ZBIGNIEW BLOCKI¹ Regularity of the fundamental solution for the Monge-Ampère operator

Introduction

Let Ω be a bounded convex domain in \mathbb{R}^n . As in [2] we define a function $g_{\Omega} : \Omega \times \Omega \longrightarrow \mathbb{R}_+$ as follows: for $y \in \Omega$ let $g_{\Omega}(\cdot, y)$ be a unique solution to the following Dirichlet problem

$$\begin{cases} u \in \mathrm{CVX}(\Omega) \cap \mathrm{C}(\overline{\Omega}) \\ Mu = \delta_y \\ u|_{\partial\Omega} = 0. \end{cases}$$

Here M is the Monge-Ampère operator which for smooth functions takes the form

$$Mu = \det D^2 u$$

and can be well defined for arbitrary convex functions as a nonnegative Borel measure (see [3]). The function $g_{\Omega}(\cdot, y)$ vanishes at $\partial\Omega$ and is affine along the intervals joining y with $\partial\Omega$. Therefore, it is determined by its value at y and that is why we are concerned with the function $h_{\Omega}(y) := g_{\Omega}(y, y)$.

In [2] it was proved in particular that g_{Ω} is continuous on $\overline{\Omega} \times \overline{\Omega}$ (with $g_{\Omega} := 0$ on $\partial(\Omega \times \Omega)$) and it is never symmetric unless n = 1. In this paper, in fact not relying on the results from [2], we investigate the regularity of the function h_{Ω} . We show in particular that h_{Ω} is always smooth (C^{∞}) and convex as conjectured in [2].

Throughout the paper Ω is always meant to be a bounded convex domain in \mathbb{R}^n .

1. Preliminaries

We will need several simple facts:

Proposition 1.1. If $\Omega_j \uparrow \Omega$ then $g_{\Omega_j} \downarrow g_{\Omega}$; in particular $h_{\Omega_j} \downarrow h_{\Omega}$.

Proof. Fix $y \in \Omega$ and set $u_j := g_{\Omega_j}(\cdot, y)$, $u := g_{\Omega}(\cdot, y)$. Then $u_{j+1} \leq 0 = u_j$ on $\partial \Omega_{j+1}$ and $Mu_{j+1} = Mu_j = \delta_y$. Therefore, by the comparison principle (see [3]) $u \leq u_{j+1} \leq u_j$. We have

 $^{^{1}\}mathrm{Partially}$ supported by KBN Grant No. 2 PO3A 058 09 and the Foundation for Polish Science (FNP) scholarship

 $u_j \downarrow v \in \text{CVX}(\Omega), u \leq v \leq 0$ and by the continuity of the Monge-Ampère operator ([3], Theorem 3.7), $Mv = \lim Mu_j = \delta_y$. This means that u = v.

Lemma 1.2. Let Ω be smooth and fix $y \in \Omega$. Let u be such that u(y) = -1, u = 0 on $\partial\Omega$ and u is affine along half-lines beginning at y. (In fact $u = |h_{\Omega}(y)|^{-1}g_{\Omega}(\cdot, y)$ on Ω .) Then for $x \in \partial\Omega$ we have $\nabla u(x) = n_x/\langle x - y, n_x \rangle$.

Proof. It is easy to see that $\nabla(x) = n_x/\text{dist}(y, T_x)$, where T_x is the affine tangent hyperplane to $\partial\Omega$ at x. Let y^* denote a point from T_x , where $\text{dist}(y, T_x) = |y^* - y|$. We have $y^* - y = \alpha n_x$ for some $\alpha > 0$ and $\langle y^* - x, n_x \rangle = 0$. Combining these gives $\alpha = \langle x - y, n_x \rangle$ and the lemma follows.

Lemma 1.3. Let D be a convex domain in \mathbb{R}^n containing the origin. For $w \in \partial B$, the unit sphere, by f(w) denote a positive number such that $f(w)w \in \partial \Omega$. Then

$$\lambda(D) = \frac{1}{n} \int_{\partial B} f(w)^n d\sigma(w).$$

Proof. It follows immediately if we use the polar change of coordinates:

$$J: (0,\infty) \times \partial B \ni (r,x) \longrightarrow rx \in \mathbb{R}^n \setminus \{0\},\$$

and observe that $\operatorname{Jac} J = r^{n-1}$.

2. The integral formula

Let Ω be a smooth. Then we can define a mapping

$$S: \partial \Omega \ni x \longrightarrow n_x \in \partial B.$$

One can show that if Ω is strictly convex then S is a smooth diffeomorphism.

Our basic tool in studying the regularity of h_{Ω} will be the following integral formula:

Theorem 2.1. Let Ω be smooth and strictly convex. Then

$$h_{\Omega}(y) = -\left(\frac{1}{n} \int_{\partial B} \langle S^{-1}(w) - y, w \rangle^{-n} d\sigma(w)\right)^{-1/n}, \ y \in \Omega.$$

Proof. Let u be as in Lemma 1.2 and by E denote the gradient image of u at y (see [3] for the definition of a gradient image). Then $\lambda(E) = \int_{\Omega} Mu$ and $h_{\Omega}(y) = -\lambda(E)^{-1/n}$. Moreover, since Ω is

smooth, we have $\partial E = \nabla u(\partial \Omega)$. By Lemma 1.2 at $x \in \partial \Omega$ one has $\nabla u(x) = n_x/\langle x - y, n_x \rangle$. Now Theorem 2.1 follows immediately from Lemma 1.3.

Using Theorem 2.1 and the fact that $K := \operatorname{Jac} S$ is the Gauss curvature of $\partial \Omega$ one can show the following:

Theorem 2.2 Let Ω be smooth. Then

$$h_{\Omega}(y) = -\left(\frac{1}{n} \int_{\partial \Omega} \langle x - y, n_x \rangle^{-n} K(x) \, d\sigma(w)\right)^{-1/n}, \quad y \in \Omega. \quad \bullet$$

3. The main results

Theorem 3.1. Let Ω be an arbitrary bounded convex domain in \mathbb{R}^n . Then h_{Ω} is smooth and for $y \in \Omega$ the following estimate holds:

(3.1)
$$\left|\frac{\partial^{\alpha}(|h_{\Omega}|^{-n})}{\partial y^{\alpha}}(y)\right| \leq \frac{(n+|\alpha|-1)!}{n!} \frac{\sigma(\partial B)}{\operatorname{dist}(y,\partial\Omega)^{n+|\alpha|}}$$

Proof. By Proposition 1.1 and Sobolev theorem it will be sufficient if we prove (3.1) in smooth and strictly convex domains. Set $f := |h_{\Omega}|^{-n}$. Then by Theorem 2.1

$$f(y) = \frac{1}{n} \int_{\partial B} F(y, w)^{-n} d\sigma(w),$$

where $F(y,w) = \langle S^{-1}(w) - y, w \rangle = \text{dist}(y, T_{S^{-1}(w)})$. *F* is smooth and positive on $\Omega \times \partial B$ and we can differentiate under the sign of integration. Then for a multi-indice $\alpha = (\alpha_1, \ldots, \alpha_n)$ we have

$$\frac{\partial^{\alpha} f}{\partial y_{\alpha}}(y) = (n+1)\dots(n+|\alpha|-1)\int_{\partial B} F(y,w)^{-n-|\alpha|}w_{1}^{\alpha_{1}}\dots w_{n}^{\alpha_{n}}d\sigma(w)$$

and, since $F(y, w) \ge \operatorname{dist}(y, \partial \Omega)$, the estimate (3.1) follows.

Theorem 3.2. Take $y \in \Omega$ and $\zeta \in \partial B$. Then

$$\frac{\partial^2 h_{\Omega}}{\partial \zeta \partial \zeta}(y) \ge c_n (\operatorname{diam}\Omega)^{-2n-2} |h_{\Omega}(y)|^{2n+1},$$

where $c_n > 0$ depends only on n. In particular h_{Ω} is strictly convex.

Proof. We may assume that $\zeta = (1, 0, ..., 0)$ and, by Proposition 1.1, that Ω is smooth and strictly convex. By Theorem 2.1

(3.2)
$$f(y) := (-h_{\Omega}(y))^{-n} = \frac{1}{n} \int_{\partial B} F(y, w)^{-n} d\sigma(w),$$

where

$$F(y,w) := \langle S^{-1}(w) - y, w \rangle = \operatorname{dist}(y, T_{S^{-1}(w)}) \le \operatorname{diam}\Omega.$$

We can compute that

$$(h_{\Omega})_{11} \left(= \frac{\partial^2 h_{\Omega}}{\partial y_1^2} \right) = \frac{1}{n} (-h_{\Omega})^{2n+1} \left(f f_{11} - \frac{n+1}{n} f_1^2 \right).$$

Differentiating (3.2) under the sign of integration we obtain

$$f_1 = \int_{\partial B} F(y, w)^{-n-1} w_1 d\sigma(w)$$

and

$$f_{11} = (n+1) \int_{\partial B} F(y,w)^{-n-2} w_1^2 d\sigma(w).$$

Let C^+ and C^- denote the half-spheres $\{w \in \partial B : w_1 \ge 0\}$ and $\{w \in \partial B : w_1 \le 0\}$, respectively. Then

(3.3)
$$f_1^2 = \left(\int_{\partial B} F(y,w)^{-n-1} |w_1| d\sigma(w)\right)^2 -4 \int_{C^+} F(y,w)^{-n-1} |w_1| d\sigma(w) \int_{C^-} F(y,w)^{-n-1} |w_1| d\sigma(w).$$

From the Schwarz inequality we infer

$$\left(\int_{\partial B} F(y,w)^{-n-1} |w_1| d\sigma(w)\right)^2 \leq \int_{\partial B} F(y,w)^{-n} d\sigma(w) \int_{\partial B} F(y,w)^{-n-2} w_1^2 d\sigma(w)$$
$$= \frac{n}{n+1} f f_{11}.$$

Combining this with (3.3) and the fact that $F(y,w) \leq \mathrm{diam}\Omega$ we obtain

$$f f_{11} - \frac{n+1}{n} f_1^2$$

$$\geq 4 \frac{n+1}{n} \int_{C^+} F(y,w)^{-n-1} |w_1| d\sigma(w) \int_{C^-} F(y,w)^{-n-1} |w_1| d\sigma(w)$$

$$\geq 4 \frac{n+1}{n} \left(\int_{C^+} |w_1| d\sigma(w) \right)^2 (\operatorname{diam}\Omega)^{-2n-2}$$

and the theorem follows. \blacksquare

Theorem 3.2 gives a lower bound for the eigenvalues of the matrix $D^2h_{\Omega}(y)$. We conjecture that Mh_{Ω} , which is in fact the product of all eigenvalues, tends to ∞ as y tends to $\partial\Omega$. This would in particular imply Theorem A in [1].

References

- Z. BLOCKI, Smooth exhaustion functions in convex domains. Proc. Amer. Math. Soc. 125 (1997), 477-484.
- [2] Z. BŁOCKI, J. THORBIÖRNSON, On the fundamental solution for the real Monge-Ampère operator. Jagiellonian Uniersity, Institute of Mathematics, Preprint No. 1996/09, to appear in Math. Scand.
- J. RAUCH, B. A. TAYLOR, The Dirichlet problem for the multidimensional Monge-Ampère equation. Rocky Mountain Math. J. 7 (1977), 345-364.

Jagiellonian University Institute of Mathematics Reymonta 4 30-059 Kraków Poland e-mail: blocki@im.uj.edu.pl