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Introduction

With the standard notation d = 3+ and d° = i(d — ) we have the complex
Monge-Ampére operator (dd )" which for smooth functions takes the form

2
(dd)" = n! 4" det( 0 )d)\
3zj sz

(dA stands for the 2n-dimensional volume form). In fact, one can well define
(dd‘u)”" to be a positive Borel measure if # is plurisubharmonic (PSH, for
short) and locally bounded near the boundary of a domain where it is defined
(see Demailly [5]).

Let Q be a bounded hyperconvex domain in C” (i.e., a domain admitting
bounded PSH exhaustion function). Take Fe C(Q), F=0, and fe C(39Q)
such that

there exists x € C(2) NPSH(Q) such that x |30 = f. (1)

For example, (1) is always fulfilled if either Q is strictly pseudoconvex or
J =0 (we will be mostly concerned with the latter case). Due to the funda-
mental result of Bedford and Taylor [2], if Q is strictly pseudoconvex then
there is exactly one solution u# = uq( f, F) to the following Dirichlet problem:

ue C(Q)NPSH(Q),
(ddu)" = FdA, (2)
ulae=r.

We extend this result to any hyperconvex ¢ (Theorem 1.1). This allows us to
state the following.

DEFINITION. Let 1 < p, g <. We say that there is ( p, q)-stability in Q if
there exists a po§itive constant C, depending only on p, g, and  such that
for every Fe C(Q) with F = 0, one has

lua(0, F)|| , < C||F||5".
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As we show in Proposition 2.1, the notion of (p, g)-stability is indepen-
dent of Q. It follows from Hoélder’s inequality that if there is ( pg, go)-stability
then there is also (p, q) stability for p < py and g = gq,. It is also easy to
show that there is no (o, 1)-stability (in the unit ball take log|z| and consider
its regularizations).

Cegrell and Persson, using a connection between real and complex Monge-
Ampeére operators, have proved (oo, 2)-stability (see [4] and {1]); in {3], (n, 1)-
stability was shown. Here we improve the last result. In order to do it we
combine (o0, 2)-stability with a result from [3]. We obtain in particular (2#, 1)-
stability. Finally we discuss the problem of existence of representation in-
equalities for PSH functions in B.

This paper was written during my stay in Wuppertal. I am indebted to
Professor Klas Diederich for his invitation, to Bergische Universitét for their
great hospitality, and to the DAAD for financial support.

1. The Dirichlet Problem in Hyperconvex Domains

THEOREM 1.1. Let Q be hyperconvex, let Fe C(Q) with F=0, and let fe
C(0RQ) fulfill (1). Then the function
u:=sup{ve PSHNL®(Q): v*|yq < f, (ddv)" = F dA}

is the unique solution of (2).
See [8] for a more general result in the bidisc.

Proof. First we will show that one may assume that the function x from (1)
has the additional property (dd“x)"” = 0 (i.e., x is maximal). For define

x’:=supfve PSH(Q): v*|;q0 < f}.

It follows from the classical potential theory that we can find # € C(Q), which
is harmonic in © and equal to f on 39Q. This implies that x < x’=< A, hence
(x)*=(x")« =f on 0. Now it follows from a theorem of Walsh [10] that
x'e C(Q) and of course (dd“x)"” = 0. We may therefore assume (ddx)" =0.

The uniqueness of u follows from the comparison principle [7, Cor. 3.7.4].
Now suppose that F has compact support. By Proposition 1.2 of [6], there
exists a smooth, strictly PSH function ¢ in @ such that lim__, 39 ¥(z) =0.
Then for some positive A we have

(dd(x+AY))'= A"(ddY)" = FdA,

and therefore x + Ay < u < x. This shows that u* =u, = f on 0Q. Let {Q;}
be a sequence of strictly pseudoconvex domains such that ;T Q. By [2] we
can solve the following problem:

(dd“u;)" = Fd),

Ujlag, = xlan,
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By the comparison principle and the fact that (dd“x)” = 0, we have u <
Ui, =< u; < x. We want to show that the sequence {u;} is locally uniformly
convergent. Indeed, take K CC 2, € > 0, and kg such that K C O, and |Ay/| <
e on 8%}, . By the comparison principle for j, k¥ = ky we have

;= el x < Nlu; — ||, = 124 — ukllan,, < €

which means that the sequence {;} is locally uniformly convergent to some
u1. By the convergence theorem [7, Thm. 3.4.3] it is now clear that the &
satisfy (2) and so 7 = u.

Now let Fe C(Q), F = 0, be arbitrary and take F; e Cyo(2), F; = 0, such
that F; T F. If we put u; := uq(f, F;) then, by the comparison principle,

|uj—u| < —ug(0, |[F;— Fy|) < 47"t ™" || F; = Fie|ld" (R~ 2],
where R is such that @ C B(0, R). Therefore
14— x|l = const|| F;— Fy ||,

which implies that {;} is uniformly convergent in Q. Theorem 1.1 now fol-
lows easily. O

REMARK. It follows from the proof that in Theorem 1.1 we need assume
only that Fe L*(Q) instead of Fe C(Q).

2. (p, g)-Stability
ProrosITION 2.1.  (p, q)-stablity in Q is independent of the domain ).

Proof. 1t is enough to show that if @, and 2, are both hyperconvex and
Q, C 9, then (p, g)-stability in Q, implies it in Q,. Take Fe C(Q,), F =0,
and let u := ug (0, F). We can find Fje C(Q,), F; =0, such that Fj|g =F
and F;10in Q,\Q,. If we put u; := ug_(0, F}) then, by the comparison prin-
ciple, u;<u=<0in @, and

lullp,0, = l4jll 5,0, = CIFillg %, > CIF g,

which completes the proof. ]
The following theorem was proved in [3].

THEOREM 2.2. Let u,ve PSHNL®(Q) be such that lim;_, 39 u({) =0 and
v=<0. Then, fort =0,

Jlult@acny < @40 =mlols™ [ follu@dcuy
0 Q

This theorem was stated in [3], but with the assumption ¢ = 0. However, one
can easily prove the above version by repeating the arguments from [3].

Substituting v(z) := |z|* — M where M is such that v < 0in Q, we can easily
get (p, p/n)-stability for n < p < oo. Theorem 2.2 can be also used to prove
the following.
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THEOREM 2.3. For g > 1, (e, q)-stability implies ( p, pq/( p + nq))-stability
Jor nqg/(q—1) < p <, and in particular, (nq/(q—1), 1)-stability.

Proof. Take Fe C(Q), F =0, and let u := u(0, F). Define v := u(0, |u|’?).
Then, by Theorem 2.2, Holder’s inequality, and (oo, g)-stability we have

f|u|ﬁd)\ =f|u|ﬁ—p/4(ddcv)n < C1||U||if Iulp—p/q_anA
Q Q Q

1/q 1-1/q—n/p (p+nq)/pq
< Cz(f |u|PdA) (f lulpdA) (f qu/(p+nq) dA)
1 Q Q

and the theorem follows. O

Combining the existence of (oo, 2)-stability with Theorem 2.3, we arrive at
our next result.

COROLLARY 2.4. Thereis (p,2p/(p+2n))-stability for 2n < p < oo, in par-
ticular (2n, 1)-stability.
3. Representation Inequalities in the Unit Ball

Throughout this section we will assume that n = 2. First we show that, under
this assumption, there is no representation formula for PSH functions.

PROPOSITION 3.1. There is no measurable function G: B — R such that, for
every u e PSH(B) with lim,_, 55 u({) =0, one has

|u(0)|" = f G(dd“u)". 3)
B
However, one does have
n—1 1 f_ n C,\ 1
e e e I S EA I CE

where z € B and T, is a holomorphic automorphism of B such that T,(0) =z
and T, =T,.

Proof. Forze B let u:=log|T;|. Then (dd“u)" = (27)"8, (see [7]) and, were
(3) fulfilled, we would have G(z) = (27)"(—log|z|)". Substitute next u(z) :=
|zJ*—1 and compute

f Gddu)"=(n—-1)!'n""<1=|u(0)|".
B
The second part of the proposition follows easily from Theorem 2.2. [

We will now focus ourselves on the problem of existence of a positive func-
tion G on B such that
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|u(0)|" < f G(dd°u)", uePSH(B), lim u({)=0. @)
B {—aB
(4) implies that

lu(z)|" < fB G-T,(dd‘u)", uePSH(B), ;lingau(g‘) =0.

It follows from the proof of Proposition 3.1 that G(z) = (2x) ™" (—log|z|)" is
a necessary condition for G to fulfill (4). The following example shows, how-
ever, that for any positive constant C the function G(z) := C((—log|z|)"+1)
cannot fulfill (4).

ExaMpLE 3.2. Take 0 <e<1/5and for 0 < x <1 define f(x) =(—logx)™! -
We can find ge C*(R) such that 0 < g’< f"in (0, 1) and

0 if x<e/2,

g(x) =1 fx)—fle) if 2e<x=<1/2,

f(1/2)=f(e) if 2/3 <x.
Let ¢ be the function given by ¢’(x) = g(x)/x and ¢(1) =0. Since g’'=0,
¢ must be logarithmically convex and thus u(z) := ¢(|z[*) is PSH. We have

1 1/2

—u(0) = fo gdxz [ (f)—fle)x" dx

2e
= e 1((log2) ¢ — (—log(2€)) ") — (1/2—2¢) f(€).
On the other hand,

fB((—log|z|2)"+ 1)(dd u)"

1
o) fo (~log x)"+1) Ed;(g(x)")dx

2/3 2/3
< Clnfo ((—log x)"+1) f'(x) f(x)" 'dx < szo (—log x)~1~"ex~1dx

= C,(ne) ! (log(3/2))~".
This shows that, for any constant C, the function G(z) := C((—log|z|)"+1)
cannot fulfill (4).
A PSH function u is called radially symmetric if there exists a C2 function

¢ such that u(z) = ¢(|z|?). For this special class of PSH functions we have
the following.

THEOREM 3.3. Let y € C'((0,1)) be positive, decreasing, and such that
lim xy(x) = lim ¢(x) = 0. (5)
x—0 x—1
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Then, for every radially symmetric PSH u in B such that lim,_, ;5 u({) =0,
we have

. ! d "t ey
|u(0)] 5(4’;)n(f() (—\,b’(x)x)'c")”("‘l)) fB¢(|z|2)(dd ). (6)

For instance, the function y(x) := (—log x)"*¢+(—log x)" ¢ fulfills the as-
sumptions of Theorem 3.3 and

f‘ dx <o

o (=¥ (x)xm)/n=by =

This shows that, for a suitable constant C, the function
G(z) := C((—log|z|)"* <+ (—log|z])" )

fulfills (4) for radially symmetric u#. This gives an alternative proof of the
result of Persson [9] that for every g > 1 there is (o, g)-stability for radially
symmetric PSH functions. We do not know whether Theorem 3.3 remains
true if we drop the assumption that u is radially symmetric.

Proof of Theorem 3.3. Write u(z) = ¢(|z|?). Then

2
det(% azk(z)) = ¢'(|z)" @'z +]2Pe"(|2*)
J

and
2 C.\H (4,'1.)" 1 d ’ n
|| wizPraauy =2 [ g0 S (e d

After integration by parts, by (5) we have

_ (4m)"
n

1
f (|22 ddeu)" = f V)X " (x)" dx.
B 0

Now (6) follows easily from the Holder inequality. O
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