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Regularity of the fundamental solution

for the Monge-Ampere operator

Introduction

Let © be a bounded convex domain in R"™. As in [2] we define a function
ga : Q2 xQ — R as follows: for y € Q let go(-,y) be a unique solution to the following Dirichlet
problem

u € CVX(Q)NC(Q)

Mu =,

ulagn = 0.

Here M is the Monge-Ampeére operator which for smooth functions takes the form
Mu = det D*u

and can be well defined for arbitrary convex functions as a nonnegative Borel measure (see [3]). The
function go(-,y) vanishes at 9Q and is affine along the intervals joining y with 9. Therefore, it is
determined by its value at y and that is why we are concerned with the function hq(y) := ga(y,y).

In [2] it was proved in particular that gq is continuous on Q x Q (with go := 0 on (2 x Q))
and it is never symmetric unless n = 1. In this paper, in fact not relying on the results from [2], we
investigate the regularity of the function hgy. We show in particular that hq is always smooth (C*°)
and convex as conjectured in [2].

Throughout the paper €2 is always meant to be a bounded convex domain in R™.

1. Preliminaries
We will need several simple facts:

Proposition 1.1. If Q; 1 Q then gq, | go; in particular hg, | hq.

Proof. Fix y € Q and set u; := gqo,(-,¥), v := ga(-,y). Then uj1; < 0 = u; on JQj;;1 and

Muji1 = Muj = 0,. Therefore, by the comparison principle (see [3]) u < wji1 < u;. We have
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uj | v e CVX(Q), u < v <0 and by the continuity of the Monge-Ampere operator ([3], Theorem
3.7), Mv = lim Mu; = d,. This means that u =v. m

Lemma 1.2. Let Q be smooth and fix y € Q. Let u be such that u(y) = —1, v = 0 on 9Q and u
is affine along half-lines beginning at y. (In fact u = |hq(y)|"tga(-,y) on Q.) Then for x € 9Q we
have Vu(z) = ng/(x — y,ng).

Proof. Tt is easy to see that V(x) = n,/dist(y, T, ), where T, is the affine tangent hyperplane to 99
at z. Let y* denote a point from T, where dist(y, T) = |y* — y|. We have y* — y = an, for some

a >0 and (y* — x,n,) = 0. Combining these gives & = (x — y, n,) and the lemma follows. m

Lemma 1.3. Let D be a convex domain in R™ containing the origin. For w € 0B, the unit sphere,

by f(w) denote a positive number such that f(w)w € 0Q. Then

A(D) = - (w)"do(w).

Proof. It follows immediately if we use the polar change of coordinates:

J:(0,00) x 9B > (r,x) — ra € R™\ {0},

and observe that JacJ ="~ !. m

2. The integral formula

Let 2 be a smooth. Then we can define a mapping
S:00>5x — n, € 0B.

One can show that if Q is strictly convex then S is a smooth diffeomorphism.

Our basic tool in studying the regularity of hq will be the following integral formula:

Theorem 2.1. Let 2 be smooth and strictly convex. Then

ol == (3 [ 157w) - y,w>-"do<w>)1/n, yea

n

Proof. Let u be as in Lemma 1.2 and by E denote the gradient image of u at y (see [3] for the
definition of a gradient image). Then A(E) = [, Mu and hq(y) = —A(E)~'/". Moreover, since 2 is
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smooth, we have 0F = Vu(9Q). By Lemma 1.2 at € 99 one has Vu(x) = n,/(x — y,ny). Now

Theorem 2.1 follows immediately from Lemma 1.3.

Using Theorem 2.1 and the fact that K := Jac S is the Gauss curvature of 92 one can show the

following:
Theorem 2.2 Let Q) be smooth. Then

ratn) =~ (5 [ Q<m—y,nm>-"K<x>do<w>)_1/n, yea m

n

3. The main results

Theorem 3.1. Let ) be an arbitrary bounded convex domain in R™. Then hg is smooth and for

y € Q the following estimate holds:

9%(lha|™™) (n+ol-1)!  o(0B)
ay° (y)’ = nl dist(y, 9Q)+lal”

(3.1) |

Proof. By Proposition 1.1 and Sobolev theorem it will be sufficient if we prove (3.1) in smooth and

strictly convex domains. Set f := |hg|™™. Then by Theorem 2.1

fw) =1 [ Fyw)mdo(w),
n JoB

where F(y,w) = (S71(w) — y,w) = dist(y, Ts-1(w))- F' is smooth and positive on  x 0B and we
can differentiate under the sign of integration. Then for a multi-indice o = (ay, ..., @, ) we have

o f

@(y) =n+1)...(n+]a|-1) / F(y, w)fnflalwi'q B .wﬁ"da(w)

OB

and, since F(y,w) > dist(y, 9Q), the estimate (3.1) follows. m

Theorem 3.2. Take y € Q and ( € 9B. Then

0?hq

M(y) > ¢, (diam€Q) 2" 2| hg (y)|*" T,

where ¢, > 0 depends only on n. In particular hq is strictly convex.

Proof. We may assume that ¢ = (1,0, ...,0) and, by Proposition 1.1, that Q is smooth and strictly

convex. By Theorem 2.1

(3.2) fl6) = (ha) " = 1 [ Py dotw),



where
F(y,w) = (S7"(w) — y, w) = dist(y, Ts-1(u)) < diamg.

We can compute that

2
(o (= Gt ) = woha) (7 = "0 7).

Differentiating (3.2) under the sign of integration we obtain

= [ F(y,w)" 'wd
f /d Pl unda(w)
and

fii=(n+ 1)/ F(y,w) " 2wido(w).

oB

Let C* and C~ denote the half-spheres {w € 9B : wy > 0} and {w € 8B : wy < 0}, respectively.

Then
([ F(y,w>”l|w1|da<w>)2

—a [ Py nldotw) [ () o)

(3.3)

From the Schwarz inequality we infer

F(y,w)™" Hwi |do (w) 2§ F(y,w)™"do(w) | F(y,w)™"wido(w)
(L. ) <1, J

oB

n
S
Combining this with (3.3) and the fact that F(y,w) < diam{) we obtain

n+1
n

ffin— /i

ntl w) """ Yy |do(w w) "y |do(w
=42 [ P unlde(o) [P0 e ()

I
S
+
-

7\

/c+ |w1d0(w)>2 (diam)~2n—2

and the theorem follows. m

Theorem 3.2 gives a lower bound for the eigenvalues of the matrix D?hq(y). We conjecture that
Mhg, which is in fact the product of all eigenvalues, tends to co as y tends to 2. This would in

particular imply Theorem A in [1].
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