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Regularity of the fundamental solution

for the Monge-Ampère operator

Introduction

Let Ω be a bounded convex domain in Rn. As in [2] we define a function

gΩ : Ω × Ω −→ R+ as follows: for y ∈ Ω let gΩ(·, y) be a unique solution to the following Dirichlet

problem




u ∈ CVX(Ω) ∩ C(Ω)
Mu = δy

u|∂Ω = 0.

Here M is the Monge-Ampère operator which for smooth functions takes the form

Mu = det D2u

and can be well defined for arbitrary convex functions as a nonnegative Borel measure (see [3]). The

function gΩ(·, y) vanishes at ∂Ω and is affine along the intervals joining y with ∂Ω. Therefore, it is

determined by its value at y and that is why we are concerned with the function hΩ(y) := gΩ(y, y).

In [2] it was proved in particular that gΩ is continuous on Ω × Ω (with gΩ := 0 on ∂(Ω × Ω) )

and it is never symmetric unless n = 1. In this paper, in fact not relying on the results from [2], we

investigate the regularity of the function hΩ. We show in particular that hΩ is always smooth (C∞)

and convex as conjectured in [2].

Throughout the paper Ω is always meant to be a bounded convex domain in Rn.

1. Preliminaries

We will need several simple facts:

Proposition 1.1. If Ωj ↑ Ω then gΩj ↓ gΩ; in particular hΩj ↓ hΩ.

Proof. Fix y ∈ Ω and set uj := gΩj (·, y), u := gΩ(·, y). Then uj+1 ≤ 0 = uj on ∂Ωj+1 and

Muj+1 = Muj = δy. Therefore, by the comparison principle (see [3]) u ≤ uj+1 ≤ uj . We have
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uj ↓ v ∈ CVX(Ω), u ≤ v ≤ 0 and by the continuity of the Monge-Ampère operator ([3], Theorem

3.7), Mv = lim Muj = δy. This means that u = v.

Lemma 1.2. Let Ω be smooth and fix y ∈ Ω. Let u be such that u(y) = −1, u = 0 on ∂Ω and u

is affine along half-lines beginning at y. (In fact u = |hΩ(y)|−1gΩ(·, y) on Ω.) Then for x ∈ ∂Ω we

have ∇u(x) = nx/〈x− y, nx〉.

Proof. It is easy to see that ∇(x) = nx/dist(y, Tx), where Tx is the affine tangent hyperplane to ∂Ω

at x. Let y∗ denote a point from Tx, where dist(y, Tx) = |y∗ − y|. We have y∗ − y = αnx for some

α > 0 and 〈y∗ − x, nx〉 = 0. Combining these gives α = 〈x− y, nx〉 and the lemma follows.

Lemma 1.3. Let D be a convex domain in Rn containing the origin. For w ∈ ∂B, the unit sphere,

by f(w) denote a positive number such that f(w)w ∈ ∂Ω. Then

λ(D) =
1
n

∫

∂B

f(w)ndσ(w).

Proof. It follows immediately if we use the polar change of coordinates:

J : (0,∞)× ∂B 3 (r, x) −→ rx ∈ Rn \ {0},

and observe that Jac J = rn−1.

2. The integral formula

Let Ω be a smooth. Then we can define a mapping

S : ∂Ω 3 x −→ nx ∈ ∂B.

One can show that if Ω is strictly convex then S is a smooth diffeomorphism.

Our basic tool in studying the regularity of hΩ will be the following integral formula:

Theorem 2.1. Let Ω be smooth and strictly convex. Then

hΩ(y) = −
(

1
n

∫

∂B

〈S−1(w)− y, w〉−ndσ(w)
)−1/n

, y ∈ Ω.

Proof. Let u be as in Lemma 1.2 and by E denote the gradient image of u at y (see [3] for the

definition of a gradient image). Then λ(E) =
∫
Ω

Mu and hΩ(y) = −λ(E)−1/n. Moreover, since Ω is
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smooth, we have ∂E = ∇u(∂Ω). By Lemma 1.2 at x ∈ ∂Ω one has ∇u(x) = nx/〈x − y, nx〉. Now

Theorem 2.1 follows immediately from Lemma 1.3.

Using Theorem 2.1 and the fact that K := Jac S is the Gauss curvature of ∂Ω one can show the
following:

Theorem 2.2 Let Ω be smooth. Then

hΩ(y) = −
(

1
n

∫

∂Ω

〈x− y, nx〉−nK(x) dσ(w)
)−1/n

, y ∈ Ω.

3. The main results

Theorem 3.1. Let Ω be an arbitrary bounded convex domain in Rn. Then hΩ is smooth and for

y ∈ Ω the following estimate holds:

(3.1)
∣∣∣∣
∂α(|hΩ|−n)

∂yα
(y)

∣∣∣∣ ≤
(n + |α| − 1)!

n!
σ(∂B)

dist(y, ∂Ω)n+|α| .

Proof. By Proposition 1.1 and Sobolev theorem it will be sufficient if we prove (3.1) in smooth and

strictly convex domains. Set f := |hΩ|−n. Then by Theorem 2.1

f(y) =
1
n

∫

∂B

F (y, w)−ndσ(w),

where F (y, w) = 〈S−1(w) − y, w〉 = dist(y, TS−1(w)). F is smooth and positive on Ω × ∂B and we

can differentiate under the sign of integration. Then for a multi-indice α = (α1, . . . , αn) we have

∂αf

∂yα
(y) = (n + 1) . . . (n + |α| − 1)

∫

∂B

F (y, w)−n−|α|wα1
1 . . . wαn

n dσ(w)

and, since F (y, w) ≥ dist(y, ∂Ω), the estimate (3.1) follows.

Theorem 3.2. Take y ∈ Ω and ζ ∈ ∂B. Then

∂2hΩ

∂ζ∂ζ
(y) ≥ cn(diamΩ)−2n−2|hΩ(y)|2n+1,

where cn > 0 depends only on n. In particular hΩ is strictly convex.

Proof. We may assume that ζ = (1, 0, . . . , 0) and, by Proposition 1.1, that Ω is smooth and strictly

convex. By Theorem 2.1

(3.2) f(y) := (−hΩ(y))−n =
1
n

∫

∂B

F (y, w)−ndσ(w),
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where
F (y, w) := 〈S−1(w)− y, w〉 = dist(y, TS−1(w)) ≤ diamΩ.

We can compute that

(hΩ)11

(
=

∂2hΩ

∂y2
1

)
=

1
n

(−hΩ)2n+1

(
f f11 − n + 1

n
f2
1

)
.

Differentiating (3.2) under the sign of integration we obtain

f1 =
∫

∂B

F (y, w)−n−1w1dσ(w)

and

f11 = (n + 1)
∫

∂B

F (y, w)−n−2w2
1dσ(w).

Let C+ and C− denote the half-spheres {w ∈ ∂B : w1 ≥ 0} and {w ∈ ∂B : w1 ≤ 0}, respectively.

Then

(3.3)
f2
1 =

(∫

∂B

F (y, w)−n−1|w1|dσ(w)
)2

− 4
∫

C+
F (y, w)−n−1|w1|dσ(w)

∫

C−
F (y, w)−n−1|w1|dσ(w).

From the Schwarz inequality we infer

(∫

∂B

F (y, w)−n−1|w1|dσ(w)
)2

≤
∫

∂B

F (y, w)−ndσ(w)
∫

∂B

F (y, w)−n−2w2
1dσ(w)

=
n

n + 1
f f11.

Combining this with (3.3) and the fact that F (y, w) ≤ diamΩ we obtain

f f11 − n + 1
n

f2
1

≥ 4
n + 1

n

∫

C+
F (y, w)−n−1|w1|dσ(w)

∫

C−
F (y, w)−n−1|w1|dσ(w)

≥ 4
n + 1

n

(∫

C+
|w1|dσ(w)

)2

(diamΩ)−2n−2

and the theorem follows.

Theorem 3.2 gives a lower bound for the eigenvalues of the matrix D2hΩ(y). We conjecture that

MhΩ, which is in fact the product of all eigenvalues, tends to ∞ as y tends to ∂Ω. This would in

particular imply Theorem A in [1].
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