € C1-1.

This paper was mostly motivated by recent articles [12] and [13], where global

a priori estimates for second derivatives of u depending on ||'01^^n~1^||ci,ifQ'\ were

established. The main tool in proving Theorems 1.1 and 1.2 will be a corresponding

interior a priori estimate (Theorem 3.1). The importance of the exponent l / ( n — 1) is

that, by [21, Example 3], it is optimal in all of the above results.

Note that (1.3) follows if, for example, ip > 0 on f /nf2 , where U is a neighbour-
hood of dCl. We believe that the assumption (1.3) in Theorem 1.2 is in fact superfluous.
However, at the end of section 4 we give an example which shows that the application
of our methods only does not allow to drop this assumption. Namely, what we re-
ally prove is that under the assumptions of Theorem 1.2 except for (1.3), we have u
€ C M ( { u < v}) (Theorem 4.2). Moreover, {u < v} = ft if (1.3) is satisfied (Proposi-
tion 4.1), but without (1.3) it may happen that {u < v} ^ Q.

The Pogorelov estimate from [16] has been improved in the non-degenerate case
by Ivochkina [14], who used a different method. There have been attempts to obtain a
similar interior regularity for the complex Monge-Ampere equation. In [18] the Ivochk-
ina integral method and in [11] the original Pogorelov approach were used. However,
both authors made the same mistake. Namely, they used a false formula

d3u d3u

This made the first inequality in [18, p. 91] and inequality (3.6) on p. 697 in [11] false.
In fact the function

u(z) =-1+a\z2\
2 +(1 + 2 Re z2)\Zl\

2,

where 0 < a < 1 and z — (zi,Z2) is in some neighbourhood of the origin in C 2 , is a
counterexample to both inequalities. Actually, the falseness of the above formula is the
sole reason why the methods used here cannot be applied in the complex case. The gap
in the proof of the regularity of the pluricomplex Green's function in [11] was filled in
by [4] (see also the correction to [11] and [5]). We are not sure if anything can be saved
from [18] though.

This means that in the complex case the only valid interior C1-1 estimate so far
(that is an estimate for the second derivative of a solution in the interior not depending
on the smoothness of the boundary) is from [10, Proposition 7.1]. This one however
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depends in particular on an L°° norm of uZiZiuZiujj instead of the L°° norm the
gradient of u. Therefore, in order to apply it to obtain regularity results for the complex
Monge-Ampere equation one would have to find an interior estimate for uZiZiuZiuj..
In [10] it is achieved under additional assumption that the injectivity radius of the
Kahler metric (uZij.) is locally bounded from below by a positive constant (thanks to
an estimate from [7]).

In the complex case already the interior gradient estimate presents a challenge,
quite contrary to the real one, where it is more or less trivial (see (4.1) below). It was
obtained for convex domains in C" ([3, Theorem 2.1]) but the general case remains
open. One should add that unfortunately the proofs of [3, Theorems A and 4.1] cannot
be considered valid, since the estimate from [18] was used there.

TERMINOLOGY AND NOTATION. We say that a convex domain Q (respectively, convex
function u) is strictly convex if dfl (respectively, graphu) contains no line segment. A
convex function v in Q, is called maximal if for any D <s fi and it continuous on D,
convex in D, we have that u ^ v on dD implies u ^ v in D. This condition is in
fact equivalent to M ( D ) = 0 (see [17]). A function u is called strongly convex if locally
there exists A > 0 such that it — A|x|2 is convex. We say that a bounded domain f2
is strongly convex if there exists w, a strongly convex function in a neighbourhood of
H such that Q = {w < 0} and Dw / 0 near dQ (that is there exists e > 0 such
that for any supporting hyperplane H = graph L of w at a point near d£l we have
|VL| ^ e). A domain is called Ck'a strongly convex if one can find a Ck'a defining
function w. If we write / € Cfc>1(T2) then we mean that / G CM(ft) and |Dfc+1/l is
globally bounded in f2. Then

fc+i

c*.i(n) Z^S^P

and the values of / at dil are uniquely determined. Finally, B(x, r) will denote a

closed ball centred at x with radius r and [x, y] will stand for the line segment joining

x and y.

2. EXISTENCE OF GENERALISED SOLUTIONS

In this section we shall show how to generalise the solution of the Dirichlet problem
in [17, (1.1)] from strictly convex to arbitrary convex domains.

PROPOSITION 2 . 1 . Assume that ft is an arbitrary bounded convex domain in

R". Let <p e C(dQ) be admissible (that is <p is convex on any line segment in dCl) and

fj. be a nonnegative Borel measure in Q with fj,(Cl) < oo. Then the problem (1.1) has

a unique solution.
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P R O O F : The uniqueness follows from the comparison principle (see for example,
[17]). If fi is strictly convex then the proof can be found for example in [17]. We shall
use this as well as other results from [17] in the proof.

We first solve the homogeneous problem (1.2) using the Perron method. Define

v := sup{w convex and continuous on Q, w ^ ip on dCl}.

Then v is convex in fi and we have to show that v continuously extends to dQ and
equals <p there. Fix xo € d£l and e > 0. Since cp is convex on any line segment
contained in d£l and passing through xo, we can find an affine function L such that
L(XQ) ^ <p(xo) - e and L ^ <p on dCl. Let ft be a solution of the classical Dirichlet
problem _

h continuous on Cl

h harmonic in Q,

h = <p on dCl.

Then we have L ^ v ^ h in f2 and

<p(xo) — e ^ liminfv(x) ^ limsupi/(a;) ^ <p(xo).
X^XQ

This shows that v is continuous on Q and v = <p on 9f2. The definition of v implies
that v is maximal and thus M(v) = 0 there. This solves (1.2).

Next we solve (1.1) with <p — 0. This has already been done in [2, Theorem 4.1]
but we include it for the convenience of the reader. Let flj be strictly convex domains
such that fij t ^ as j t co. Let Uj be continuous and convex on f2j and such that
M(UJ) = n in ilj and Uj = 0 o n dQ.j. By the comparison principle the sequence Uj is
decreasing. Moreover, [17, Lemma 3.5] gives

(2.1) (-uj(x))" ^cn(diamfi)n"1dist(x,an)/i(n), xeSlj,

where Cn is a constant depending only on n. This implies that Uj converges locally
uniformly in ft to a convex u. The inequality (2.1) also shows that lim u(x) = 0. By

x-*dn
the continuity theorem for M ([17, Proposition 3.1]) we have M(u) = fi in ft. This

solves (1.1) for <p — 0.

Now let fj, and <p be arbitrary. Again, we approximate Cl by strictly convex

domains Q.j from inside. There we can find u'j, continuous and convex on Clj, such

that M(u'j) — fj, in fij and u'j = v on dflj. [17, Proposition 3.3] gives M(u + v) ^ fj,

and thus
u + v ^ u'j+1 ^ u'j ^ v in Qj

by the comparison principle. It now easily follows that u'j decreases to a function u

which solves (1.1). 0
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3 . A PRIORI ESTIMATE FOR SECOND DERIVATIVES

In this section we shall generalise the Pogorelov estimate (see [16]) so that it can
be applied to the degenerate case. We shall modify Pogorelov's method using some
ideas from [12]. We shall prove:

THEOREM 3 . 1 . Let u e C4(ft) n C1'1 (ft) be a strongly convex solution of

(3.1) det D2u = i>

in a bounded domain ft in W1. Assume that w is a C2 convex function in ft such

that u ^ w in ft and lim (w(x) — u{x)) = 0. Then for a such that

{ =n-r

> 1

for n ^ 3,

for n-2,

we have in ft
(w - uf\D2u\ ^ C,

where C depends only on n (on a if n = 2) and on upper bounds of diamfi,

PROOF: We may assume that ft C 5(0, R), where R < diamfi. We shall use

the standard notation: Ui = du/dxi, (ui;) = D2u and (u*-7) = (D2u)~ . First, we

differentiate the logarithm of both sides of (3.1) twice with respect to xp. We get

(3.2) u ~plJ v™o y./p

(3.3) u'iuppij = (log ^ ) p p + uiku>lupijupkl.

Consider the auxiliary function

h = (w; — u) e 'a:' ' |X) u|,

where 0 > 0 will be specified later. By the assumptions on u and w, h attains a
maximum at some y € ft. Since \D2u\ is equal to the maximal eigenvalue of D2u,

after an orthonormal change of variables we may assume that at y the matrix D2u is
diagonal and \D2u\ = uu. Then the function

h — {w — u)ae^'x' '2U\\

also attains a maximum at y and h(y) — h(y). By the assumptions of the theorem it

is enough to show that

(3.4) «„(») ^ Ci,
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where by C\, d,... we shall denote constants depending only on the desired quantities.

From now on all formulas are assumed to hold at y. We may assume that u < w.

We shall use the fact that D(logh) = 0 and D2(logh) ^ 0. Therefore

(3.5) 0 = (log h). = a ^ - f + P*i + ^

for every i = l,...,n and

u"(logh) <0.
\ / ii

Now we analyse the term where the third and fourth derivatives of u appear. Using
(3.2), (3.3), (3.5) and denoting g := ̂ V(n-i) we compute

(uiii)2

un ^r" uu

{Uiiif
{

Un Un *r

(l°g^)ii , 1 v^ ("lii)2 , 1 v^ (un«)2

u n

ri«

> ( » -
g(Uu)

2

(n - l)ffn 2gi / wi-m . \ , v^ 1 / Wj-Uj \
gun gun \ w-u ) rri "it \ w-u J

We thus obtain

_ a ^ ?£»» _ an a y K - UJ) , o v^ J_
w - u ^r1 uu w-u (to - u)2 • uu ^-' uti

f u^Oogun)^

an a(wi — ui) (n —+ n - l)flu + _ggi_ / u/i - «i + ^ \
u 9un 9"it V w-u )w-u (w — u)

tr-v 1 ^ 1 ( q ( q - ^;y^t - i*t; , *<-*HV"I — "jj-^i , fl2^2
+ P > . 7— + > „ r— ; 72 + —7. + P xi
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an a(w\ — Ui) (n — l)<7n 2</i

w — u (w — u)2un 5Un 9Uu \ w — u

An optimal choice for /3 is therefore ( a - l)/(2i?2). Multiplying both sides of the
obtained inequality by

and observing that the inequality between arithmetic and geometric means gives

ill. 1 \

1 . (n

we get

((ti» - u)"- 1 t tn) n / ( n " 1 ) - C2{w - u^-'uu ~ C3 < 0.

From this (3.4) easily follows. D

Note, that in fact in Theorem 3.1 we could replace ||V)1/*n~1)llci.i(?i) w i t n

| |^i/(n-i)||^o a n d t h e m a x i m a i eigenvalue of - D 2 ^ 1 / ^ - ! ) ) j n fi.

4. C1'1 REGULARITY OF GENERALISED SOLUTIONS

First we prove Theorem 1.1.

P R O O F O F T H E O R E M 1.1: We may assume that ip € C 1 ' 1 ^ - otherwise shrink
fi a little. Fix e > 0. Let Qj be a sequence of C°° strongly convex domains such that
Clj "[ fl as j t oo. We can find ipj € C°°(flj) such that ipj > 0, ^ j tends uniformly to
ip in fi and

(By C i , C 2 , . . . we shall denote constants independent of j.) By (4) one can find u^
€ C°° (Tlj) , convex in Clj such that det D2Uj = i>j in fy and Uj = 0 on dSlj.

Let A be so big that T/(X) := | i | 2 - 4̂ ^ 0 for x € fl. From the comparison
principle and the superadditivity of the operator M it follows that on f2j

Therefore in particular u^ tends locally uniformly to u in SI and

sup |ttj| ^ C2.
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Since Uj is convex,

Thus
\DUJ\ < C3 in {UJ < -e}.

Theorem 3.1 now gives for some a

(-e - Uj^^Ujl ^ C4 in {uj < -e}.

Hence
|D2Uj| < C5 in {UJ < -2e}

and u e C 1 ' 1 ^ < -2e}). Since e can be chosen arbitrarily small, it follows that

ueC-Hft). D
Theorem 1.2 will be a direct consequence of (2) and the next two results.

PROPOSITION 4 . 1 . Assume that ip is continuous and let (f be admissible and
such that v 6 Cx>1(fi). Then u < v on the domain consisting of {tp > 0}C\Cl and those
connected components of {tp = 0} n Q, which are compact.

PROOF: By K denote a compact component of {ip = 0}nfi. First we want to find
an open U such that K C U <E £2 and ip > 0 on dU. Let fi' be open and such that
K C ft' <E n. Set F := {ip = 0} n W and by 6 denote the family of open, closed (in
F) subsets of F containing K. It is a known fact from the general topology that, since
K is a connected component of a compact F, K = C\£. Since the family {F \ E}E£E

is an open (in F) cover of a compact set F D dCl', we can find E\,...,Ek e £ such
that E :— Ein---nEk & £ does not intersect 9f2'. Then E and F \ E are compact
and we can find open U, V in ft such that U DV = 0, F c C / U V , X C 17 C fl' and
F n 9f2' C V. It follows that £/ has the required properties.

From the comparison principle (applied in U) and since v is a maximal convex
function, it is now enough to show that u < v on {ip > 0}. As the problem is now
purely local, we may assume that xp ^ a > 0 and \D2v\ ^ M < oo on B(xo,r). We
shall proceed in the same way as in [19, p. 329]. For e > 0 define

w{x) : = e ( | z - z o | 2 - r 2 ) .

Then

x=i

if £ is small enough. From the comparison principle we get u ^ v + w on B(XQ, r). D
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REMARK. If n = 2 then the assumption that v G C1>1(fi) in Proposition 4.1 is super-
fluous. For by an old result of Aleksandrov [1] u is then strictly convex in {ip > 0}nfi.
If xo G {i> > 0} D Q and H = graph L is a supporting hyperplane of graph v at xo
then by [19, Lemma 2.1] xo belongs to the convex hull of the set {v = L} n dd. We
can thus find 2/1,2/2 G dfl such that v is affine on [2/1,3/2] and xo G [1/1,2/2]- From the
strict convexity of u near XQ it now follows that u(xo) < V(XQ) which proves the claim.

However, the following example due to Pogorelov shows that this assumption can-
not be dropped if n ^ 3. Set

Then in a neighbourhood of the origin u is convex (if n ^ 3), M(u) G C°°, M(u) > 0.
But if Cl is a small ball centred at the origin, we shall always have u = v = 0 on

We shall now show that to get u € (^^({u < v}) one needs only very mild
assumptions on fi and ip:

THEOREM 4 . 2 . Assume that Q is strongly convex and let (p G C(dCl) be such

that v G C 0 - 1 ^ . Then, if V1 / ( n~x ) G Cltl(JT), we have u G C1>1({u < v}).

PROOF: Regularising the defining function for fl we get C°° strongly convex do-

mains flj — {WJ < 0} such that

(4.2) D2Wj ^ —I on Uj,

and, since convex functions are locally Lipschitz,

(4.3) \DWJ\ ^ C2, on dQj,

where Ci, C2, . . . are positive constants independent of j and I is the unitary matrix.
Regularising v we get Vj G C°° (H,-), convex, converging locally uniformly to 1;, such
that

f A A\ II |1 1

as j t co and

(4.5) \DVJ\ ^ C3 on f̂ .

We can also find Vj € ^r°c(^j)> *Pj > ^i Vj tending uniformly to V m ^ a n d such
that

(4-6) ||V,- " llc1-1^) ^ ^4-
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Let Uj e C°°(£lj) be convex in ilj and such that det£>2Uj = ipj in fi,, Uj - Vj
on dQj. We could choose ipj so that Uj < Vj in Qj. Similarly as in in the proof of
Theorem 1.1 we can get that on ilj

Therefore by (4.4) Uj tends locally uniformly to u. By (4.2) and the comparison
principle

Vj + Cf,Wj ^ Uj < Vj on Clj.

By (4.3), (4.5) and since Wj = 0 on d£lj we thus get

\DUJ\ ^ C6 on dtl,

and, since Uj is convex,
\DUJ\ ^ C6 on Tlj.

We may now use Theorem 3.1 to get

(vj-Uj)a\D2Uj\^C7 on Uj.

The required result follows if we let j t oo. D

Finally, we want to show that if we drop the assumption (1.3) in Theorem 1.2 then
it may happen that {u = v} n ft ^ 0. Let f2 be the unit ball B and set ^(x) := x\
for x € 9 5 , so that v{x) =x\ for x e B . Let ip be such that ipxKn~l) is smooth and
suppip C {xi > 0 } f l 5 . For e > 0 let ue denote the solution of (1.1) with \x = eipdX.
Then ue f v uniformly as e I 0. For e sufficiently small we thus have u€ ~£ 0 on supp ip
and thus ue ^ 0 in B. Therefore ue = 0 on {xi = 0 } n B and ue = v on {xi ^ 0 } n B
by the comparison principle.
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