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Abstract. In this paper we show how to apply some results on fully nonlinear
elliptic operators to the theory of the complex Monge-Ampère operator.

1. Introduction

If u is a smooth plurisubharmonic function, the complex Monge-Ampère operator
on u is defined by

(1.1) Mu := det(ujk),

where ujk = ∂2u/∂zj∂zk, j, k = 1, . . . , n. Bedford and Taylor [2] showed in par-
ticular that one can define Mu as a nonnegative Borel measure for any continuous
plurisubharmonic function u in such a way that (1.1) holds if u is C∞-smooth and
if uj −→ u uniformly then Muj −→ Mu weakly. Obviously this determines Mu
uniquely for every u, since continuous plurisubharmonic functions can be locally
uniformly approximated by smooth plurisubharmonic functions.

We see that det(ujk) makes sense and is a nonnegative Borel measure if u is in
W 2,n.

Proposition 1.1. If u is plurisubharmonic, continuous and in W 2,n then (1.1)
holds.

Proof. . Let uε = u ∗ ρε denote the standard regularization of u. Then uε
jk

=
ujk ∗ ρε −→ ujk in Ln

loc as ε ↓ 0. We have to show that Muε = det(uε
jk

) tends
weakly to det(ujk). It is enough to observe that if fε

j −→ fj in Ln
loc, j = 1, . . . , n,

then fε
1 . . . fε

n −→ f1 . . . fn in L1
loc. Indeed, write

fε
1 . . . fε

n − f1 . . . fn =
n∑

k=1

f1 . . . fk−1(fε
k − fk)fε

k+1 . . . fε
n

and use the Hölder inequality. ¤

In this paper we discuss regularity of the operator M . Our basic question will
be: under what conditions regularity of Mu implies regularity of u? For example,
if n = 1 then M = ∆/4 and for every k = 0, 1, . . . and 0 < α < 1 ∆u ∈ Ck,α
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implies u ∈ Ck+2,α (see e.g. [12]). We want to find out what happens with this kind
of regularity if n ≥ 2.

First, we see that if for example u does not depend on one variable then Mu=0.
Thus, we should always assume Mu > 0. Even then we have the following example.

Example. For β > 0 set
u(z) = (|z1|2 + 1)|z′|2β

where z′ = (z2, . . . , zn). Then u is continuous and plurisubharmonic on Cn since
log u is plurisubharmonic. Moreover u is C∞ on the set {z′ 6= 0} and one can
compute that

(1.2) Mu = βn(1 + |z1|2)n−2|z′|2(βn−n+1)

there. However, since {z′ = 0} is in particular a pluripolar set, by [3] we have

∫

{z′=0}
Mu = 0

and thus (1.2) holds in Cn.
If we take β = 1 − 1/n then Mu ∈ C∞, Mu > 0 in Cn but u /∈ C1,α for

α > 1− 2/n (if n = 2 then even u /∈ C1) and u /∈ W 2,p for p ≥ n(n− 1).

The paper is organized as follows: in section 2 we show how to use the (real)
theory of nonlinear elliptic operators to get results on the complex Monge-Ampère
operator. Necessary facts from the matrix theory are collected in the appendix. In
section 3 we recall known facts about corresponding problems for the real Monge-
Ampère operator. Finally, section 4 is devoted to the problem of regularity of
exhaustion plurisubharmonic functions in hyperconevex domains. So far, it has
been solved only in the case of convex domains.

Acknowledgements. I would like to thank the organizers of the POSTECH Confer-
ence on Several Complex Variables in Pohang, especially professor Kim Kang-Tae,
for their great hospitality. I am also very grateful to the Batory Foundation for
covering my travel expenses to Korea.

2. The complex Monge-Ampère operator
as a nonlinear elliptic operator

Consider an equation of the form

(2.1) F (D2u) = g(x)

where F is a function defined on the space of symmetric matrices from Rm×m. We
always assume that

F is concave.

We say that F is elliptic on a function u defined on Ω ⊂ Rm if the matrix

(Fpq) =
(

∂F

∂uxpxq

)
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is positive on {D2u(x) : x ∈ Ω}. We call F uniformly elliptic on u if there exist
constants 0 < λ < Λ < ∞ such that

λ ≤ λmin ((Fpq)) ≤ λmax ((Fpq)) ≤ Λ,

where λmin(A) (resp. λmax(A)) denotes the minimal (resp. maximal) eigenvalue of
A. For a detailed discussion of nonlinear elliptic operators see [12].

Now suppose that u is a function defined on Ω ⊂ Cn. Then we may write

D2u =
( (

uxjxk

) (
uxjyk

)
(
uyjxk

) (
uyjyk

)
)

.

One can easily compute that

uzjzk
=

1
4

(
uxjxk

+ uyjyk
+ i

(
uxjyk

− uyjxk

))
.

If A ∈ R2n×2n then in the variables (x, y) = (x1, . . . , xn, y1, . . . , , yn) we may write

A =
(

Axx Axy

Ayx Ayy

)
,

where Axx, Axy, Ayx, Ayy ∈ Rn×n. Let

(2.2) H(A) :=
1
4

(Axx + Ayy + i (Axy −Ayx)) ∈ Cn×n

so that D2
Cu = H(D2u), where D2

Cu =
(
uzjzk

)
is the complex Hessian of u.

Consider an equation of the form

F̃ (D2
Cu) = ψ(z).

We want to see when this equation is elliptic in the sense as above (that is as a real
equation). We set

F (D2u) := F̃ (D2
Cu) = F̃ (H(D2u)).

Consider matrices

(Fpq) =




(
Fuxjxk

) (
Fuxjyk

)
(
Fuyjxk

) (
Fuyjyk

)



and
(F̃jk) =

(
F̃uzjzk

)
.

Proposition 2.1. We have

λmin((Fpq)) =
1
4
λmin((F̃jk))

λmax((Fpq)) =
1
4
λmax((F̃jk))

(det(Fpq))1/2n ≥ 1
4
(det(F̃jk))1/n.
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Proof. We claim that for a symmetric A ∈ R2n×2n we have

(2.3) trace
(
(Fpq)At

)
= trace

(
(F̃jk)H(A)t

)
.

Indeed, write H(A) = (hjk) and

trace
(
(Fpq)At

)
=

∑
p,q

Fpqapq

=
d

dt
F (D2u + tA)

∣∣∣∣
t=0

=
d

dt
F̃ (D2

Cu + tH(A))
∣∣∣∣
t=0

=
∑

j,k

F̃jkhjk

= trace
(
(F̃jk)H(A)t

)
.

If we take A = (apaq), where

a = (a1, . . . , a2n) = (ax1 , . . . , axn
, ay1 , . . . , ayn

) ,

then hjk = (axj + iayj )(axj + iayj )/4 and by (2.3)

∑
p,q

Fpqapaq =
1
4

∑

j,k

F̃jk

(
axj + iayj

) (
axj + iayj

)
.

This shows the first two equalities. To prove the last inequality we use Lemma A1
and (2.3) again:

(det(Fpq))1/2n =
1
2n

inf
A

trace
(
(Fpq)At

)
=

1
2n

inf
A

trace
(
(F̃jk)H(A)t

)
,

the infimum being taken over symmetric, positive A ∈ R2n×2n with detA ≥ 1.
For such A by Lemma A4 we have (det H(A))1/n ≥ 1/2 and the desired estimate
follows from Lemma A1. ¤

Now we write the complex Monge-Ampère equation in the form

(2.4) F (D2u) = F̃ (D2
Cu) = (det(D2

Cu))1/n = ψ(z),

where ψ > 0 and u is plurisubharmonic and in W 2,n. Assume that u is such that

λ|w|2 ≤
∑

j,k

uzjzk
wjwk ≤ Λ|w|2.

Then F̃jk = ψ1−nMjk/n = ψ
(
(D2
Cu)−1

)t
/n, where Mjk is a cominor of the matrix

D2
Cu. By Proposition 2.1

λmin((Fpq)) ≥ 1
4n

ψ

Λ

λmax((Fpq)) ≤ 1
4n

ψ

λ

(det(Fpq))1/2n ≥ 1
4n

.(2.5)
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We shall now invoke a few results from the theory of nonlinear elliptic operators
and use them to obtain results on local regularity of the complex Monge-Ampère
operator. From the standard elliptic theory it follows that if u is a C2 solution of
(2.1), F , g are in Ck,α for some k = 1, 2, . . . , 0 < α < 1 and F is uniformly elliptic
on u then u ∈ Ck+2,α (see [12], Lemma 17.16).

Theorem 2.2. If u is plurisubharmonic and C2, Mu ∈ Ck,α for some k = 1, 2, . . . ,
0 < α < 1 and Mu > 0 then u ∈ Ck+2,α.

We want to relax the assumption that u must be C2. We do this using two
results due to Trudinger [15]:

Theorem 2.3. Let u ∈ W 2,m(Ω), Ω open in Rm, be a solution of (2.1). Assume
that F is elliptic on u, det(Fpq(D2u)) ≥ 1 and Fpq(D2u) ∈ Ls(Ω), p, q = 1, . . . ,m,
for some s > m. If g ∈ W 2,m(Ω) then u ∈ C1,1.

Theorem 2.4. Assume that F is uniformly elliptic on u ∈ W 2,m, a solution of
(2.1). If g ∈ W 2,m then u ∈ C2,α for some 0 < α < 1.

They yield the following fact about the complex Monge-Ampère operator.

Theorem 2.5. Let u be plurisubharmonic and u ∈ W 2,p for some p > 2n(n− 1).
If Mu ∈ W 2,2n, Mu > 0 then u is C2,α for some 0 < α < 1.

Proof. Consider (2.4). We may write

Fp′q′(D2u) =
1
n

ψ1−nP (D2u)

where P is a polynomial of degree n − 1. Therefore Fp′q′(D2u) ∈ Lp/(n−1) and
p/(n − 1) > 2n which is the real dimension of Cn. By (2.5) and Theorem 2.3,
u ∈ C1,1. By Theorem 2.4 it remains to show that the operator given by (2.4)
is uniformly elliptic on u. Since u is C1,1, we may take Λ = sup |D2u| and λ =
Λ1−n inf Mu. ¤

Theorems 2.2 and 2.5 give

Theorem 2.6. If u is plurisubharmonic and u ∈ W 2,p for some p > 2n(n − 1)
then

(2.6) Mu ∈ C∞, Mu > 0 implies u ∈ C∞.

A function u is called strongly plurisubharmonic in an open set Ω in Cn if for
every Ω′ b Ω there exists λ > 0 such that

(2.7)
∑

j,k

ujkwjwk ≥ λ|w|2, w ∈ Cn,

in Ω′. The following result shows that (2.6) holds for strongly plurisubharmonic
functions.



6 ZBIGNIEW BÃLOCKI

Theorem 2.7. Let u be a function satisfying (2.7) and such that Mu ∈ L∞,
Mu ≤ K. Then ∑

j,k

ujkwjwk ≤ K

λn−1
|w|2, w ∈ Cn.

In particular, ∆u ∈ L∞ and thus u ∈ W 2,p for every p < ∞.

Proof. The result is clear if we already know that u ∈ W 2,n - then Mu = det(ujk)
and

λmax((ujk)) ≤ det(ujk)
(
λmin((ujk))

)n−1 ≤
K

λn−1
.

For arbitrary u set uε = u ∗ ρε and take a nonnegative test function φ. Then for
w ∈ Cn we have

∫
φ

∑
ujkwjwk = lim

ε→0

∫
φ

∑
uε

jk
wjwk

≤ lim
ε→0

∫
φ

Muε

λn−1
|w|2

=
∫

φ
Mu

λn−1
|w|2

≤
∫

φ
K

λn−1
|w|2

and the theorem follows. ¤

3. Regularity of the real Monge-Ampère operator

If u is a smooth convex function in Ω ⊂ Rn then

MRu = det
(
uxjxk

)

and similarly as in the complex case one can define MRu for arbitrary convex u.
Another way to see this is to treat convex functions as plurisubharmonic functions
of x + iy not depending on y. Then MRu = 4nMu. However, more classical way
to define MRu for arbitrary u is a geometric one - see [13] and the references given
there.

The following example is due to Pogorelov.

Example. For β ≥ 1/2 let
u(x) = (x2

1 + 1)|x′|2β

where x′ = (x2, . . . , xn). Then u is convex with respect to the variables x1 and x′

and one can compute that on the set {x′ 6= 0} we have

(3.1) MRu = 2nβn−1(1 + x2
1)

n−2((2β − 1)− (2β + 1)x2
1)|x′|2(βn+1−n).

Thus u is convex in a neighborhood of the origin if β > 1/2. Moreover,
∫

{x′=0}
MRu = volume (∇u({x′ = 0})) = 0
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because ∂u/∂x1 = 0 if x′ = 0, therefore (3.1) holds everywhere where u is convex.
If β = 1 − 1/n then Mu is C∞ but u /∈ C1,α for α > 1 − 2/n and u /∈ W 2,p for
p ≥ n(n− 1)/2.

The above example works only if n ≥ 3 because we have to assume β = 1−1/n >
1/2. It is an old result due to Aleksandrov [1] that in R2 MRu > 0 implies that u
is strictly convex (that is the graph of u contains no line segment). The example
shows that it is not the case if n ≥ 3. (See [6] for a related result.)

The following theorem is due to Urbas [16].

Theorem 3.1. If u is convex and either u ∈ C1,α for some α > 1−2/n or u ∈ W 2,p

for some p > n(n− 1)/2 then

(3.2) MRu ∈ C∞, MRu > 0 implies u ∈ C∞.

The proof of Theorem 3.1 makes use of the following result due to Pogorelov (see
[9] and [10] for proofs without gaps).

Theorem 3.2. Let u be a convex function in a bounded convex domain Ω in Rn

such that limx→∂Ω u(x) = 0. Then (3.2) holds in Ω.

Theorem 3.2 also easily implies the following fact.

Corollary 3.3. (3.2) holds for strictly convex functions.

Together with the result of Aleksandrov it means that if n = 2 then (3.2) holds for
every convex u without any extra assumption. However, the example given in the
introduction shows that there is nothing like that for the complex Monge-Ampère
operator in C2.

4. Regularity in hyperconvex domains

A bounded domain Ω in Cn is called hyperconvex if there exists a bounded
plurisubharmonic exhaustion function. The main question of this section is whether
a counterpart of Theorem 3.2 holds for the complex Monge-Ampère operator and
hyperconvex domains. By [7] and [14] it is enough to find an interior gradient
estimate for smooth solutions of the complex Monge-Ampère equation vanishing
on the boundary. In [5] it is done for convex domains. Together with a solution of
the Dirichlet problem in hyperconvex domains (see [4]) one can get the following
result.

Theorem 4.1. Let Ω be a bounded convex domain in Cn. Assume that ψ ∈ C∞(Ω)
is positive and |Dψ1/n| is bounded in Ω. Then there exists a unique u ∈ C∞(Ω)
which is plurisubharmonic, limz→∂Ω u(z) = 0 and Mu = ψ in Ω.

This gives a very partial counterpart of Corollary 3.3.

Corollary 4.2. If u is a strictly convex function on an open set in Cn (thus u is
in particular continuous and plurisubharmonic) then (2.6) holds.

Appendix

For the convenience of the reader we collect here some elementary results from
the matrix theory. Some of them can be found for example in [11] and [8].
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Lemma A1. If H is a hermitian, nonnegative matrix in Cn×n then

(det H)1/n =
1
n

inf
G

trace (HGt),

the infimum being taken over all hermitian, nonnegative G with detG ≥ 1.

Proof. If H and G are hermitian and nonnegative then so is HGt and we may find a
unitary matrix P so that P−1HGtP is a diagonal matrix. Then from the inequality
between geometric and arithmetic means we obtain

(det(HGt))1/n = (det(P−1HGtP ))1/n ≤ 1
n

trace (P−1HGtP ) =
1
n

trace (HGt).

Thus we have “≤”. To show the reverse inequality let Q be a unitary matrix such
that Q−1HQ = (λjδjk). Then it is enough to take G = (gjδjk), where gj = 1 if
λj = 0 and gj = (λ1 . . . λn)1/n/λj otherwise. ¤
Lemma A2. If H, G ∈ Cn×n are hermitian and nonnegative then

(det(H + G))1/n ≥ (det H)1/n + (det G)1/n.

Proof. By Lemma A1

(det(H + G))1/n =
1
n

inf
K

trace ((H + G)Kt)

≥ 1
n

inf
K

trace (HKt) +
1
n

inf
K

trace (GKt)

= (det H)1/n + (det G)1/n. ¤

Lemma A3. Let X, Y ∈ Rn×n. Suppose that λ1, . . . , λn are all eigenvalues of the
matrix X + iY ∈ Cn×n. Then eigenvalues of

(
X −Y
Y X

)
∈ R2n×2n

are precisely λ1, λ1, . . . , λn, λn. In particular

det
(

X −Y
Y X

)
= | det(X + iY )|2.

Proof. Let λ be an eigenvalue of X + iY and let z ∈ Cn be the corresponding
eigenvector. Then

(
X −Y
Y X

)(
iz
z

)
=

(
i(x + iy)z
(iY + X)z

)
= λ

(
iz
z

)

and thus (
X −Y
Y X

) (
iz
z

)
= λ

(
iz
z

)
.

It remains to show that if vectors z1, . . . , zn form a basis of Cn then the vectors
(

iz1

z1

)
,

(
iz1

z1

)
, . . . ,

(
izn

zn

)
,

(
izn

zn

)

form a basis of C2n. ¤
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Lemma A4. Let A ∈ R2n×2n be a symmetric matrix such that H(A) ≥ 0, where
H(A) is defined by (2.2). Then

λmin(H(A)) ≥ 1
2
λmin(A)

λmax(H(A)) ≤ 1
2
λmax(A)

(det H(A))1/n ≥ 1
2
(detA)1/2n.

Proof. By Lemma A3 4H(A) has the same eigenvalues as the matrix
(

Axx + Ayy Ayx −Axy

Axy −Ayx Axx + Ayy

)
=

(
Axx Ayx

Axy Ayy

)
+

(
Ayy −Axy

−Ayx Axx

)
= At + P−1AtP,

where

P =
(

0 I
−I 0

)
.

Of course At and P−1AtP have the same eigenvalues as A and thus the first two
estimates follow. The third one is a consequence of Lemma A2. ¤
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