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Nous montrons que si @ est une (2, 2)-forme positive alors a? I'est aussi. Nous prouvons
également que ceci n'est plus vrai pour les formes de degré supérieur.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that a (p, p)-form o« in C" is called positive (we write o > 0) if for (1, 0)-forms y1, ..., ya—p one has:
ANIYLAYVI A ANiYa—p A Yn—p 2 0.

This is a natural geometric condition, positive (p, p)-forms are for example characterized by the following property: for
every p-dimensional subspace V and a test function ¢ > 0, one has:

/fﬂoz>0.

1%
It is well known that positive forms are real (that is ® = «) and if 8 is a (1, 1)-form then

>0, B0 = arp>=0. (M

It was shown by Harvey and Knapp [5] (and independently by Bedford and Taylor [1]) that (1) does not hold for all (p, p)
and (q, q)-forms o and B, respectively. We refer to Demailly’s book [2], pp. 129-132, for a nice and simple introduction to
positive forms.

Dinew [3] gave an explicit example of (2, 2)-forms a, 8 in C* such that @ >0, 8 >0 but a A 8 < 0. We will recall it in
the next section. The aim of this note is to show the following, somewhat surprising result:

Theorem 1. Assume that « is a positive (2, 2)-form. Then a2 is also positive.
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It turns out that this phenomenon holds only for (2, 2)-forms:
Theorem 2. For every p > 3, there exists a (p, p)-form o in C2P such that & > 0 but o < 0.

We do not know if similar results hold for higher powers of positive forms.

The paper is organized as follows: in Section 2 we present Dinew’s criterion for positivity of (2, 2)-forms in C*, which
reduces the problem to a certain property of 6 x 6 matrices. Further simplification reduces the problem to 4 x 4 matrices.
We then solve it in Section 3. This is the most technical part of the paper. Higher degree forms are analyzed in Section 4,
where a counterpart of Dinew’s criterion is showed and Theorem 2 is proved.

2. Dinew’s criterion

Without loss of generality we may assume that n =4. Let w1, ..., w4 be a basis of (C*)* such that:

dv =IWIAOIA - ANIWgADE=W1 A AWg AL A -+ Awg > 0.

Set
21 = w1 A wy, §27 = w1 AN w3, 23 = w1 N\ w4,
24 = wr A W3, 25 := —wy A Wy, 26 .= w3 A W4.
Then
WA Awg, ifk=7-—],
.Qj AN .Qk = .
0, otherwise.

With every (2, 2)-form o we can associate a 6 x 6-matrix A = (aj) by

Ol:Zaijj/\Qk.

jik
For
B= ijk-Qj A2
jik
we have:
anB=> ajbs_j7-1dV. (2)

j.k

The key will be the following criterion from [3]:
Theorem 3. o > 0if zZAz" > 0 for all z € C® with z126 + 2225 + 2324 = 0.

Sketch of proof. For y1 =biw1 + - - + baws, Y2 =c1w1 + - - - + c4w4, we have

4
i)/1 A\ ]71 /\iyz AN )72 = Z bjbkC[(_Ima)j N W] /\d)k /\d)m
j.k. L m=1
= Z (bjCl — ble)(bka — mek)a)j AW AWk A .

j<l
k<m

It is now enough to show that the image of the mapping:
Cc®s (b1,...,bg,C1,...,Cq)
> (b1cz — byc1, bics — bscy, by cq — bacy, bacs — b3ca, —baca 4 baca, bscq — bacs) € CO
is precisely {z € C®: z1zg + 2225 + 2324 = 0}. Indeed, it is a well-known fact that the image of the Pliicker embedding of the

4-dimensional Grassmannian G(2, 4) in P(A2C?*) ~P? is the quadric defined by the above equation. O

Using Theorem 3 and an idea from [3], we can show:
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Proposition 4. The form

6
aa:ZQj/\ij+aQ1 A 264026 A 24
=1

is positive if and only if |a| < 2.
Proof. We have:

ZAZ' = |z|2 + 2Re(azyzg) > 2|z1z6| + 2|2225 + z324| + 2 Re(azy zg).

If 2126 + 2225 + 2324 = 0 and |a| < 2 we clearly get zZAzT > 0. If we take z1, zg with z1z6 = —d, |z1| = |z6] and z3, ..., z5
with 2325 + 7324 = —2z126 then zAzT =2|a|(2 — |a]). O

By (2):
g Aoy =2(3+Re(ab))dV.

Therefore, oy, o, are positive, but oy Aa_ < 0.
In view of Theorem 3, we see that Theorem 1 is equivalent to the following:

Theorem 5. Let A = (aj) € C®* be hermitian and such that ZAz" > 0 for z € C® with z1z6 + 2225 + 2324 = 0. Then

6
Z ajka7—j,7—-k = 0.
j-k=1

We will need the following technical reduction:

Lemma 6. For every (2, 2)-form o in C*, we can find a basis w1, . . ., w4 of (C*)* such that:
Ol/\a)]/\(1)2/\(,7)1/\C?)j:(x/\an/\a)z/\(,?)z/\d)jzo (3)
for j=3,4.

Proof. We may assume that o = 0, then we can find w1, @; € (C*)* such that

a/\w1/\a)z/\d)1/\d)2:a/\iw1/\6)1/\1'0)2/\6)2;&0. (4)

By Vi denote the subspace spanned by wq, w; and by V, the subspace of all w € (C*)* satisfying (3) with wj replaced
by w. Then dim V; =2, dim V3 > 2, and by (4) we infer V1 NV, = {0}, hence (CH*=V1® V2. O

3. Proof of Theorem 5

By Lemma 6 we may assume that the matrix from Theorem 5 satisfies

(6 = 036 = U46 =56 =0

and
(62 = g3 = Agq = g5 = 0.
Then
6 5
Z ajka7—j7-k = Z ajxa7—j7-k + 2(a11ae6 + |a16|2).
J.k=1 j.k=2

Therefore Theorem 5 is in fact equivalent to the following result:

Theorem 7. Let A = (aji) € C*** be hermitian and such that ZAz" > 0 for z € C* with z1z4 + 2,23 = 0. Then

4
> ajxas—js5 >0. (5)
jk=1
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Proof. Write
A a b o
_|a Ay B —cC
A= b B A3 —d
a —C —d Mg

It satisfies the assumption of the theorem if and only if for every z € C* of the form z= (1, ¢, w, —Zw) one has zAzT > 0.
We can then compute

ZAz" = A1 + 2Re(at) + 22¢)?
+2Re[(b— at + BE +cl¢|?)w]
+ (A3 +2Re(dg) + 2alg[?) W],
Therefore A satisfies the assumption if ;> 0,
jal <Vaarz,  DI<Vaars, Il <VAzha,  ldI<VAsha, (6)
and for every { € C
|b—at + BZ +cle?|” < (b1 +2Re(@g) + A2l¢ 2) (33 + 2Re(de) + 2al¢[?). (7)
In our case (5) is equivalent to
4Re(ad + b?) < 2(A12a + A243) + 2(laef? +181).
We will in fact prove something more:
4Re(ad +b?) < (v/iha +v/A2hs)? + (Il + 1B1)°. (8)
Without loss of generality, we may assume that:
Re(ad) >0,  Re(bt) > 0,
for if for example Re(ad) < 0 then by (6)
4Re(ad + bc) < 4Re(bt) < 4v/A1r2h3hg < (VA1ha + v A22r3)2

Set u :=Re(ad) and ¢ := —r(_i/ldl, where r > 0 will be determined later. Then we can write the right-hand side of (7) as
follows:

2
<k1 — % + Azrz) (3 — 2r|d| + rar?)

u u
= (A1 +22r?) (A3 + rar?) + 4ur® — 2r|:)q |d| + kgm +12 <A2|d| + Mm)]

< (A4 22r) (A3 + har?) + dur® — 4 (Vaa ke + V2rs) Vi
= (VA +Viaks — 2602 + (Vs — Vazhar?)”,

For r = (%)1/4 from (7) we thus obtain:

<VAhg + VAzAs — 240

b + d d B+cr
— _a_ PR
ro|d| |d]|

We also have:

b d _ b _
;+m(a—ﬁ)+cr 2‘;+cr — la| — |81 = 2+/Re(b0) — |a| — |B]

and therefore:

2y/Re(ad) + 2y/Re(b0) < /A1 + VA2h3 + || + |BI.

To get (8), we can now use the following fact: if 0 <ay <x, 0<az <x and a; +a; < x+y then a? +a3 < x + y2. This can
be easily verified: if a; +ay < x then a2 + a3 <x? and if a; +az > x then

Xy e+ @ta—x0t=+d+2xx—a)(x—a). O
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4. (p, p)-Forms in C2P

In C2P we choose the positive volume form:
dV:=idzy Adzy A+ ANidzop AdZap =dzy A Adzap AdZy A - AdZyp.

By Z we will denote the set of subscripts | = (j1, ..., jp) such that 1< j; <--- < jp < 2p. For every J €T there exists
unique J" € Z such that JU J'={1,...,2p}. We also denote dz; =dzj; A---Adzj, and &; = £1 is defined in such a way
that:

dzyndzp =¢e;dzy A--- Adzgp.

Note that:
gjey = (=P, (9)
With every (p, p)-form « in C2P we can associate an N x N-matrix (ajx), where
2p)!
N =T = ( p)27
(p)
by
o= ajidzj, AdZy A Addzy, AdZ, =Py ajxdzy Adzg (10)
J.K 1K

(note that (—1)P(P=1/2{p — iP*) Then

a2=28]£,<a],<ajq</dv (]1)
J.K

and for y1, ..., yp € (C?P)*

oz/\iy1/\]71/\---/\iyp/\)?p:Za]K)q/\---/\yp/\dz]/\(y1/\---/\yp/\de).
J.K

Therefore (a;k) has to be positive semi-definite on the image of the Pliicker embedding

dz
C2p*p9 . r—)<)/*1/\ /\yp/\ ]) GCN 12
(( ) ) " Yp) dz; A.nAdep JeT "

which is well known to be a variety in CN (see, e.g., [4], p. 64).
We are now ready to prove Theorem 2:

Proof of Theorem 2. First note that it is enough to show it for p = 3. For if @ is a (3, 3)-form in C® such that o >0 and
a? < 0 then for p > 3 we set:
Bi=idz; Adz7 4 - +idzap AdZyp.

We now have oo A BP~3 >0 but (a A BP3)2 =2 A B2P—6 < 0.
Set p =3, so that N =20, and order Z = {1, ..., Joo} lexicographically. Then the image of the Pliicker embedding (12)
is in particular contained in the quadric:
21220 — 210211 + 25216 — 22219 = 0. (13)
For positive a, A, i to be determined later define:
o ;=i[x(dz,1 AdZj, +dzp AdZp) 0 Y dzg AdZy, +a(dzy, AdZp,, +dzpy, /\dih):|.
ke{2,5,10
11,16,19}

Then, similarly as in the proof of Proposition 4,
2Az" =1 (1211 + 1220) + i (1221 + |25 + 1z10* + 12111 + |z16]* + |2191*) + 2aRe(Z1220)
2 2(h — a)|z1z20| + 24| — Z10211 + 25216 — 22219]
=2(A + p — a)|z1220]
if z satisfies (13). Therefore « >0 if a <A + .
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On the other hand, by (11) and (9):
a?=2(2%+3u* —a®)dv.

We see that if we take a=1 4+ and A > >0, then o >0 but @? <0. O
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