Regularity of the fundamental solution for the Monge-Ampère operator

Introduction

Let Ω be a bounded convex domain in \mathbb{R}^{n}. As in [2] we define a function $g_{\Omega}: \Omega \times \Omega \longrightarrow \mathbb{R}_{+}$as follows: for $y \in \Omega$ let $g_{\Omega}(\cdot, y)$ be a unique solution to the following Dirichlet problem

$$
\left\{\begin{array}{l}
u \in \operatorname{CVX}(\Omega) \cap \mathrm{C}(\bar{\Omega}) \\
M u=\delta_{y} \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

Here M is the Monge-Ampère operator which for smooth functions takes the form

$$
M u=\operatorname{det} D^{2} u
$$

and can be well defined for arbitrary convex functions as a nonnegative Borel measure (see [3]). The function $g_{\Omega}(\cdot, y)$ vanishes at $\partial \Omega$ and is affine along the intervals joining y with $\partial \Omega$. Therefore, it is determined by its value at y and that is why we are concerned with the function $h_{\Omega}(y):=g_{\Omega}(y, y)$.

In [2] it was proved in particular that g_{Ω} is continuous on $\bar{\Omega} \times \bar{\Omega}$ (with $g_{\Omega}:=0$ on $\partial(\Omega \times \Omega)$) and it is never symmetric unless $n=1$. In this paper, in fact not relying on the results from [2], we investigate the regularity of the function h_{Ω}. We show in particular that h_{Ω} is always smooth $\left(\mathrm{C}^{\infty}\right)$ and convex as conjectured in [2].

Throughout the paper Ω is always meant to be a bounded convex domain in \mathbb{R}^{n}.

1. Preliminaries

We will need several simple facts:

Proposition 1.1. If $\Omega_{j} \uparrow \Omega$ then $g_{\Omega_{j}} \downarrow g_{\Omega}$; in particular $h_{\Omega_{j}} \downarrow h_{\Omega}$.
Proof. Fix $y \in \Omega$ and set $u_{j}:=g_{\Omega_{j}}(\cdot, y), u:=g_{\Omega}(\cdot, y)$. Then $u_{j+1} \leq 0=u_{j}$ on $\partial \Omega_{j+1}$ and $M u_{j+1}=M u_{j}=\delta_{y}$. Therefore, by the comparison principle (see [3]) $u \leq u_{j+1} \leq u_{j}$. We have

[^0]$u_{j} \downarrow v \in \operatorname{CVX}(\Omega), u \leq v \leq 0$ and by the continuity of the Monge-Ampère operator ([3], Theorem 3.7), $M v=\lim M u_{j}=\delta_{y}$. This means that $u=v$.

Lemma 1.2. Let Ω be smooth and fix $y \in \Omega$. Let u be such that $u(y)=-1, u=0$ on $\partial \Omega$ and u is affine along half-lines beginning at y. (In fact $u=\left|h_{\Omega}(y)\right|^{-1} g_{\Omega}(\cdot, y)$ on Ω.) Then for $x \in \partial \Omega$ we have $\nabla u(x)=n_{x} /\left\langle x-y, n_{x}\right\rangle$.

Proof. It is easy to see that $\nabla(x)=n_{x} / \operatorname{dist}\left(y, T_{x}\right)$, where T_{x} is the affine tangent hyperplane to $\partial \Omega$ at x. Let y^{*} denote a point from T_{x}, where $\operatorname{dist}\left(y, T_{x}\right)=\left|y^{*}-y\right|$. We have $y^{*}-y=\alpha n_{x}$ for some $\alpha>0$ and $\left\langle y^{*}-x, n_{x}\right\rangle=0$. Combining these gives $\alpha=\left\langle x-y, n_{x}\right\rangle$ and the lemma follows.

Lemma 1.3. Let D be a convex domain in \mathbb{R}^{n} containing the origin. For $w \in \partial B$, the unit sphere, by $f(w)$ denote a positive number such that $f(w) w \in \partial \Omega$. Then

$$
\lambda(D)=\frac{1}{n} \int_{\partial B} f(w)^{n} d \sigma(w)
$$

Proof. It follows immediately if we use the polar change of coordinates:

$$
J:(0, \infty) \times \partial B \ni(r, x) \longrightarrow r x \in \mathbb{R}^{n} \backslash\{0\}
$$

and observe that $\operatorname{Jac} J=r^{n-1}$.

2. The integral formula

Let Ω be a smooth. Then we can define a mapping

$$
S: \partial \Omega \ni x \longrightarrow n_{x} \in \partial B .
$$

One can show that if Ω is strictly convex then S is a smooth diffeomorphism.
Our basic tool in studying the regularity of h_{Ω} will be the following integral formula:

Theorem 2.1. Let Ω be smooth and strictly convex. Then

$$
h_{\Omega}(y)=-\left(\frac{1}{n} \int_{\partial B}\left\langle S^{-1}(w)-y, w\right\rangle^{-n} d \sigma(w)\right)^{-1 / n}, \quad y \in \Omega
$$

Proof. Let u be as in Lemma 1.2 and by E denote the gradient image of u at y (see [3] for the definition of a gradient image). Then $\lambda(E)=\int_{\Omega} M u$ and $h_{\Omega}(y)=-\lambda(E)^{-1 / n}$. Moreover, since Ω is
smooth, we have $\partial E=\nabla u(\partial \Omega)$. By Lemma 1.2 at $x \in \partial \Omega$ one has $\nabla u(x)=n_{x} /\left\langle x-y, n_{x}\right\rangle$. Now Theorem 2.1 follows immediately from Lemma 1.3.

Using Theorem 2.1 and the fact that $K:=\mathrm{Jac} S$ is the Gauss curvature of $\partial \Omega$ one can show the following:

Theorem 2.2 Let Ω be smooth. Then

$$
h_{\Omega}(y)=-\left(\frac{1}{n} \int_{\partial \Omega}\left\langle x-y, n_{x}\right\rangle^{-n} K(x) d \sigma(w)\right)^{-1 / n}, \quad y \in \Omega
$$

3. The main results

Theorem 3.1. Let Ω be an arbitrary bounded convex domain in \mathbb{R}^{n}. Then h_{Ω} is smooth and for $y \in \Omega$ the following estimate holds:

$$
\begin{equation*}
\left|\frac{\partial^{\alpha}\left(\left|h_{\Omega}\right|^{-n}\right)}{\partial y^{\alpha}}(y)\right| \leq \frac{(n+|\alpha|-1)!}{n!} \frac{\sigma(\partial B)}{\operatorname{dist}(y, \partial \Omega)^{n+|\alpha|}} . \tag{3.1}
\end{equation*}
$$

Proof. By Proposition 1.1 and Sobolev theorem it will be sufficient if we prove (3.1) in smooth and strictly convex domains. Set $f:=\left|h_{\Omega}\right|^{-n}$. Then by Theorem 2.1

$$
f(y)=\frac{1}{n} \int_{\partial B} F(y, w)^{-n} d \sigma(w)
$$

where $F(y, w)=\left\langle S^{-1}(w)-y, w\right\rangle=\operatorname{dist}\left(y, T_{S^{-1}(w)}\right) . F$ is smooth and positive on $\Omega \times \partial B$ and we can differentiate under the sign of integration. Then for a multi-indice $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we have

$$
\frac{\partial^{\alpha} f}{\partial y_{\alpha}}(y)=(n+1) \ldots(n+|\alpha|-1) \int_{\partial B} F(y, w)^{-n-|\alpha|} w_{1}^{\alpha_{1}} \ldots w_{n}^{\alpha_{n}} d \sigma(w)
$$

and, since $F(y, w) \geq \operatorname{dist}(y, \partial \Omega)$, the estimate (3.1) follows.

Theorem 3.2. Take $y \in \Omega$ and $\zeta \in \partial B$. Then

$$
\frac{\partial^{2} h_{\Omega}}{\partial \zeta \partial \zeta}(y) \geq c_{n}(\operatorname{diam} \Omega)^{-2 n-2}\left|h_{\Omega}(y)\right|^{2 n+1}
$$

where $c_{n}>0$ depends only on n. In particular h_{Ω} is strictly convex.
Proof. We may assume that $\zeta=(1,0, \ldots, 0)$ and, by Proposition 1.1 , that Ω is smooth and strictly convex. By Theorem 2.1

$$
\begin{equation*}
f(y):=\left(-h_{\Omega}(y)\right)^{-n}=\frac{1}{n} \int_{\partial B} F(y, w)^{-n} d \sigma(w) \tag{3.2}
\end{equation*}
$$

where

$$
F(y, w):=\left\langle S^{-1}(w)-y, w\right\rangle=\operatorname{dist}\left(y, T_{S^{-1}(w)}\right) \leq \operatorname{diam} \Omega
$$

We can compute that

$$
\left(h_{\Omega}\right)_{11}\left(=\frac{\partial^{2} h_{\Omega}}{\partial y_{1}^{2}}\right)=\frac{1}{n}\left(-h_{\Omega}\right)^{2 n+1}\left(f f_{11}-\frac{n+1}{n} f_{1}^{2}\right) .
$$

Differentiating (3.2) under the sign of integration we obtain

$$
f_{1}=\int_{\partial B} F(y, w)^{-n-1} w_{1} d \sigma(w)
$$

and

$$
f_{11}=(n+1) \int_{\partial B} F(y, w)^{-n-2} w_{1}^{2} d \sigma(w)
$$

Let C^{+}and C^{-}denote the half-spheres $\left\{w \in \partial B: w_{1} \geq 0\right\}$ and $\left\{w \in \partial B: w_{1} \leq 0\right\}$, respectively. Then

$$
\begin{align*}
f_{1}^{2}= & \left(\int_{\partial B} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w)\right)^{2} \tag{3.3}\\
& -4 \int_{C^{+}} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w) \int_{C^{-}} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w)
\end{align*}
$$

From the Schwarz inequality we infer

$$
\begin{aligned}
\left(\int_{\partial B} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w)\right)^{2} & \leq \int_{\partial B} F(y, w)^{-n} d \sigma(w) \int_{\partial B} F(y, w)^{-n-2} w_{1}^{2} d \sigma(w) \\
& =\frac{n}{n+1} f f_{11}
\end{aligned}
$$

Combining this with (3.3) and the fact that $F(y, w) \leq \operatorname{diam} \Omega$ we obtain

$$
\begin{aligned}
f f_{11}-\frac{n+1}{n} f_{1}^{2} & \\
& \geq 4 \frac{n+1}{n} \int_{C^{+}} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w) \int_{C^{-}} F(y, w)^{-n-1}\left|w_{1}\right| d \sigma(w) \\
& \geq 4 \frac{n+1}{n}\left(\int_{C^{+}}\left|w_{1}\right| d \sigma(w)\right)^{2}(\operatorname{diam} \Omega)^{-2 n-2}
\end{aligned}
$$

and the theorem follows.
Theorem 3.2 gives a lower bound for the eigenvalues of the matrix $D^{2} h_{\Omega}(y)$. We conjecture that $M h_{\Omega}$, which is in fact the product of all eigenvalues, tends to ∞ as y tends to $\partial \Omega$. This would in particular imply Theorem A in [1].

References

[1] Z. BŁocki, Smooth exhaustion functions in convex domains. Proc. Amer. Math. Soc. 125 (1997), 477-484.
[2] Z. BŁocki, J. Thorbiörnson, On the fundamental solution for the real Monge-Ampère operator. Jagiellonian Uniersity, Institute of Mathematics, Preprint No. 1996/09, to appear in Math. Scand.
[3] J. Rauch, B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation. Rocky Mountain Math. J. 7 (1977), 345-364.

Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: blocki @im.uj.edu.pl

[^0]: ${ }^{1}$ Partially supported by KBN Grant No. 2 PO3A 05809 and the Foundation for Polish Science (FNP) scholarship

