ON THE REGULARITY OF THE COMPLEX MONGE-AMPÈRE OPERATOR

ZBigniew BŁocki

Abstract

In this paper we show how to apply some results on fully nonlinear elliptic operators to the theory of the complex Monge-Ampère operator.

1. Introduction

If u is a smooth plurisubharmonic function, the complex Monge-Ampère operator on u is defined by

$$
\begin{equation*}
M u:=\operatorname{det}\left(u_{j \bar{k}}\right) \tag{1.1}
\end{equation*}
$$

where $u_{j \bar{k}}=\partial^{2} u / \partial z_{j} \partial \bar{z}_{k}, j, k=1, \ldots, n$. Bedford and Taylor [2] showed in particular that one can define $M u$ as a nonnegative Borel measure for any continuous plurisubharmonic function u in such a way that (1.1) holds if u is C^{∞}-smooth and if $u_{j} \longrightarrow u$ uniformly then $M u_{j} \longrightarrow M u$ weakly. Obviously this determines $M u$ uniquely for every u, since continuous plurisubharmonic functions can be locally uniformly approximated by smooth plurisubharmonic functions.

We see that $\operatorname{det}\left(u_{j \bar{k}}\right)$ makes sense and is a nonnegative Borel measure if u is in $W^{2, n}$.

Proposition 1.1. If u is plurisubharmonic, continuous and in $W^{2, n}$ then (1.1) holds.

Proof. . Let $u^{\varepsilon}=u * \rho_{\varepsilon}$ denote the standard regularization of u. Then $u_{j \bar{k}}^{\varepsilon}=$ $u_{j \bar{k}} * \rho_{\varepsilon} \longrightarrow u_{j \bar{k}}$ in $L_{l o c}^{n}$ as $\varepsilon \downarrow 0$. We have to show that $M u^{\varepsilon}=\operatorname{det}\left(u_{j \bar{k}}^{\varepsilon}\right)$ tends weakly to $\operatorname{det}\left(u_{j \bar{k}}\right)$. It is enough to observe that if $f_{j}^{\varepsilon} \longrightarrow f_{j}$ in $L_{l o c}^{n}, j=1, \ldots, n$, then $f_{1}^{\varepsilon} \ldots f_{n}^{\varepsilon} \longrightarrow f_{1} \ldots f_{n}$ in $L_{l o c}^{1}$. Indeed, write

$$
f_{1}^{\varepsilon} \ldots f_{n}^{\varepsilon}-f_{1} \ldots f_{n}=\sum_{k=1}^{n} f_{1} \ldots f_{k-1}\left(f_{k}^{\varepsilon}-f_{k}\right) f_{k+1}^{\varepsilon} \ldots f_{n}^{\varepsilon}
$$

and use the Hölder inequality.
In this paper we discuss regularity of the operator M. Our basic question will be: under what conditions regularity of $M u$ implies regularity of u ? For example, if $n=1$ then $M=\Delta / 4$ and for every $k=0,1, \ldots$ and $0<\alpha<1 \Delta u \in C^{k, \alpha}$

[^0]implies $u \in C^{k+2, \alpha}$ (see e.g. [12]). We want to find out what happens with this kind of regularity if $n \geq 2$.

First, we see that if for example u does not depend on one variable then $\mathrm{Mu}=0$. Thus, we should always assume $M u>0$. Even then we have the following example.

Example. For $\beta>0$ set

$$
u(z)=\left(\left|z_{1}\right|^{2}+1\right)\left|z^{\prime}\right|^{2 \beta}
$$

where $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)$. Then u is continuous and plurisubharmonic on \mathbb{C}^{n} since $\log u$ is plurisubharmonic. Moreover u is C^{∞} on the set $\left\{z^{\prime} \neq 0\right\}$ and one can compute that

$$
\begin{equation*}
M u=\beta^{n}\left(1+\left|z_{1}\right|^{2}\right)^{n-2}\left|z^{\prime}\right|^{2(\beta n-n+1)} \tag{1.2}
\end{equation*}
$$

there. However, since $\left\{z^{\prime}=0\right\}$ is in particular a pluripolar set, by [3] we have

$$
\int_{\left\{z^{\prime}=0\right\}} M u=0
$$

and thus (1.2) holds in \mathbb{C}^{n}.
If we take $\beta=1-1 / n$ then $M u \in C^{\infty}, M u>0$ in \mathbb{C}^{n} but $u \notin C^{1, \alpha}$ for $\alpha>1-2 / n$ (if $n=2$ then even $u \notin C^{1}$) and $u \notin W^{2, p}$ for $p \geq n(n-1)$.

The paper is organized as follows: in section 2 we show how to use the (real) theory of nonlinear elliptic operators to get results on the complex Monge-Ampère operator. Necessary facts from the matrix theory are collected in the appendix. In section 3 we recall known facts about corresponding problems for the real MongeAmpère operator. Finally, section 4 is devoted to the problem of regularity of exhaustion plurisubharmonic functions in hyperconevex domains. So far, it has been solved only in the case of convex domains.
Acknowledgements. I would like to thank the organizers of the POSTECH Conference on Several Complex Variables in Pohang, especially professor Kim Kang-Tae, for their great hospitality. I am also very grateful to the Batory Foundation for covering my travel expenses to Korea.

2. The complex Monge-Ampère operator
 AS A NONLINEAR ELLIPTIC OPERATOR

Consider an equation of the form

$$
\begin{equation*}
F\left(D^{2} u\right)=g(x) \tag{2.1}
\end{equation*}
$$

where F is a function defined on the space of symmetric matrices from $\mathbb{R}^{m \times m}$. We always assume that

$$
F \text { is concave. }
$$

We say that F is elliptic on a function u defined on $\Omega \subset \mathbb{R}^{m}$ if the matrix

$$
\left(F_{p q}\right)=\left(\frac{\partial F}{\partial u_{x_{p} x_{q}}}\right)
$$

is positive on $\left\{D^{2} u(x): x \in \Omega\right\}$. We call F uniformly elliptic on u if there exist constants $0<\lambda<\Lambda<\infty$ such that

$$
\lambda \leq \lambda_{\min }\left(\left(F_{p q}\right)\right) \leq \lambda_{\max }\left(\left(F_{p q}\right)\right) \leq \Lambda,
$$

where $\lambda_{\min }(A)$ (resp. $\left.\lambda_{\max }(A)\right)$ denotes the minimal (resp. maximal) eigenvalue of A. For a detailed discussion of nonlinear elliptic operators see [12].

Now suppose that u is a function defined on $\Omega \subset \mathbb{C}^{n}$. Then we may write

$$
D^{2} u=\left(\begin{array}{cc}
\left(u_{x_{j} x_{k}}\right) & \left(u_{x_{j} y_{k}}\right) \\
\left(u_{y_{j} x_{k}}\right) & \left(u_{y_{j} y_{k}}\right)
\end{array}\right)
$$

One can easily compute that

$$
u_{z_{j} \bar{z}_{k}}=\frac{1}{4}\left(u_{x_{j} x_{k}}+u_{y_{j} y_{k}}+i\left(u_{x_{j} y_{k}}-u_{y_{j} x_{k}}\right)\right)
$$

If $A \in \mathbb{R}^{2 n \times 2 n}$ then in the variables $(x, y)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots,, y_{n}\right)$ we may write

$$
A=\left(\begin{array}{ll}
A_{x x} & A_{x y} \\
A_{y x} & A_{y y}
\end{array}\right)
$$

where $A_{x x}, A_{x y}, A_{y x}, A_{y y} \in \mathbb{R}^{n \times n}$. Let

$$
\begin{equation*}
H(A):=\frac{1}{4}\left(A_{x x}+A_{y y}+i\left(A_{x y}-A_{y x}\right)\right) \in \mathbb{C}^{n \times n} \tag{2.2}
\end{equation*}
$$

so that $D_{\mathbb{C}}^{2} u=H\left(D^{2} u\right)$, where $D_{\mathbb{C}}^{2} u=\left(u_{z_{j} \bar{z}_{k}}\right)$ is the complex Hessian of u.
Consider an equation of the form

$$
\widetilde{F}\left(D_{\mathbb{C}}^{2} u\right)=\psi(z)
$$

We want to see when this equation is elliptic in the sense as above (that is as a real equation). We set

$$
F\left(D^{2} u\right):=\widetilde{F}\left(D_{\mathbb{C}}^{2} u\right)=\widetilde{F}\left(H\left(D^{2} u\right)\right)
$$

Consider matrices

$$
\left(F_{p q}\right)=\left(\begin{array}{ll}
\left(F_{u_{x_{j} x_{k}}}\right) & \left(F_{u_{x_{j} y_{k}}}\right) \\
\left(F_{u_{y_{j} x_{k}}}\right) & \left(F_{u_{y_{j} y_{k}}}\right)
\end{array}\right)
$$

and

$$
\left(\widetilde{F}_{j k}\right)=\left(\widetilde{F}_{u_{z_{j} \bar{z}_{k}}}\right)
$$

Proposition 2.1. We have

$$
\begin{aligned}
\lambda_{\min }\left(\left(F_{p q}\right)\right) & =\frac{1}{4} \lambda_{\min }\left(\left(\widetilde{F}_{j k}\right)\right) \\
\lambda_{\max }\left(\left(F_{p q}\right)\right) & =\frac{1}{4} \lambda_{\max }\left(\left(\widetilde{F}_{j k}\right)\right) \\
\left(\operatorname{det}\left(F_{p q}\right)\right)^{1 / 2 n} & \geq \frac{1}{4}\left(\operatorname{det}\left(\widetilde{F}_{j k}\right)\right)^{1 / n} .
\end{aligned}
$$

Proof. We claim that for a symmetric $A \in \mathbb{R}^{2 n \times 2 n}$ we have

$$
\begin{equation*}
\operatorname{trace}\left(\left(F_{p q}\right) A^{t}\right)=\operatorname{trace}\left(\left(\widetilde{F}_{j k}\right) H(A)^{t}\right) \tag{2.3}
\end{equation*}
$$

Indeed, write $H(A)=\left(h_{j k}\right)$ and

$$
\begin{aligned}
\operatorname{trace}\left(\left(F_{p q}\right) A^{t}\right) & =\sum_{p, q} F_{p q} a_{p q} \\
& =\left.\frac{d}{d t} F\left(D^{2} u+t A\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} \widetilde{F}\left(D_{\mathbb{C}}^{2} u+t H(A)\right)\right|_{t=0} \\
& =\sum_{j, k} \widetilde{F}_{j k} h_{j k} \\
& =\operatorname{trace}\left(\left(\widetilde{F}_{j k}\right) H(A)^{t}\right)
\end{aligned}
$$

If we take $A=\left(a_{p} a_{q}\right)$, where

$$
a=\left(a_{1}, \ldots, a_{2 n}\right)=\left(a_{x_{1}}, \ldots, a_{x_{n}}, a_{y_{1}}, \ldots, a_{y_{n}}\right),
$$

then $h_{j k}=\left(a_{x_{j}}+i a_{y_{j}}\right) \overline{\left(a_{x_{j}}+i a_{y_{j}}\right)} / 4$ and by (2.3)

$$
\sum_{p, q} F_{p q} a_{p} a_{q}=\frac{1}{4} \sum_{j, k} \widetilde{F}_{j k}\left(a_{x_{j}}+i a y_{j}\right) \overline{\left(a_{x_{j}}+i a y_{j}\right)}
$$

This shows the first two equalities. To prove the last inequality we use Lemma A1 and (2.3) again:

$$
\left(\operatorname{det}\left(F_{p q}\right)\right)^{1 / 2 n}=\frac{1}{2 n} \inf _{A} \operatorname{trace}\left(\left(F_{p q}\right) A^{t}\right)=\frac{1}{2 n} \inf _{A} \operatorname{trace}\left(\left(\widetilde{F}_{j k}\right) H(A)^{t}\right)
$$

the infimum being taken over symmetric, positive $A \in \mathbb{R}^{2 n \times 2 n}$ with $\operatorname{det} A \geq 1$. For such A by Lemma A4 we have $(\operatorname{det} H(A))^{1 / n} \geq 1 / 2$ and the desired estimate follows from Lemma A1.

Now we write the complex Monge-Ampère equation in the form

$$
\begin{equation*}
F\left(D^{2} u\right)=\widetilde{F}\left(D_{\mathbb{C}}^{2} u\right)=\left(\operatorname{det}\left(D_{\mathbb{C}}^{2} u\right)\right)^{1 / n}=\psi(z) \tag{2.4}
\end{equation*}
$$

where $\psi>0$ and u is plurisubharmonic and in $W^{2, n}$. Assume that u is such that

$$
\lambda|w|^{2} \leq \sum_{j, k} u_{z_{j} \bar{z}_{k}} w_{j} \bar{w}_{k} \leq \Lambda|w|^{2}
$$

Then $\widetilde{F}_{j k}=\psi^{1-n} M_{j k} / n=\psi\left(\left(D_{\mathbb{C}}^{2} u\right)^{-1}\right)^{t} / n$, where $M_{j k}$ is a cominor of the matrix $D_{\mathbb{C}}^{2} u$. By Proposition 2.1

$$
\begin{align*}
\lambda_{\min }\left(\left(F_{p q}\right)\right) & \geq \frac{1}{4 n} \frac{\psi}{\Lambda} \\
\lambda_{\max }\left(\left(F_{p q}\right)\right) & \leq \frac{1}{4 n} \frac{\psi}{\lambda} \\
\left(\operatorname{det}\left(F_{p q}\right)\right)^{1 / 2 n} & \geq \frac{1}{4 n} \tag{2.5}
\end{align*}
$$

We shall now invoke a few results from the theory of nonlinear elliptic operators and use them to obtain results on local regularity of the complex Monge-Ampère operator. From the standard elliptic theory it follows that if u is a C^{2} solution of (2.1), F, g are in $C^{k, \alpha}$ for some $k=1,2, \ldots, 0<\alpha<1$ and F is uniformly elliptic on u then $u \in C^{k+2, \alpha}$ (see [12], Lemma 17.16).

Theorem 2.2. If u is plurisubharmonic and $C^{2}, M u \in C^{k, \alpha}$ for some $k=1,2, \ldots$, $0<\alpha<1$ and $M u>0$ then $u \in C^{k+2, \alpha}$.

We want to relax the assumption that u must be C^{2}. We do this using two results due to Trudinger [15]:

Theorem 2.3. Let $u \in W^{2, m}(\Omega)$, Ω open in \mathbb{R}^{m}, be a solution of (2.1). Assume that F is elliptic on u, $\operatorname{det}\left(F_{p q}\left(D^{2} u\right)\right) \geq 1$ and $F_{p q}\left(D^{2} u\right) \in L^{s}(\Omega), p, q=1, \ldots, m$, for some $s>m$. If $g \in W^{2, m}(\Omega)$ then $u \in C^{1,1}$.

Theorem 2.4. Assume that F is uniformly elliptic on $u \in W^{2, m}$, a solution of (2.1). If $g \in W^{2, m}$ then $u \in C^{2, \alpha}$ for some $0<\alpha<1$.

They yield the following fact about the complex Monge-Ampère operator.
Theorem 2.5. Let u be plurisubharmonic and $u \in W^{2, p}$ for some $p>2 n(n-1)$. If $M u \in W^{2,2 n}, M u>0$ then u is $C^{2, \alpha}$ for some $0<\alpha<1$.

Proof. Consider (2.4). We may write

$$
F_{p^{\prime} q^{\prime}}\left(D^{2} u\right)=\frac{1}{n} \psi^{1-n} P\left(D^{2} u\right)
$$

where P is a polynomial of degree $n-1$. Therefore $F_{p^{\prime} q^{\prime}}\left(D^{2} u\right) \in L^{p /(n-1)}$ and $p /(n-1)>2 n$ which is the real dimension of \mathbb{C}^{n}. By (2.5) and Theorem 2.3, $u \in C^{1,1}$. By Theorem 2.4 it remains to show that the operator given by (2.4) is uniformly elliptic on u. Since u is $C^{1,1}$, we may take $\Lambda=\sup \left|D^{2} u\right|$ and $\lambda=$ $\Lambda^{1-n} \inf M u$.

Theorems 2.2 and 2.5 give
Theorem 2.6. If u is plurisubharmonic and $u \in W^{2, p}$ for some $p>2 n(n-1)$ then

$$
\begin{equation*}
M u \in C^{\infty}, M u>0 \text { implies } u \in C^{\infty} \tag{2.6}
\end{equation*}
$$

A function u is called strongly plurisubharmonic in an open set Ω in \mathbb{C}^{n} if for every $\Omega^{\prime} \Subset \Omega$ there exists $\lambda>0$ such that

$$
\begin{equation*}
\sum_{j, k} u_{j \bar{k}} w_{j} \bar{w}_{k} \geq \lambda|w|^{2}, \quad w \in \mathbb{C}^{n} \tag{2.7}
\end{equation*}
$$

in Ω^{\prime}. The following result shows that (2.6) holds for strongly plurisubharmonic functions.

Theorem 2.7. Let u be a function satisfying (2.7) and such that $M u \in L^{\infty}$, $M u \leq K$. Then

$$
\sum_{j, k} u_{j \bar{k}} w_{j} \bar{w}_{k} \leq \frac{K}{\lambda^{n-1}}|w|^{2}, \quad w \in \mathbb{C}^{n}
$$

In particular, $\Delta u \in L^{\infty}$ and thus $u \in W^{2, p}$ for every $p<\infty$.
Proof. The result is clear if we already know that $u \in W^{2, n}-$ then $M u=\operatorname{det}\left(u_{j \bar{k}}\right)$ and

$$
\lambda_{\max }\left(\left(u_{j \bar{k}}\right)\right) \leq \frac{\operatorname{det}\left(u_{j \bar{k}}\right)}{\left(\lambda_{\min }\left(\left(u_{j \bar{k}}\right)\right)\right)^{n-1}} \leq \frac{K}{\lambda^{n-1}}
$$

For arbitrary u set $u^{\varepsilon}=u * \rho_{\varepsilon}$ and take a nonnegative test function ϕ. Then for $w \in \mathbb{C}^{n}$ we have

$$
\begin{aligned}
\int \phi \sum u_{j \bar{k}} w_{j} \bar{w}_{k} & =\lim _{\varepsilon \rightarrow 0} \int \phi \sum u_{j \bar{k}}^{\varepsilon} w_{j} \bar{w}_{k} \\
& \leq \lim _{\varepsilon \rightarrow 0} \int \phi \frac{M u^{\varepsilon}}{\lambda^{n-1}}|w|^{2} \\
& =\int \phi \frac{M u}{\lambda^{n-1}}|w|^{2} \\
& \leq \int \phi \frac{K}{\lambda^{n-1}}|w|^{2}
\end{aligned}
$$

and the theorem follows.

3. Regularity of the real Monge-Ampère operator

If u is a smooth convex function in $\Omega \subset \mathbb{R}^{n}$ then

$$
M_{\mathbb{R}} u=\operatorname{det}\left(u_{x_{j} x_{k}}\right)
$$

and similarly as in the complex case one can define $M_{\mathbb{R}} u$ for arbitrary convex u. Another way to see this is to treat convex functions as plurisubharmonic functions of $x+i y$ not depending on y. Then $M_{\mathbb{R}} u=4^{n} M u$. However, more classical way to define $M_{\mathbb{R}} u$ for arbitrary u is a geometric one - see [13] and the references given there.

The following example is due to Pogorelov.
Example. For $\beta \geq 1 / 2$ let

$$
u(x)=\left(x_{1}^{2}+1\right)\left|x^{\prime}\right|^{2 \beta}
$$

where $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)$. Then u is convex with respect to the variables x_{1} and x^{\prime} and one can compute that on the set $\left\{x^{\prime} \neq 0\right\}$ we have

$$
\begin{equation*}
M_{\mathbb{R}} u=2^{n} \beta^{n-1}\left(1+x_{1}^{2}\right)^{n-2}\left((2 \beta-1)-(2 \beta+1) x_{1}^{2}\right)\left|x^{\prime}\right|^{2(\beta n+1-n)} \tag{3.1}
\end{equation*}
$$

Thus u is convex in a neighborhood of the origin if $\beta>1 / 2$. Moreover,

$$
\int_{\left\{x^{\prime}=0\right\}} M_{\mathbb{R}} u=\operatorname{volume}\left(\nabla u\left(\left\{x^{\prime}=0\right\}\right)\right)=0
$$

because $\partial u / \partial x_{1}=0$ if $x^{\prime}=0$, therefore (3.1) holds everywhere where u is convex. If $\beta=1-1 / n$ then $M u$ is C^{∞} but $u \notin C^{1, \alpha}$ for $\alpha>1-2 / n$ and $u \notin W^{2, p}$ for $p \geq n(n-1) / 2$.

The above example works only if $n \geq 3$ because we have to assume $\beta=1-1 / n>$ $1 / 2$. It is an old result due to Aleksandrov [1] that in $\mathbb{R}^{2} M_{\mathbb{R}} u>0$ implies that u is strictly convex (that is the graph of u contains no line segment). The example shows that it is not the case if $n \geq 3$. (See [6] for a related result.)

The following theorem is due to Urbas [16].
Theorem 3.1. If u is convex and either $u \in C^{1, \alpha}$ for some $\alpha>1-2 / n$ or $u \in W^{2, p}$ for some $p>n(n-1) / 2$ then

$$
\begin{equation*}
M_{\mathbb{R}} u \in C^{\infty}, M_{\mathbb{R}} u>0 \text { implies } u \in C^{\infty} \tag{3.2}
\end{equation*}
$$

The proof of Theorem 3.1 makes use of the following result due to Pogorelov (see [9] and [10] for proofs without gaps).
Theorem 3.2. Let u be a convex function in a bounded convex domain Ω in \mathbb{R}^{n} such that $\lim _{x \rightarrow \partial \Omega} u(x)=0$. Then (3.2) holds in Ω.

Theorem 3.2 also easily implies the following fact.
Corollary 3.3. (3.2) holds for strictly convex functions.
Together with the result of Aleksandrov it means that if $n=2$ then (3.2) holds for every convex u without any extra assumption. However, the example given in the introduction shows that there is nothing like that for the complex Monge-Ampère operator in \mathbb{C}^{2}.

4. Regularity in hyperconvex domains

A bounded domain Ω in \mathbb{C}^{n} is called hyperconvex if there exists a bounded plurisubharmonic exhaustion function. The main question of this section is whether a counterpart of Theorem 3.2 holds for the complex Monge-Ampère operator and hyperconvex domains. By [7] and [14] it is enough to find an interior gradient estimate for smooth solutions of the complex Monge-Ampère equation vanishing on the boundary. In [5] it is done for convex domains. Together with a solution of the Dirichlet problem in hyperconvex domains (see [4]) one can get the following result.

Theorem 4.1. Let Ω be a bounded convex domain in \mathbb{C}^{n}. Assume that $\psi \in C^{\infty}(\Omega)$ is positive and $\left|D \psi^{1 / n}\right|$ is bounded in Ω. Then there exists a unique $u \in C^{\infty}(\Omega)$ which is plurisubharmonic, $\lim _{z \rightarrow \partial \Omega} u(z)=0$ and $M u=\psi$ in Ω.

This gives a very partial counterpart of Corollary 3.3.
Corollary 4.2. If u is a strictly convex function on an open set in \mathbb{C}^{n} (thus u is in particular continuous and plurisubharmonic) then (2.6) holds.

Appendix

For the convenience of the reader we collect here some elementary results from the matrix theory. Some of them can be found for example in [11] and [8].

Lemma A1. If H is a hermitian, nonnegative matrix in $\mathbb{C}^{n \times n}$ then

$$
(\operatorname{det} H)^{1 / n}=\frac{1}{n} \inf _{G} \operatorname{trace}\left(H G^{t}\right)
$$

the infimum being taken over all hermitian, nonnegative G with $\operatorname{det} G \geq 1$.
Proof. If H and G are hermitian and nonnegative then so is $H G^{t}$ and we may find a unitary matrix P so that $P^{-1} H G^{t} P$ is a diagonal matrix. Then from the inequality between geometric and arithmetic means we obtain

$$
\left(\operatorname{det}\left(H G^{t}\right)\right)^{1 / n}=\left(\operatorname{det}\left(P^{-1} H G^{t} P\right)\right)^{1 / n} \leq \frac{1}{n} \operatorname{trace}\left(P^{-1} H G^{t} P\right)=\frac{1}{n} \operatorname{trace}\left(H G^{t}\right)
$$

Thus we have " \leq ". To show the reverse inequality let Q be a unitary matrix such that $Q^{-1} H Q=\left(\lambda_{j} \delta_{j k}\right)$. Then it is enough to take $G=\left(g_{j} \delta_{j k}\right)$, where $g_{j}=1$ if $\lambda_{j}=0$ and $g_{j}=\left(\lambda_{1} \ldots \lambda_{n}\right)^{1 / n} / \lambda_{j}$ otherwise.
Lemma A2. If $H, G \in \mathbb{C}^{n \times n}$ are hermitian and nonnegative then

$$
(\operatorname{det}(H+G))^{1 / n} \geq(\operatorname{det} H)^{1 / n}+(\operatorname{det} G)^{1 / n}
$$

Proof. By Lemma A1

$$
\begin{aligned}
(\operatorname{det}(H+G))^{1 / n} & =\frac{1}{n} \inf _{K} \operatorname{trace}\left((H+G) K^{t}\right) \\
& \geq \frac{1}{n} \inf _{K} \operatorname{trace}\left(H K^{t}\right)+\frac{1}{n} \inf _{K} \operatorname{trace}\left(G K^{t}\right) \\
& =(\operatorname{det} H)^{1 / n}+(\operatorname{det} G)^{1 / n} .
\end{aligned}
$$

Lemma A3. Let $X, Y \in \mathbb{R}^{n \times n}$. Suppose that $\lambda_{1}, \ldots, \lambda_{n}$ are all eigenvalues of the matrix $X+i Y \in \mathbb{C}^{n \times n}$. Then eigenvalues of

$$
\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right) \in \mathbb{R}^{2 n \times 2 n}
$$

are precisely $\lambda_{1}, \bar{\lambda}_{1}, \ldots, \lambda_{n}, \bar{\lambda}_{n}$. In particular

$$
\operatorname{det}\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right)=|\operatorname{det}(X+i Y)|^{2}
$$

Proof. Let λ be an eigenvalue of $X+i Y$ and let $z \in \mathbb{C}^{n}$ be the corresponding eigenvector. Then

$$
\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right)\binom{i z}{z}=\binom{i(x+i y) z}{(i Y+X) z}=\lambda\binom{i z}{z}
$$

and thus

$$
\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right) \overline{\binom{i z}{z}}=\bar{\lambda} \overline{\binom{i z}{z}}
$$

It remains to show that if vectors z^{1}, \ldots, z^{n} form a basis of \mathbb{C}^{n} then the vectors

$$
\left.\binom{i z^{1}}{z^{1}}, \overline{\binom{i z^{1}}{z^{1}}}, \ldots,\binom{i z^{n}}{z^{n}}, \overline{\left(i z^{n}\right.} \begin{array}{c}
z^{n}
\end{array}\right)
$$

form a basis of $\mathbb{C}^{2 n}$.

Lemma A4. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be a symmetric matrix such that $H(A) \geq 0$, where $H(A)$ is defined by (2.2). Then

$$
\begin{aligned}
\lambda_{\min }(H(A)) & \geq \frac{1}{2} \lambda_{\min }(A) \\
\lambda_{\max }(H(A)) & \leq \frac{1}{2} \lambda_{\max }(A) \\
(\operatorname{det} H(A))^{1 / n} & \geq \frac{1}{2}(\operatorname{det} A)^{1 / 2 n} .
\end{aligned}
$$

Proof. By Lemma A3 $4 H(A)$ has the same eigenvalues as the matrix

$$
\left(\begin{array}{cc}
A_{x x}+A_{y y} & A_{y x}-A_{x y} \\
A_{x y}-A_{y x} & A_{x x}+A_{y y}
\end{array}\right)=\left(\begin{array}{cc}
A_{x x} & A_{y x} \\
A_{x y} & A_{y y}
\end{array}\right)+\left(\begin{array}{cc}
A_{y y} & -A_{x y} \\
-A_{y x} & A_{x x}
\end{array}\right)=A^{t}+P^{-1} A^{t} P
$$

where

$$
P=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

Of course A^{t} and $P^{-1} A^{t} P$ have the same eigenvalues as A and thus the first two estimates follow. The third one is a consequence of Lemma A2.

References

[1] A.D. Aleksandrov, Smoothness of a convex surface of bounded Gaussian curvature, Dokl. Akad. Nauk SSSR 36 (1942), 195-199.
[2] E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
[3] E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-41.
[4] Z. Błocki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa 23 (1996), 721-747.
[5] Z. Błocki, Interior regularity of the complex Monge-Ampère operator in convex domains, Manuscript in preparation.
[6] L. Caffarelli, A note on the degeneracy of convex solutions to Monge-Ampère equation, Comm. Partial Diff. Eq. 18 (1993), 1213-1217.
[7] L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère, and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252.
[8] U. Cegrell, L. Persson, The Dirichlet problem for the complex Monge-Ampère operator: Stability in L^{2}, Michigan Math. J. 39 (1992), 145-151.
[9] S.-Y. Cheng, S.-T. Yau, On the regularity of the Monge-Ampère equation $\operatorname{det}\left(\partial^{2} u / \partial x^{i} \partial x^{j}\right)=$ $F(x, u)$, Comm. Pure Appl. Math. 33 (1977), 41-68.
[10] S.-Y. Cheng, S.-T. Yau, The real Monge-Ampère equation and affine flat structures, Proc. Symp. Diff. Geom. Diff. Eq. (Beijing, 1980) ed. S.S. Chern and W.T. Wu, vol. 1, Science Press Beijing / Gordon and Breach, New York, 1982, pp. 339-370.
[11] B. Gaveau, Méthodes de contrôle optimal en analyse complexe. I. Résolution d'équations de Monge-Ampère, J. Funct. Anal. 25 (1977), 391-411.
[12] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Grundl. d. Math. Wiss. 244, Springer-Verlag, 1983.
[13] J. Rauch, B.A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain Math. J. 7 (1977), 345-364.
[14] F. Schulz, A C^{2}-estimate for solutions of complex Monge-Ampère equations, J. Reine Angew. Math. 348 (1984), 88-93.
[15] N.S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations, Boll. Un. Mat. Ital. (6) 3-A (1984), 421-430.
[16] J. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Z. 197 (1988), 365-393.

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland, Currently at the Polish Academy of Sciences

E-mail address: blocki@ im.uj.edu.pl

[^0]: Partially supported by KBN Grant No. 2 PO3A 00313.

