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AND THE MONGE-AMPÈRE EQUATIONS
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Abstract. We show that the direct counterpart of the Talenti symmetrization esti-
mate for the Laplacian does not hold neither for the complex nor real Monge-Ampère
equations. We also use this Talenti result to improve some known estimates for sub-
harmonic functions in C, where the constant depends on the area of the domain,
instead of the diameter.

1. Introduction

For a measurable A ⊂ Rn with λ(A) <∞, where λ denotes the Lebesgue measure,
its Schwarz symmetrization (or rearrangement) A∗ is the ball centered at the origin
such that λ(A) = λ(A∗). For a measurable function f , f ≥ 0, its symmetrization is
the radially-symmetric function f ∗ (i.e. f ∗(x) depends only on |x|) satisfying λ({f ∗ >
t}) = λ({f > t}) for t > 0 (we assume that f is such that λ({f > t}) <∞ for t > 0). If
u ≤ 0 then we set u∗ := −(−u)∗, or equivalently require that λ({u∗ < t}) = λ({u < t})
for t < 0.

The basic property is that for bijective increasing γ : R+ → R+ we have

(1)

∫
A∗
γ ◦ f ∗ dλ =

∫
A

γ ◦ f dλ.

In particular, ||f ∗||Lp = ||f ||Lp . This makes it a very useful tool for various optimal
estimates for PDEs, often reducing the problem to radially-symmetric functions. We
refer to [7] for a good introduction to the topic of rearrangements.

The main result from the viewpoint of PDEs is the following theorem due to Talenti
[13]: if Ω is a bounded domain in Rn, f ≥ 0 and u, v solve the following Dirichlet
problems: {

∆u = f in Ω

u = 0 on ∂Ω

{
∆v = f ∗ in Ω

v = 0 on ∂Ω∗,

then v ≤ u∗. The main tool in the proof is the isoperimetric inequality. One should
note that in general u∗ need not be subharmonic: as noticed in [3] if u is the Green
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function for a disc with pole away from the center then u∗ is not subharmonic (this
example is due to P. Thomas).

The Talenti estimate has many applications, it for example immediately gives vari-
ous optimal bounds for subharmonic functions. We present them in Section 2, including
improved estimates of Brezis-Merle [6] and Benelkourchi-Jennane-Zeriahi [2].

One could ask a similar question for the complex Monge-Ampère equation (CMA):
assume that Ω is a bounded domain in Cn, f ∈ C(Ω), f ≥ 0, and u, v solve the following
Dirichlet problems:

(2)


u ∈ PSH ∩ C(Ω)

(ddcu)n = f dλ in Ω

u = 0 on ∂Ω


v ∈ PSH ∩ C(Ω∗)

(ddcv)n = f ∗ dλ in Ω∗

v = 0 on ∂Ω∗.

Of course, in such a case Ω has to be pseudoconvex, or even hyperconvex (see [1], and
also [4], for the result on existence of weak solutions to this Dirichlet problem).

We will show that a direct counterpart of the Talenti result does not hold for CMA:

Theorem 1. If u, v satisfy (2) then it is not always true that v ≤ u∗.

The way to prove Theorem 1 is to show that the symmetrization result for (2) would
in fact be equivalent to the following complex isoperimetric inequality: for bounded
strongly pseudoconvex domains Ω in Cn one would have

(3)

∫
∂Ω

K1/(n+1) dσ ≥ an (λ(Ω))n/(n+1),

where K denotes the Levi curvature of ∂Ω, dσ is the surface measure on ∂Ω, and
an is a constant depending only on n such that the equality holds for balls (in fact

an = 2nω
1/(n+1)
2n , where ωm denotes the volume of the unit ball in Rm). Note that for

n = 1 we have K ≡ 1 and then (3) is the classical isoperimetric inequality. For n ≥ 2
however we will find a counterexample to (3). But this example does not contradict a
complex isopermetric inequality conjectured in [5]:∫

∂Ω

K dσ ≥ 2n
√
ω2nλ(Ω),

it still remains open.

A similar statement to Theorem 1 could be proved for the real Monge-Ampère
equation (RMA): if Ω is a bounded domain in Rn, f ∈ C(Ω), f ≥ 0, and u, v solve the
following Dirichlet problems

(4)


u ∈ CVX(Ω)

detD2u = f in Ω

u = 0 on ∂Ω


v ∈ CV X(Ω∗)

detD2v = f ∗ in Ω∗

v = 0 on ∂Ω∗

(see e.g. [12] existence of weak solutions):
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Theorem 2. If u, v satisfy (4) then it is not always true that v ≤ u∗.

In this case however, we have the following slightly weaker symmetrization result
for RMA due to Talenti [14] for n = 2 and to Tso [15] for arbitrary n. Instead of the
Lebesgue measure we symmetrize with respect to the quermassintegral

Wn−1(Ω) = V (Ω,B, . . . ,B),

where V denotes the mixed volume and B the unit ball in Rn. If we denote the sym-

metrization of Ω with respect to Wn−1 by Ω̃ and u, v solve

(5)


u ∈ CVX(Ω)

detD2u = f in Ω

u = 0 on ∂Ω


v ∈ CVX(Ω̃)

detD2v = f ∗ in Ω̃

v = 0 on ∂Ω̃

(we extend f ∗ to Ω̃ \ Ω∗ by zero) then v ≤ ũ. The main tool in the proof is the

Alexandrov-Fenchel isoperimetric inequality (it also immediately implies that Ω∗ ⊂ Ω̃
and that ũ ≤ u∗ in Ω∗). Interestingly, this kind of result is still open for the real Hessian
equation, the reason is the lack of an analogous isoperimetric inequality in this case -
it is only known for star-shaped domains, see [8].

This Talenti-Tso result easily implies that if Ω is a ball in Rn and u, v satisfy (4) then
v ≤ u∗. We conjecture that analogous result holds for (2). It would have far-reaching
consequences for CMA, in particular it would easily imply Ko lodziej’s estimates [9, 10]
and would give optimal constants for a ball.

2. Optimal bounds for Subharmonic Functions

The following estimate was proved by Brezis-Merle [6] but the constant depended
on the diameter of Ω instead of the volume.

Theorem 3. Let u be a subharmonic function in a bounded domain Ω in C such that
u = 0 on ∂Ω. Then, if 0 < δ < 4π and a :=

∫
Ω

∆u,∫
Ω

e
−(4π−δ)

a
udλ ≤ 4π

δ
λ(Ω).

Proof. By approximation we may assume that Ω and u are smooth. Set f := ∆u, we
can solve the Dirichlet problem{

∆v = f ∗ in Ω∗ = D(0, R)

v = 0 on ∂Ω∗.

We then have

a =

∫
Ω

∆u =

∫
Ω

f dλ =

∫
Ω∗
f ∗ dλ =

∫
D(0,R)

∆v = 2πRη′(R),
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where v(z) = η(|z|). Since η is log-convex (that is η(et) is convex with respect to t),

η(r) ≥ Rη′(R) log
r

R
=

a

2π
log

r

R
.

Talenti’s theorem implies that u∗ ≥ v, hence

(6) u∗ ≥ a

2π
log

|z|
R
, 0 ≤ r ≤ R.

For p =
4π − δ

a
we then have

∫
Ω

e−pu dλ =

∫
Ω∗
e−pu∗

dλ ≤
∫
D(0,R)

e
−ap

2π
log

|z|
R dλ =

4π2R2

δ
=

4π

δ
λ(Ω).

□

We can also improve (and simplify) an estimate due to Benelkourchi-Jennane-
Zeriahi [2]:

Theorem 4. Let Ω, u and a be as in Theorem 3. Then

λ({u < t}) ≤ λ(Ω)e4πt/a, t < 0.

Proof. Let R be as in the proof of Theorem 3. Again by Talenti’s theorem we obtain
(6). Using this we get

λ({u < t}) = λ({u∗ < t}) ≤ λ
(
D

(
0, Re2πt/a

))
= πR2e4πt/a = λ(Ω)e4πt/a.

□

3. Proofs of Theorems 1 and 2

Take Ω, f , u, v satisfying (2). By approximation we may assume that Ω is smooth
strongly pseudoconvex, f , u are smooth up to the boundary, and that 0 is a regular
value for u. Write v(z) = η(|z|), u∗(z) = γ(|z|), and Ω∗ = B(0, R).

Suppose we have v ≤ u∗, then η′(R) ≥ γ′(R) (since η(R) = γ(R) = 0). We have∫
Ω

f dλ =

∫
Ω∗
f ∗ dλ =

∫
B(0,R)

(ddcv)n = bn (Rη′(R))
n
.

On the other hand, ∫
Ω

f dλ =

∫
Ω

(ddcu)n = cn

∫
∂Ω

K|∇u|ndσ,

where K is the Levi curvature of ∂Ω (see e.g. [11]). Differentiating the equation

λ({u < γ(r)}) = λ({u∗ < γ(r)}) = λ(B(0, r)) = ω2nr
2n
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and using the co-area formula we will get

γ′(r)

∫
{u=γ(r)}

dσ

|∇u|
= 2nω2nr

2n−1.

Therefore η′(R) ≥ γ′(R) implies

(7)

∫
∂Ω

K|∇u|ndσ ≥ dn
(λ(Ω))n(∫
∂Ω

dσ

|∇u|

)n .

We will need the following

Lemma 5. For a bounded, smooth, strongly pseudoconvex Ω in Cn and positive ρ ∈
C∞(∂Ω) there exists u ∈ C∞(Ω), strongly plurisubharmonic (psh) in Ω such that u = 0
and |∇u| = ρ on ∂Ω.

Proof. Let ψ ∈ C∞(Ω) be a psh defining function for Ω, that is ψ = 0 and ∇ψ ̸= 0
on ∂Ω. Then |∇ψ| = ψn on ∂Ω, where ψn denotes the outer normal derivative. Let
φ ∈ C∞(Ω) be such that φ = ρ/ψn on ∂Ω. Set

v := (φ+ Aψ)ψ,

where A ≫ 0 will be determined later. We have vn = φψn = ρ on ∂Ω and we claim
that (vjk) > 0 on ∂Ω for A sufficiently large. For ζ ∈ Cn with |ζ| = 1 we will use the
notation

uζ =
∑
j

ζjuj, uζζ =
∑
j,k

ζjζkujk.

On ∂Ω we have

vζζ = φψζζ + 2Re
(
φζψζ

)
+ 2A|ψζ |2.

We can find positive C and ε, independent of ζ, such that |φζ | ≤ C and φψζζ ≥ ε on
∂Ω. Take z0 ∈ ∂Ω, we may assume that (1, 0, . . . , 0) is the outer normal to ∂Ω at z0.
Then at z0

vζζ ≥ ε− C|ζ1|ψn +
A

2
|ζ1|2ψ2

n.

We can then find A > 0, depending only on ε and C, such that vζζ ≥ ε/2.

We have constructed v with required properties except that it is strongly psh only
near ∂Ω, instead of entire Ω. To obtain the right u we can take the regularized maximum

of v and ε̃
(
|z|2 − C̃

)
for sufficiently large C̃ and small ε̃ > 0. □

Choosing u with |∇u| = K−1/(n+1) in (7) we would obtain the isoperimetric inequal-
ity (3). But this inequality cannot hold in general. For τ ≥ 0 consider an elongated
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ball:

Ω :={z ∈ Cn : Re z1 ≤ 0, |z| < 1}
∪ {z ∈ Cn : 0 ≤ Re z1 ≤ τ, (Im z1)

2 + |z2|2 + · · · + |zn|2 < 1}
∪ {z ∈ Cn : Re z1 ≥ τ, (Re z1 − τ)2 + (Im z1)

2 + |z2|2 + · · · + |zn|2 < 1}

Although its boundary is only C1,1 smooth, by approximation we see that (3) would
still hold for Ω. The Levi curvature of ∂Ω is equal to 1 on the sphere parts of the
boundary and to 1/2 on the cylinder part. Therefore, (3) would imply that for τ ≥ 0

2nω2n + 2−1/(n+1)ω2n−2τ ≥ 2nω
1/(n+1)
2n

(
ω2n + ω2n−1τ

)n/(n+1)
.

Comparing the derivatives at τ = 0 we would get

2−1/(n+1)ω2n−2 ≥ 2nω2n−1

and one can check that this is false for every n ≥ 2. This finishes the proof of Theorem
1.

Remark. If Ω is bounded and smooth in Cn, u is smooth up to the boundary with u = 0
on ∂Ω then ∫

Ω

(ddcu)n = bn

∫
∂Ω

K|∇u|ndσ.

On the other hand, by the Stokes theorem we immediately get∫
Ω

(ddcu)n =

∫
∂Ω

dcu ∧ (ddcu)n−1.

In general, it is not true however that

dcu ∧ (ddcu)n−1 = bnK|∇u|ndσ

on ∂Ω. If it were true then for n = 2 and smooth ρ on Ω we would have

dc(ρu) ∧ ddc(ρu) = ρ2dcu ∧ ddcu

on ∂Ω. This would mean that

ρdcρ ∧ du ∧ dcu = 0

on ∂Ω. If a piece of ∂Ω is of the form {Re z1 = 0} then we have uz2 = 0 there and

ρdcρ ∧ du ∧ dcu = 2ρ|uz1|2idz1 ∧ dz1 ∧ i
(
ρz2dz2 − ρz2dz2

)
.

If we choose u, ρ with ρ ̸= 0, ρz2 ̸= 0 and uz1 ̸= 0 then this term does not vanish. Note
however that the Stokes theorem easily gives∫

∂Ω

ρdcρ ∧ du ∧ dcu = 0.
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The proof of Theorem 2 is similar. We assume that Ω is bounded, smooth and
strongly convex in Rn, u, v, f are smooth up to the boundary, satisfy (4) and that 0
is a regular value of u. We write v(x) = η(|x|), u∗(x) = γ(|x|), and Ω∗ = B(0, R). If
v ≤ u∗ then η′(R) ≥ γ′(R). We have∫

Ω

f dλ =

∫
Ω∗
f ∗ dλ =

∫
B(0,R)

detD2v dλ = ωn (η′(R))
n

and ∫
Ω

f dλ =

∫
Ω

detD2u dλ =
1

n

∫
∂Ω

H|∇u|ndσ,

where H is the Gauss curvature of ∂Ω. Differentiating

λ({u < γ(r)}) = λ({u∗ < γ(r)}) = λ(B(0, r)) = ωnr
n

and using the co-area formula we get

γ′(r)

∫
{u=γ(r)}

dσ

|∇u|
= nωnr

n−1.

Therefore η′(R) ≥ γ′(R) implies that∫
∂Ω

H|∇u|ndσ ≥ nn+1ω2
n

(λ(Ω))n−1(∫
∂Ω

dσ

|∇u|

)n .

Since a result corresponding to Lemma 5 also holds in the real case, we can find apprio-
priate u with |∇u| = H−1/(n+1) on ∂Ω. This would imply the following isoperimetric
inequality

(8)

∫
∂Ω

H1/(n+1)dσ ≥ nω2/(n+1)
n

(
λ(Ω)

)n−1
n+1 .

By approximation, it would also hold for bounded convex domains with C1,1 boundary.
To see that it is not true in general consider an elongated ball again:

Ω :={x ∈ Rn : x1 ≤ 0, |x| < 1}
∪ {x ∈ Rn : 0 ≤ Rex1 ≤ τ, x22 + · · · + x2n < 1}
∪ {x ∈ Rn : x1 ≥ τ, (x1 − τ)2 + x22 + · · · + x2n < 1}

for τ ≥ 0. Then H = 1 on the sphere parts but it vanishes on the cylinder part.
Therefore it is clear that (8) does not hold for any τ > 0.
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