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On the product property for the transfinite diameter

by Zbigniew Błocki, Armen Edigarian, and Józef Siciak (Kraków)

Abstract. We give a pluripotential-theoretic proof of the product property for the
transfinite diameter originally shown by Bloom and Calvi. The main tool is the Rumely
formula expressing the transfinite diameter in terms of the global extremal function.

1. Introduction. For a compact subsetK of Cn the transfinite diameter
δ(K) is defined as follows. Denote by Pd(Cn) the set of complex polynomials
of degree ≤ d. It is a complex vector space of dimension

N(d) :=
(
d+ n

d

)
.

The monomials e1, . . . , eN(d) of degree ≤ d form a basis in Pd(Cn). We can
define the Vandermonde determinant as

VDM(ζ1, . . . , ζN(d)) := det(ej(ζk)), ζ1, . . . , ζk ∈ Cn.

It is a homogeneous polynomial in CnN(d) of degree dnN(d)/(n+ 1). Set

δd(K) := max
ζ1,...,ζN(d)∈K

|VDM(ζ1, . . . , ζN(d))|
n+1

dnN(d) .

Leja [L] conjectured (for n = 2) that the sequence Vd(K) is decreasing.
This problem is in fact still open. Zaharyuta [Z1] proved however that it is
convergent, and we define

δ(K) = lim
d→∞

δd(K).

Methods from [Z1] were used in [J] to prove a similar result for the so-called
homogeneous transfinite diameter.

Bloom and Calvi [BC1] (see also [BC2]) showed the following product
property: for compact K ⊂ Cn, L ⊂ Cm we have

(1) δ(K × L) = δ(K)
n

n+m δ(L)
m

n+m .
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The main tool to prove (1) in [BC1] was a formula for the transfinite diam-
eter in terms of orthogonal polynomials with respect to a positive measure
satisfying the Bernstein–Markov inequality.

A special case of (1) was earlier shown in [SS]:

δ(K1 × · · · ×Kn) = (δ(K1) . . . δ(Kn))1/n, K1, . . . ,Kn ⊂ C.

Other proofs of (1) were given in [CM] (in the spirit of [SS]) and [HM].
The main goal of this note is to give yet another proof of the product

property. The main tool will be the formula due to Rumely [R] expressing
δ(K) in terms of Monge–Ampère measures of sections of the Robin function
for the global extremal function of K. We also use methods developed in
[B1] where the product property for the equilibrium measure was proved.

The original proof from [R] uses nontrivial number theory (e.g. Arakelov
theory). Recently, Berman and Boucksom [BB] proved the Rumely formula
using essentially only pluripotential theory. Their methods (that work in
a much more general setting) are presented for subsets of Cn in the self-
contained notes of Levenberg [Le] which we have found very useful.

2. Preliminaries. For a compact K ⊂ Cn the global extremal function
was originally defined in [S1] as

VK := sup
{

1
d

log |P | : P ∈ Pd(Cn), |P | ≤ 1 on K, d = 1, 2, . . .
}
.

Zaharyuta [Z2] proved that

VK = sup{u ∈ L+(Cn) : u ≤ 0 on K},
where

L+(Cn) = {u ∈ PSH(Cn) : −C1 + log+ |z| ≤ u ≤ C2 + log+ |z|}
(C1, C2 are constants depending on u, and v+ := max{v, 0}). It was shown in
[S2] that V ∗K ∈ L+(Cn) if and only if K is not pluripolar, which is equivalent
to δ(K) > 0. (By v∗ we denote the upper regularization of v.)

Let H+(Cn) denote the class of homogeneous plurisubharmonic functions
v in Cn:

v(λz) = v(z) + log |λ|, z ∈ Cn, λ ∈ C,

such that max{v, 0} ∈ L+(Cn). It was shown in [S3] that the mapping

H+(Cn) 3 v 7→ v(·, 1) ∈ L+(Cn−1)

is bijective.
For u ∈ L+(Cn) the Robin function is defined as

ρu(z) := lim sup
|λ|→∞

(u(λz)− log |λ|), z ∈ Cn.
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Let ũ ∈ H+(Cn+1) be such that u = ũ(·, 1). Then ρu = ũ(·, 0) and it follows
in particular that ρu is upper semicontinuous, in fact ρu ∈ H+(Cn).

From now on assume that K is not pluripolar. We consider the Robin
function for K:

ρK := ρV ∗
K
∈ H+(Cn).

We can now recall the Rumely formula. For p = 0, 1, . . . , n − 1 define the
following sections of ρK :

ρ
(p)
K (z) := ρK(z1, . . . , zp, 1, 0, . . . , 0), z = (z1, . . . , zp) ∈ Cp.

Then

(2) − log δ(K) =
1
n

(
ρ
(0)
K +

n−1∑
p=1

1
(2π)p

�

Cp

ρ
(p)
K (ddcρ(p)

K )p
)
.

We use here Bedford–Taylor’s theory of the complex Monge–Ampère opera-
tor for locally bounded plurisubharmonic functions (see [BT], and also [D],
[K] or [B2]). The operator d can be written as d = ∂ + ∂̄ and dc = i(∂̄ − ∂),
so that ddc = 2i∂∂̄.

We will use the fact that

(3)
�

Cn

(ddcu)n = (2π)n, u ∈ L+(Cn)

(originally proved in [T]).

3. Proof of the product property. We will need some preparatory
results. The first one is from [B1], but we present a much simpler proof of it
from [B2].

Proposition 1. Let u, v be plurisubharmonic and locally bounded on an
open subset of Cn and let w := max{u, v}. If 2 ≤ p ≤ n, then

(ddcw)p = ddcw ∧
p−1∑
k=0

(ddcu)k ∧ (ddcv)p−1−k −
p−1∑
k=1

(ddcu)k ∧ (ddcv)p−k.

Proof. We may assume that u, v are smooth. A simple inductive argu-
ment reduces the proof to the case p = 2. For ε > 0 set wε := max{u+ ε, v}.
In the open set {u + ε > v} we have wε − u = ε, whereas w − v = 0 in
{u < v}. Therefore ddc(wε − u)∧ ddc(w− v) = 0 for every ε > 0 and taking
the limit we conclude that ddc(w − u) ∧ ddc(w − v) = 0.

Proposition 2. Let u, v be locally bounded plurisubharmonic functions
defined in open subsets U ⊂ Cn, V ⊂ Cm, respectively. Assume in addition
that (ddcu)n = 0 and set

w(z′, z′′) := max{u(z′), v(z′′)}, z′ ∈ U, z′′ ∈ V.
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Then for a fixed z′′ ∈ V one has
(ddcw)n+m = (ddc max{u, v(z′′)})n ∧ (ddcv)m.

Proof. We will follow a method from [B1]. By Proposition 1 we have
(ddcw)n+m = ddcw ∧ (ddcu)n−1 ∧ (ddcv)m.

Let χ ∈ C∞(R,R) be a convex function such that χ = 0 on (−∞,−1] and
χ(t) = t for t ≥ 1. Set α := v−u (we now treat u and v as functions defined
in U × V ) and

wj := u+
1
j
χ(jα).

Then wj is a sequence of locally bounded functions decreasing to w. We have
ddcwj = (1− χ′(jα))ddcu+ χ′(jα)ddcv + jχ′′(jα)dα ∧ dcα

(which implies in particular that wj are plurisubharmonic) and therefore
ddcwj ∧ (ddcu)n−1 ∧ (ddcv)m = jχ′′(jα)du ∧ dcu ∧ (ddcu)n−1 ∧ (ddcv)m.

Fix z′′ ∈ V and let a := v(z′′). Then (using again that (ddcu)n = 0)
jχ′′(jα)du ∧ dcu ∧ (ddcu)n−1 = ddcuj ∧ (ddcu)n−1,

where uj := a+ χ(j(u− a))/j decreases to ua := max{u, a} = w(·, z′′). We
thus get

(ddcw)n+m = ddcua ∧ (ddcu)n−1 ∧ (ddcv)m.

It remains to notice that ddcua ∧ (ddcu)n−1 = (ddcua)n by Proposition 1.
Proposition 3. For u ∈ H+(Cn) and v ∈ L+(Cm) set

w(z′, z′′) := max{u(z′), v(z′′)}, z′ ∈ Cn, z′′ ∈ Cm.

Then �

Cn+m

w(ddcw)n+m = (2π)n
�

Cm

v(ddcv)m.

Proof. Fix z′′ ∈ Cm and set a := v(z′′), ua := max{u, a}. Since Monge–
Ampère masses of locally bounded plurisubharmonic functions put no mass
on pluripolar sets, we have �

{0}×Cm

w(ddcw)n+m = 0.

Thus by Proposition 2 and the Fubini Theorem (note that (ddcu)n = 0 in
Cn \ {0}) it is enough to show that

(4)
�

Cn

ua(ddcua)n = (2π)na.

Indeed, for smooth (or even continuous) u (away from the origin) the measure
(ddcua)n is concentrated on the set {u = a} and by (3) is of total mass (2π)n.
Since ua = a on the support of (ddcua)n, we clearly have (4) for continuous u.
The general case follows since every element ofH+(Cn) can be approximated
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by a decreasing sequence of smooth (away from the origin) functions from
H+(Cn) (see [S3]).

Proof of the product property. It was shown in [S2] that
(5) VK×L(z′, z′′) = max{VK(z′), VL(z′′)}, z′ ∈ Cn, z′′ ∈ Cm

(see [Ze] or [B2] for the proof using the Monge–Ampère operator). Without
loss of generality we may assume that K, L are not pluripolar (in Cn and
Cm, respectively). By (5) we clearly have

ρK×L(z′, z′′) = max{ρK(z′), ρL(z′′)}, z′ ∈ Cn, z′′ ∈ Cm.

Therefore

ρ
(p)
K×L(z′, z′′) =

{
ρ
(p)
K (z′), p = 0, 1, . . . , n− 1,

max{ρK(z′), ρ(p−n)
L (z′′)}, p = n, n+ 1, . . . , n+m− 1,

and thus by Rumely’s formula (2),

−(n+m) log δ(K × L) = −n log(K) +
m−1∑
q=0

1
(2π)n+q

�

Cn+q

w(q)(ddcw(q))n+q,

where
w(q)(z′, z′′) = max{ρK(z′), ρ(q)

L (z′′)}.
From Proposition 3 we get�

Cn+q

w(q)(ddcw(q))n+q = (2π)n
�

Cq

ρ
(q)
L (ddcρ(q)

L )n+q

and it suffices to use Rumely’s formula once again.
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