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Abstract. In this paper we complete the characterization of singular sets of separately analytic functions.

In the case of functions of two variables it was earlier done by J. Saint Raymond and J. Siciak.

-1.Introduction. If Ω is an open subset of Rn1×· · ·×Rns , then we say that a function
f : Ω −→ C is p−separately analytic (1 ≤ p < s), if for every x0 =

(
x0

1, . . . , x
0
s

) ∈ Ω and
for every sequence 1 ≤ i1 < · · · < ip ≤ s the function(

xi1 , . . . , xip

) −→ f
(
x0

1, . . . , xi1 , . . . , xip
, . . . , x0

s

)

is analytic in a neighbourhood of
(
x0

i1
, . . . , x0

ip

)
. For a p−separately analyitc function f

in Ω let
A (f) := {x ∈ Ω : f is analytic in a neighbourhood of x}

denote its set of analycity, and S (f) := Ω \A(f) - its singular set.
If X and Y are any sets, S ⊂ X×Y and

(
x0, y0

) ∈ X×Y , then we denote S
(
x0, •) :={

y ∈ Y :
(
x0, y

) ∈ S
}
, S

(•, y0
)

:=
{
x ∈ X :

(
x, y0

) ∈ S
}
.

The following theorems characterize singular sets of separately analytic functions:

Theorem A. If f is p−separately analytic in Ω, then for every sequence 1 ≤ j1 <
· · · < jq ≤ s, where q := s − p, the projection of S (f) on Rnj1 × · · · ×Rnjq is pluripolar
(in Cnj1 × · · · ×Cnjq ).

Theorem B. Let S be a closed subset of Ω such that for every sequence 1 ≤ j1 <
· · · < jq ≤ s, where q := s−p, the projection of S on Rnj1 ×· · ·×Rnjq is pluripolar. Then
there exists p−separately anlytic function f in Ω such that S = S (f).

Theorem C. Let f be a p−separately analytic in Ω. If 1 ≤ k < s, then for quasi
almost all x ∈ Rn1 ×· · ·×Rnk (that is for x ∈ Rn1 ×· · ·×Rnk \P , where P is pluripolar)
S (f (x, •)) = S (f) (x, •).

Theorems A and B in case s = 2, p = n1 = n2 = 1 were proved by Saint Raymond [2].
This result was generelized by Siciak [5], who proved theorem A for p ≥ s/2 and theorem
B. The aim of this paper is to give a proof of theorem C and, as a trivial consequence, we
get theorem A.

0.Preliminaries. We need the following two theorems:

Siciak’s theorem ([3]; see also [4], theorem 9.7). Let for j = 1, . . . , s Dj = D1
j ×

· · · × D
nj

j , Dt
j - open sets in C, symmetric with respect to xt-axis (t = 1, . . . , nj), Kj =

K1
j ×· · ·×K

nj

j , Kt
j - closed intervals in Dt

j∩R. Let f be a separately holomorphic function
in

X :=
s⋃

j=1

K1 × · · · ×Dj × · · · ×Ks
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(that is for every (x1, . . . , xs) ∈ K1 × · · · × Ks and for every j = 1, . . . , s the function
f (x1, . . . , xj−1, •, xj+1, . . . , xs) is holomorphic in Dj). Then f can be extended to a holo-
morphic function in a neighbourhood of X.1

Bedford-Taylor theorem on negligible sets [1]. If {uj}j∈J is a family of
plurisubharmonic functions locally bounded from above then the set

{
z ∈ D : u (z) := sup

j∈J
uj (z) < u∗ (z)

}

is pluripolar (u∗ denotes the upper regularization of u).

1.Proofs.
Theorem C ⇒ theorem A: We may assume that (j1, . . . , jq) = (1, . . . , q). Then it

is enough to take k = q and see that for x ∈ Rn1 × · · · ×Rnk S (f (x, •)) = ∅.

Proof of theorem C: We can write

Rn1× · · · ×Rns =(Rn1× · · · ×Rnp)× · · · ×(Rnap+1× · · · ×Rnk)
×(Rnk+1× · · · ×Rnk+p)× · · · ×(Rnk+bp+1× · · · ×Rns) ,

where a = [k/p], b = [(s− k) /p]. Then f is separately analytic (that is 1−separately
analytic) with respect to such variables. Therefore it is enough to prove theorem C for
p = 1. Let {Xν × Yν}ν∈N be a countable family of closed intervals in (Rn1 × · · · ×Rnk)×
(Rnk+1 × · · · ×Rns) such that

⋃∞
ν=1 Xν × Yν = Ω. It is clear that the set

{
x ∈ Rn1 × · · · ×Rnk : S (f (x, •)) ⊆/ S (f) (x, •)}

is contained in ∞⋃
ν=1

{
x ∈ Xν : S (f (x, •)) ∩ Yν ⊆/ S (f) (x, •) ∩ Yν

}
.

Hence we may assume that f is separately analytic in a closed interval I1 × · · · × Is ⊂
Rn1 × · · · ×Rns (that is analytic in some open neighbourhood of this interval).

To prove theorem C we have to show that the set

Zf,k :=
{
x ∈ I1 × · · · × Ik : S (f (x, •)) ⊆/ S (f) (x, •)}

is pluripolar.
For (x, y) ∈ (I1 × · · · × Ik)× (Ik+1 × · · · × Is) such that y ∈ A(f (x, •)) define

Qf,k (x, y) := sup
|α|≥1

∣∣∣∣
1
α!

∂|α|f
∂yα

(x, y)
∣∣∣∣
1/|α|

1
In fact we use the Siciak’s theorem under additional assumption that f is bounded. In this case the proof of

the theorem is much simpler - it can be deduced from theorem 2a in [3].
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(of course Qf,k (x, y) < +∞ and f (x, •) is holomorphic in the polydisc P (y, 1/Qf,k (x, y))).
For y ∈ Ik+1 × · · · × Is let

Ff,k (y) := {x ∈ A(f) (•, y) : Qf,k (•, y) is not upper semicontinuous at x} .

Theorem C is proved by induction with respect to k. First assume that k = 1.

10 The projection of S (f) on I2 × · · · × Is is nowhere dense in Rn2 × · · · ×Rns , that is
there exists U - open, dense subset of I2× · · · × Is such that I1×U ⊂ A (f). In particular
A (f) is dense in I1 × · · · × Is.

Induction with respect to s. The same proof applies to the case s = 2 and to the
step s− 1 ⇒ s. We have

I1 = [a1, b1]× · · · × [an1 , bn1 ] .

Define for m ∈ N

Im
1 :=

{
z ∈ Cn1 : max

1≤t≤s
dist (zt, [at, bt]) < 1/m

}
,

Em :=

{
y1 ∈ I2 × · · · × Is : f (•, y1) is holomorphic in Im

1 , sup
z∈Im

1

|f (z, y1) | ≤ m

}
.

We have Em ⊂ Em+1,
⋃∞

m=1 Em = I2 × · · · × Is. First we want to show that the set
U1 :=

⋃∞
m=1 intEm is dense in I2×· · ·× Is. Let Y ′ be a closed interval in I2×· · ·× Is,

and H - a family of closed intervals which form a countable base of topology in Y ′.
For x1 ∈ I1 the set A (f (x1, •)) is dense: this is trivial if s = 2 and follows from the
inductive assumption if s ≥ 3. Therefore, if for H ∈ H we denote

AH := {x1 ∈ I1 : f (x1, •) is analytic in H} ,

it follows that
⋃

H∈HAH = I1. We claim that there exists H0 ∈ H such that the
set AH0 is determinig for functions holomorphic in a complex neighbourhood of I1.
Indeed, suppose it is not so. Then all the sets AH (H ∈ H) are nowhere dense in I1

and by the Baire theorem we get a contradiction. Hence, by the Montel’s lemma, the
sets Em ∩ H0 (m ∈ N) are closed, and, again by the Baire theorem, U1 ∩ H0 6= ∅.
Therefore U1 is open, dense in I2× · · · × Is. Analogously to Im

1 and U1 we define sets
Im
j and Uj (j = 2, . . . , s, m ∈ N). Let us take a closed interval K2 × · · · ×Ks ⊂ U1.

Since Uj are dense we can find closed intervals K̃1 ⊂ I1, K̃j ⊂ Kj (j = 2, . . . , s) and
m ∈ N such that for j = 1, . . . s

K̃1 × · · · × K̃j−1 × K̃j+1 × · · · × K̃s ⊂ Uj

and is f separately holomorphic and bounded by m in the set

s⋃

j=1

K̃1 × · · · × Im
j × · · · × K̃s.
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Hence, by the Siciak’s theorem, I1 × K̃2 × · · · × K̃s ⊂ A(f).

20 For y1 ∈ U the set Ff,1 (y1) is pluripolar.
Since I1 × {y1} ⊂ A(f) we see that there exist D - complex neighbourhood of I1

and B - complex neighbourhood of y1 such that f is holomorphic in D × B. By the
Bedford-Taylor theorem

N :=

{
z ∈ D : ϕ (z) := sup

|α|≥1

∣∣∣∣
1
α!

∂|α|f
∂yα

1

(z, y1)
∣∣∣∣
1/|α|

< ϕ∗ (z)

}

is pluripolar, and of course Ff,1 ⊂ N .

30 If V is a countable and dense subset of U then Zf,1 ⊂
⋃

y1∈V Ff,1 (y1).
Take x0

1 ∈ Zf,1. We can find y0
1 ∈ I2 × · · · × Is such that

(
x0

1, y
0
1

) ∈ S (f), but y0
1 ∈

A
(
f

(
x0

1, •
))

. Hence f
(
x0

1, •
)

is holomorphic in the polydisc P
(
y0
1 , 1

/
Qf,1

(
x0

1, y
0
1

))

⊂ CN , where N := n2+· · ·+ns. Let λ be such that 0 < λ ≤ 1/4 and (1− λ)−1−N
< 2

and let r := min
{
1, 1

/
Qf,1

(
x0

1, y
0
1

)}
. For y1 ∈ ϑ := P

(
y0
1 , λr

) ⊂ CN we have

f
(
x0

1, y1

)
=

∑
α

1
α!

∂|α|f
∂yα

(
x0

1, y
0
1

) (
y1 − y0

1

)α
.

We deduce that
∣∣∣∣∣
1
β!

∂|β|f

∂yβ
1

(
x0

1, y1

)
∣∣∣∣∣ ≤ Qf,1

(
x0

1, y
0
1

)|β|∑
α

(α + β)!
α!β!

λ|α|

= Qf,1

(
x0

1, y
0
1

)|β|
(1− λ)−|β|−N

,

hence
Qf,1

(
x0

1, y1

) ≤ (1− λ)−1−N
Qf,1

(
x0

1, y
0
1

)
< 2 /r .

By 10 there exists ỹ1 ∈ ϑ ∩ V . It is enough to show that x0
1 ∈ Ff,1 (ỹ1). Assume it

is not so, that is Qf,1 (•, ỹ) is upper semicontinuous at x0
1. Therefore there exists a

closed interval K - neighbourhood of x0
1 in I1 such that for x1 ∈ K

Qf,1 (x1, ỹ) < 2 /r .

The function f (x1, •) is holomorphic in a neighbourhood of ỹ1 (because ỹ1 ∈ U , hence
(x1, ỹ1) ∈ A(f)) and so is holomorphic in the polydisc P (ỹ1, 1/Qf,1 (x1, ỹ1)). We have

P (ỹ1, 1/Qf,1 (x1, ỹ1)) ⊃ P (ỹ1, r /2) ⊃ ϑ,

hence for x1 ∈ K f (x1, •) is holomorphic in ϑ. Moreover for y1 ∈ ϑ we have

|f (x1, y1)| ≤
∑
α

Qf,1 (x1, y1)
|α| (λr)|α| ≤

∑
α

(
1
2

)|α|
= 2N .
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Let U1 and Im
1 be as in the proof of 10. Take a closed interval H ⊂ ϑ ∩ U1. We can

find m such that f is separately holomorphic (as a function of two variables: x1 ∈ I1

and y1 ∈ I2×· · ·× Is) and bounded by m in K×ϑ∪ Im
1 ×H. By the Siciak’s theorem(

x0
1, y

0
1

) ∈ A(f) - contradiction.

By 20 and 30 we deduce that Zf,1 is pluripolar. Thus we have proved the first inductive
step: we have shown that theorem C is true for k = 1 and any s ≥ 2. Now let k ≥ 2 and
assume that theorem C is true for k − 1 and any s ≥ k.

40 The set
W := {y ∈ Ik+1 × · · · × Is : S (f (•, y)) = S (f) (•, y)}

is dense in Ik+1 × · · · × Is.
As we have just shown theorem C is true for k = 1. Using this k times for any

k > 1 we see that for quasi almost all xs ∈ Is, . . . , for quasi almost all xk+1 ∈ Ik+1

we have
S (f (•, xk+1, . . . , xs)) = S (f) (•, xk+1, . . . , xs) .

In particular W is dense.

50 For y ∈ W the set Ff,k (y) is pluripolar.
If L ⊂⊂ A(f) (•, y), then in the same way as in the proof of 20 we show that

Ff,k (y) ∩ L is pluripolar.

60 If W ′ is a countable and dense subset of W , then the set

R := Zf,k \
⋃

y∈W ′

(
S (f (•, y)) ∪ Ff,k (y)

)

is pluripolar.
Take any x0 ∈ R. By the definition of Zf,k we can find y0 ∈ Ik+1 × · · · × Is such

that
(
x0, y0

) ∈ S (f), but y0 ∈ A
(
f

(
x0, •)). Denote g := f

(
x0

1, . . . , x
0
k−1, •

)
. First

we want to show that
(
x0

k, y0
) ∈ A(g). Assume

(
x0

k, y0
) ∈ S (g). We have y0 ∈

A
(
g

(
x0

k, •)), therefore x0
k ∈ Zg,1. By 30 we can find y ∈ W ′ such that x0

k ∈ Fg,1 (y),
that is Qg,1 (•, y) is not upper semicontinuous at x0

k. By the definition of R and W
we have

x0 ∈ A(f (•, y)) \ Ff,k (y) = A (f) (•, y) \ Ff,k (y) ,

whence Qf,k (•, y) is upper semicontinuous at x0
k. In particular Qf,k

(
x0

1, . . . , x
0
k−1, •, y

)

= Qg,1 (•, y) is upper semicotinuous at x0 - contradiction. Thus we have
(
x0

k, y0
) ∈

A(g), hence
(
x0

k, y0
) ∈ S (f)

(
x0

1, . . . , x
0
k−1, •

) \ S
(
f

(
x0

1, . . . , x
0
k−1, •

))
,

and so
(
x0

1, . . . , x
0
k−1

) ∈ Zf,k−1. We have shown that the projection of R on I1 ×
· · ·× Ik−1 is contained in Zf,k−1 which is, by the inductive assumption, pluripolar. In
particular R is pluripolar.
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By the inductive assumption theorem C is true for any separately analytic function
of k variables, hence for such functions theorem A is true as well. In particular for y ∈
Ik+1×· · ·×Is the set S (f (•, y)) is pluripolar. Therefore, by 40, 50 and 60, Zf,k is pluripolar.
The proof of theorem C is complete.
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