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We show that if α is a positive (2,2)-form, then so is α2. We also prove that this is no
longer true for forms of higher degree.
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r é s u m é

Nous montrons que si α est une (2,2)-forme positive alors α2 l’est aussi. Nous prouvons
également que ceci n’est plus vrai pour les formes de degré supérieur.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that a (p, p)-form α in C
n is called positive (we write α � 0) if for (1,0)-forms γ1, . . . , γn−p one has:

α ∧ iγ1 ∧ γ̄1 ∧ · · · ∧ iγn−p ∧ γ̄n−p � 0.

This is a natural geometric condition, positive (p, p)-forms are for example characterized by the following property: for
every p-dimensional subspace V and a test function ϕ � 0, one has:∫

V

ϕα � 0.

It is well known that positive forms are real (that is ᾱ = α) and if β is a (1,1)-form then

α � 0, β � 0 ⇒ α ∧ β � 0. (1)

It was shown by Harvey and Knapp [5] (and independently by Bedford and Taylor [1]) that (1) does not hold for all (p, p)

and (q,q)-forms α and β , respectively. We refer to Demailly’s book [2], pp. 129–132, for a nice and simple introduction to
positive forms.

Dinew [3] gave an explicit example of (2,2)-forms α,β in C
4 such that α � 0, β � 0 but α ∧ β < 0. We will recall it in

the next section. The aim of this note is to show the following, somewhat surprising result:

Theorem 1. Assume that α is a positive (2,2)-form. Then α2 is also positive.
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It turns out that this phenomenon holds only for (2,2)-forms:

Theorem 2. For every p � 3, there exists a (p, p)-form α in C
2p such that α � 0 but α2 < 0.

We do not know if similar results hold for higher powers of positive forms.
The paper is organized as follows: in Section 2 we present Dinew’s criterion for positivity of (2,2)-forms in C

4, which
reduces the problem to a certain property of 6 × 6 matrices. Further simplification reduces the problem to 4 × 4 matrices.
We then solve it in Section 3. This is the most technical part of the paper. Higher degree forms are analyzed in Section 4,
where a counterpart of Dinew’s criterion is showed and Theorem 2 is proved.

2. Dinew’s criterion

Without loss of generality we may assume that n = 4. Let ω1, . . . ,ω4 be a basis of (C4)∗ such that:

dV := iω1 ∧ ω̄1 ∧ · · · ∧ iω4 ∧ ω̄4 = ω1 ∧ · · · ∧ ω4 ∧ ω̄1 ∧ · · · ∧ ω̄4 > 0.

Set

Ω1 := ω1 ∧ ω2, Ω2 := ω1 ∧ ω3, Ω3 := ω1 ∧ ω4,

Ω4 := ω2 ∧ ω3, Ω5 := −ω2 ∧ ω4, Ω6 := ω3 ∧ ω4.

Then

Ω j ∧ Ωk =
{

ω1 ∧ · · · ∧ ω4, if k = 7 − j,

0, otherwise.

With every (2,2)-form α we can associate a 6 × 6-matrix A = (a jk) by

α =
∑

j,k

a jkΩ j ∧ Ω̄k.

For

β =
∑

j,k

b jkΩ j ∧ Ω̄k

we have:

α ∧ β =
∑

j,k

a jkb7− j,7−k dV . (2)

The key will be the following criterion from [3]:

Theorem 3. α � 0 if z̄ AzT � 0 for all z ∈ C
6 with z1z6 + z2z5 + z3z4 = 0.

Sketch of proof. For γ1 = b1ω1 + · · · + b4ω4, γ2 = c1ω1 + · · · + c4ω4, we have

iγ1 ∧ γ̄1 ∧ iγ2 ∧ γ̄2 =
4∑

j,k,l,m=1

b jb̄kclc̄m ω j ∧ ωl ∧ ω̄k ∧ ω̄m

=
∑
j<l

k<m

(b jcl − blc j)(bkcm − bmck)ω j ∧ ωl ∧ ω̄k ∧ ω̄m.

It is now enough to show that the image of the mapping:

C
8 � (b1, . . . ,b4, c1, . . . , c4)

�−→ (b1c2 − b2c1,b1c3 − b3c1,b1 c4 − b4c1,b2c3 − b3c2,−b2c4 + b4c2,b3c4 − b4c3) ∈C
6

is precisely {z ∈C
6: z1z6 + z2z5 + z3z4 = 0}. Indeed, it is a well-known fact that the image of the Plücker embedding of the

4-dimensional Grassmannian G(2,4) in P (Λ2
C

4) 	 P
5 is the quadric defined by the above equation. �

Using Theorem 3 and an idea from [3], we can show:
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Proposition 4. The form

αa =
6∑

j=1

Ω j ∧ Ω̄ j + a Ω1 ∧ Ω̄6 + ā Ω6 ∧ Ω̄1

is positive if and only if |a| � 2.

Proof. We have:

z̄ AzT = |z|2 + 2 Re(az̄1z6) � 2|z1z6| + 2|z2z5 + z3z4| + 2 Re(az̄1z6).

If z1z6 + z2z5 + z3z4 = 0 and |a| � 2 we clearly get z̄ AzT � 0. If we take z1, z6 with z̄1z6 = −ā, |z1| = |z6| and z2, . . . , z5
with z2z5 + z3z4 = −z1z6 then z̄ AzT = 2|a|(2 − |a|). �

By (2):

αa ∧ αb = 2
(
3 + Re(ab̄)

)
dV .

Therefore, α2,α−2 are positive, but α2 ∧ α−2 < 0.
In view of Theorem 3, we see that Theorem 1 is equivalent to the following:

Theorem 5. Let A = (a jk) ∈ C
6×6 be hermitian and such that z̄ AzT � 0 for z ∈C

6 with z1z6 + z2z5 + z3z4 = 0. Then

6∑
j,k=1

a jka7− j,7−k � 0.

We will need the following technical reduction:

Lemma 6. For every (2,2)-form α in C
4 , we can find a basis ω1, . . . ,ω4 of (C4)∗ such that:

α ∧ ω1 ∧ ω2 ∧ ω̄1 ∧ ω̄ j = α ∧ ω1 ∧ ω2 ∧ ω̄2 ∧ ω̄ j = 0 (3)

for j = 3,4.

Proof. We may assume that α 
= 0, then we can find ω1,ω2 ∈ (C4)∗ such that

α ∧ ω1 ∧ ω2 ∧ ω̄1 ∧ ω̄2 = α ∧ iω1 ∧ ω̄1 ∧ iω2 ∧ ω̄2 
= 0. (4)

By V 1 denote the subspace spanned by ω1, ω2 and by V 2 the subspace of all ω ∈ (C4)∗ satisfying (3) with ω j replaced
by ω. Then dim V 1 = 2, dim V 2 � 2, and by (4) we infer V 1 ∩ V 2 = {0}, hence (C4)∗ = V 1 ⊕ V 2. �
3. Proof of Theorem 5

By Lemma 6 we may assume that the matrix from Theorem 5 satisfies

a26 = a36 = a46 = a56 = 0

and

a62 = a63 = a64 = a65 = 0.

Then

6∑
j,k=1

a jka7− j,7−k =
5∑

j,k=2

a jka7− j,7−k + 2
(
a11a66 + |a16|2

)
.

Therefore Theorem 5 is in fact equivalent to the following result:

Theorem 7. Let A = (a jk) ∈ C
4×4 be hermitian and such that z̄ AzT � 0 for z ∈ C

4 with z1z4 + z2z3 = 0. Then

4∑
j,k=1

a jk a5− j,5−k � 0. (5)
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Proof. Write

A =
⎛
⎜⎝

λ1 a b α
ā λ2 β −c
b̄ β̄ λ3 −d
ᾱ −c̄ −d̄ λ4

⎞
⎟⎠ .

It satisfies the assumption of the theorem if and only if for every z ∈ C
4 of the form z = (1, ζ, w,−ζ w) one has z̄ AzT � 0.

We can then compute

z̄ AzT = λ1 + 2 Re(aζ ) + λ2|ζ |2
+ 2 Re

[(
b − αζ + βζ̄ + c|ζ |2)w

]
+ (

λ3 + 2 Re(dζ ) + λ4|ζ |2)|w|2.
Therefore A satisfies the assumption if λ j � 0,

|a| � √
λ1λ2, |b| � √

λ1λ3, |c| � √
λ2λ4, |d| � √

λ3λ4, (6)

and for every ζ ∈C

∣∣b − αζ + βζ̄ + c|ζ |2∣∣2 �
(
λ1 + 2 Re(aζ ) + λ2|ζ |2)(λ3 + 2 Re(dζ ) + λ4|ζ |2). (7)

In our case (5) is equivalent to

4 Re(ad̄ + bc̄) � 2(λ1λ4 + λ2λ3) + 2
(|α|2 + |β|2).

We will in fact prove something more:

4 Re(ad̄ + bc̄) � (
√

λ1λ4 + √
λ2λ3 )2 + (|α| + |β|)2

. (8)

Without loss of generality, we may assume that:

Re(ad̄) > 0, Re(bc̄) > 0,

for if for example Re(ad̄) � 0 then by (6)

4 Re(ad̄ + bc̄) � 4 Re(bc̄) � 4
√

λ1λ2λ3λ4 � (
√

λ1λ4 + √
λ2λ3 )2.

Set u := Re(ad̄) and ζ := −rd̄/|d|, where r > 0 will be determined later. Then we can write the right-hand side of (7) as
follows:(

λ1 − 2ur

|d| + λ2r2
)(

λ3 − 2r|d| + λ4r2)

= (
λ1 + λ2r2)(λ3 + λ4r2) + 4ur2 − 2r

[
λ1|d| + λ3

u

|d| + r2
(

λ2|d| + λ4
u

|d|
)]

�
(
λ1 + λ2r2)(λ3 + λ4r2) + 4ur2 − 4r2(

√
λ1λ4 + √

λ2λ3 )
√

u

= (
√

λ1λ4 + √
λ2λ3 − 2

√
u )2r2 + (√

λ1λ3 − √
λ2λ4 r2)2

.

For r = (
λ1λ3
λ2λ4

)1/4 from (7) we thus obtain:

∣∣∣∣b

r
+ d̄

|d|α − d

|d|β + cr

∣∣∣∣ �
√

λ1λ4 + √
λ2λ3 − 2

√
u.

We also have:∣∣∣∣b

r
+ d̄

|d| (α − β̄) + cr

∣∣∣∣ �
∣∣∣∣b

r
+ cr

∣∣∣∣ − |α| − |β| � 2
√

Re(bc̄) − |α| − |β|

and therefore:

2
√

Re(ad̄) + 2
√

Re(bc̄) �
√

λ1λ4 + √
λ2λ3 + |α| + |β|.

To get (8), we can now use the following fact: if 0 � a1 � x, 0 � a2 � x and a1 + a2 � x + y then a2
1 + a2

2 � x2 + y2. This can
be easily verified: if a1 + a2 � x then a2

1 + a2
2 � x2 and if a1 + a2 � x then

x2 + y2 � x2 + (a1 + a2 − x)2 = a2
1 + a2

2 + 2x(x − a1)(x − a2). �
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4. (p, p)-Forms in CCC
2p

In C
2p we choose the positive volume form:

dV := i dz1 ∧ dz̄1 ∧ · · · ∧ i dz2p ∧ dz̄2p = dz1 ∧ · · · ∧ dz2p ∧ dz̄1 ∧ · · · ∧ dz̄2p .

By I we will denote the set of subscripts J = ( j1, . . . , jp) such that 1 � j1 < · · · < jp � 2p. For every J ∈ I there exists
unique J ′ ∈ I such that J ∪ J ′ = {1, . . . ,2p}. We also denote dz J = dz j1 ∧ · · · ∧ dz jp and ε J = ±1 is defined in such a way
that:

dz J ∧ dz J ′ = ε J dz1 ∧ · · · ∧ dz2p .

Note that:

ε J ε J ′ = (−1)p . (9)

With every (p, p)-form α in C
2p we can associate an N × N-matrix (a J K ), where

N = �I = (2p)!
(p!)2

,

by

α =
∑
J ,K

a J K i dz j1 ∧ dz̄k1 ∧ · · · ∧ i dz jp ∧ dz̄kp = ip2 ∑
J ,K

a J K dz J ∧ dz̄K (10)

(note that (−1)p(p−1)/2ip = ip2
). Then

α2 =
∑
J ,K

ε J εK a J K a J ′ K ′ dV (11)

and for γ1, . . . , γp ∈ (C2p)∗

α ∧ iγ1 ∧ γ̄1 ∧ · · · ∧ iγp ∧ γ̄p =
∑
J ,K

a J K γ1 ∧ · · · ∧ γp ∧ dz J ∧ (γ1 ∧ · · · ∧ γp ∧ dzK ).

Therefore (a J K ) has to be positive semi-definite on the image of the Plücker embedding

((
C

2p)∗)p � (γ1, . . . , γp) �−→
(

γ1 ∧ · · · ∧ γp ∧ dz J

dz1 ∧ · · · ∧ dz2p

)
J∈I

∈C
N (12)

which is well known to be a variety in C
N (see, e.g., [4], p. 64).

We are now ready to prove Theorem 2:

Proof of Theorem 2. First note that it is enough to show it for p = 3. For if α is a (3,3)-form in C
6 such that α � 0 and

α2 < 0 then for p > 3 we set:

β := i dz7 ∧ dz̄7 + · · · + idz2p ∧ dz̄2p .

We now have α ∧ β p−3 � 0 but (α ∧ β p−3)2 = α2 ∧ β2p−6 < 0.
Set p = 3, so that N = 20, and order I = { J1, . . . , J20} lexicographically. Then the image of the Plücker embedding (12)

is in particular contained in the quadric:

z1z20 − z10z11 + z5z16 − z2z19 = 0. (13)

For positive a, λ,μ to be determined later define:

α := i

[
λ(dz J1 ∧ dz̄ J1 + dz J20 ∧ dz̄ J20) + μ

∑
k∈{2,5,10
11,16,19}

dz Jk ∧ dz̄ Jk + a(dz J1 ∧ dz̄ J20 + dz J20 ∧ dz̄ J1)

]
.

Then, similarly as in the proof of Proposition 4,

z̄ AzT = λ
(|z1|2 + |z20|2

) + μ
(|z2|2 + |z5|2 + |z10|2 + |z11|2 + |z16|2 + |z19|2

) + 2a Re(z̄1z20)

� 2(λ − a)|z1z20| + 2μ| − z10z11 + z5z16 − z2z19|
= 2(λ + μ − a)|z1z20|

if z satisfies (13). Therefore α � 0 if a � λ + μ.
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On the other hand, by (11) and (9):

α2 = 2
(
λ2 + 3μ2 − a2) dV .

We see that if we take a = λ + μ and λ > μ > 0, then α � 0 but α2 < 0. �
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