REARRANGEMENTS
AND THE MONGE-AMPERE EQUATIONS

ZBIGNIEW BLOCKI

ABSTRACT. We show that the direct counterpart of the Talenti symmetrization esti-
mate for the Laplacian does not hold neither for the complex nor real Monge-Ampere
equations. We also use this Talenti result to improve some known estimates for sub-
harmonic functions in C, where the constant depends on the area of the domain,
instead of the diameter.

1. INTRODUCTION

For a measurable A C R™ with A\(A) < oo, where A denotes the Lebesgue measure,
its Schwarz symmetrization (or rearrangement) A* is the ball centered at the origin
such that A(A) = A(A*). For a measurable function f, f > 0, its symmetrization is
the radially-symmetric function f* (i.e. f*(z) depends only on |z|) satisfying A({f* >
t}) = A{f > t}) for t > 0 (we assume that f is such that A({f > t}) < oo for ¢t > 0). If
u < 0 then we set u* := —(—u)*, or equivalently require that A({u* < t}) = A({u < t})
for t < 0.

The basic property is that for bijective increasing v : Ry — R, we have

(1) /A*fyof*d)\:/Afyofd)\.

In particular, ||f*||z» = ||f||z». This makes it a very useful tool for various optimal
estimates for PDEs, often reducing the problem to radially-symmetric functions. We
refer to [7] for a good introduction to the topic of rearrangements.

The main result from the viewpoint of PDEs is the following theorem due to Talenti
[13]: if © is a bounded domain in R", f > 0 and u,v solve the following Dirichlet
problems:

Au=f in Q Av = f* in Q
u=20 on 02 v=0 on 00,

then v < w*. The main tool in the proof is the isoperimetric inequality. One should
note that in general u* need not be subharmonic: as noticed in [3] if u is the Green
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function for a disc with pole away from the center then u* is not subharmonic (this
example is due to P. Thomas).

The Talenti estimate has many applications, it for example immediately gives vari-
ous optimal bounds for subharmonic functions. We present them in Section 2, including
improved estimates of Brezis-Merle [6] and Benelkourchi-Jennane-Zeriahi [2].

One could ask a similar question for the complex Monge-Ampere equation (CMA):

assume that  is a bounded domain in C", f € C(Q), f > 0, and u, v solve the following
Dirichlet problems:

ue PSHNC(Q) ve PSHNC(QY)
(2) (ddu)™ = fdX\ in Q (ddv)™ = f*d\ in Q*
u=0 on I v =0 on 00*.

Of course, in such a case € has to be pseudoconvex, or even hyperconvex (see [1], and
also [4], for the result on existence of weak solutions to this Dirichlet problem).

We will show that a direct counterpart of the Talenti result does not hold for CMA:

Theorem 1. If u,v satisfy (2) then it is not always true that v < u*.

The way to prove Theorem 1 is to show that the symmetrization result for (2) would
in fact be equivalent to the following complex isoperimetric inequality: for bounded
strongly pseudoconvex domains €2 in C" one would have

3) / KV dg > a, (A(Q))M D),
o0

where K denotes the Levi curvature of 02, do is the surface measure on 0f2, and
a, is a constant depending only on n such that the equality holds for balls (in fact
an = 2nw§é(n+1), where w,, denotes the volume of the unit ball in R™). Note that for
n =1 we have K = 1 and then (3) is the classical isoperimetric inequality. For n > 2
however we will find a counterexample to (3). But this example does not contradict a

complex isopermetric inequality conjectured in [5]:

K do > 2n\/we, \(Q2),

o0
it still remains open.

A similar statement to Theorem 1 could be proved for the real Monge-Ampere

equation (RMA): if Q is a bounded domain in R™, f € C(Q), f > 0, and u, v solve the
following Dirichlet problems

ue CVX(Q) v e CVX(Q)
(4) det D*u = f in Q det D?v = f* in Q*
u=0 on 00 v =0 on 90"

(see e.g. [12] existence of weak solutions):



Theorem 2. If u,v satisfy (4) then it is not always true that v < u*.

In this case however, we have the following slightly weaker symmetrization result
for RMA due to Talenti [14] for n = 2 and to Tso [15] for arbitrary n. Instead of the
Lebesgue measure we symmetrize with respect to the quermassintegral

W, 1(Q) = V(Q,B,...,B),

where V' denotes the mixed volume and B the unit ball in R". If we denote the sym-
metrization of €2 with respect to W,,_; by € and u, v solve

ue CVX(Q) veCVX(Q)
(5) det D*u = f in Q det D?*v = f* in Q
u=0 on 0N v=0 on dN

(we extend f* to Q\ Q* by zero) then v < 4. The main tool in the proof is the

Alexandrov-Fenchel isoperimetric inequality (it also immediately implies that Q* C €2
and that w < u* in 2*). Interestingly, this kind of result is still open for the real Hessian
equation, the reason is the lack of an analogous isoperimetric inequality in this case -
it is only known for star-shaped domains, see [8].

This Talenti-Tso result easily implies that if €2 is a ball in R” and u, v satisfy (4) then
v < u*. We conjecture that analogous result holds for (2). It would have far-reaching
consequences for CMA| in particular it would easily imply Kolodziej’s estimates [9, 10]
and would give optimal constants for a ball.

2. OPTIMAL BOUNDS FOR SUBHARMONIC FUNCTIONS

The following estimate was proved by Brezis-Merle [6] but the constant depended
on the diameter of {2 instead of the volume.

Theorem 3. Let u be a subharmonic function in a bounded domain € in C such that
uw=0 on 0. Then, if 0 <0 < 4r and a = [, Au,

(am— 4
/e(4a Hugy < ZIA(Q).
Q o
Proof. By approximation we may assume that {2 and v are smooth. Set f := Au, we
can solve the Dirichlet problem

Av=f* in Q* = D(0,R)
v=20 on 00*.

We then have

a:/Au:/fd)\:/ f*d)\:/ Av =27 Ry (R),
Q Q o D(0,R)
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where v(z) = n(]z]). Since 7 is log-convex (that is n(e') is convex with respect to t),

r a r
> R (R)log — = — log —.
n(r) = B (R)log -7 = o—log &
Talenti’s theorem implies that u* > v, hence
(6) u*Z%log%, 0<r<R.
4T —
For p = we then have
a
ap ., |2|
. ———log — 42 R? 4
/e—pw:/ e P dAg/ e 21 PRan=T""_ T y\q).
Q Q* D(0,R) 0 0

OJ

We can also improve (and simplify) an estimate due to Benelkourchi-Jennane-
Zeriahi [2]:

Theorem 4. Let 2, u and a be as in Theorem 3. Then
M{u < t}) < XQ)e*™e t<0.

Proof. Let R be as in the proof of Theorem 3. Again by Talenti’s theorem we obtain
(6). Using this we get

M{u < 1)) = A{u* < £}) < A (D (0, Re¥™/%)) = mR2e!™/a = \(Q)etmi/e

3. PROOFS OF THEOREMS 1 AND 2

Take Q, f, u, v satisfying (2). By approximation we may assume that (2 is smooth
strongly pseudoconvex, f, u are smooth up to the boundary, and that 0 is a regular
value for u. Write v(z) = n(|z]), v*(2) = v(]z]), and Q* = B(0, R).

Suppose we have v < u*, then 7/(R) > +/(R) (since n(R) = v(R) = 0). We have
/ fir= [ frar= / (dd°v)" = b, (R (R))".
Q o B(0,R)
On the other hand,
/ fdx= /(ddcu)" =c¢, [ K|Vu|"do,
Q Q 09

where K is the Levi curvature of 9 (see e.g. [11]). Differentiating the equation
M{u <v(r)}) = A{w" <A(n)}) = MB(0,7)) = wanr™



and using the co-area formula we will get

d
7/(7“)/ 49 = 2nws,r" L.
fu=(y [Vl

Therefore n'(R) > +/(R) implies

(7) K|Vu|'do > dn%.
. (L)

We will need the following

Lemma 5. For a bounded, smooth, strongly pseudoconvex §2 in C™ and positive p €

C>(00) there exists u € C™(Y), strongly plurisubharmonic (psh) in Q@ such that u =0
and |[Vu| = p on 0N.

Proof. Let ¢ € C*(Q2) be a psh defining function for €2, that is ¢» = 0 and V¢ # 0
on JQ). Then |Vi| = 1, on 02, where 1, denotes the outer normal derivative. Let
¢ € C>(Q) be such that ¢ = p/1,, on 9. Set

v = (¢ + A)y,

where A > 0 will be determined later. We have v, = @1, = p on 0f) and we claim
that (v;z) > 0 on 9Q for A sufficiently large. For ¢ € C" with |(| = 1 we will use the

notation
ug =Y Guyy ug =Y (G
J g,k

On 0f) we have
Ve = ¢ + 2Re (gpg%) + 2A)¢ 2.
We can find positive C' and ¢, independent of ¢, such that |¢;| < C' and Yz > € on

00). Take zy € 0F2, we may assume that (1,0,...,0) is the outer normal to 92 at z.
Then at z

A
v 2 & = Claln + 1G5

We can then find A > 0, depending only on € and C, such that vz > e/2.

We have constructed v with required properties except that it is strongly psh only
near 0f), instead of entire 2. To obtain the right u we can take the regularized maximum
of v and &(|z|* — C) for sufficiently large C' and small £ > 0. O

Choosing u with |Vu| = K~Y®+1 in (7) we would obtain the isoperimetric inequal-
ity (3). But this inequality cannot hold in general. For 7 > 0 consider an elongated
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ball:
Q:={ze€C":Rez <0, |2] <1}
U{z€C":0<Rez <7, (Imz)*+ |2+ +|z.]* <1}
U{z€C": Rez; > 7, (Rezy — 7)° + (Im21)* + |2]* + -+ + |2]* < 1}

Although its boundary is only C™! smooth, by approximation we see that (3) would
still hold for 2. The Levi curvature of 0f) is equal to 1 on the sphere parts of the
boundary and to 1/2 on the cylinder part. Therefore, (3) would imply that for 7 > 0

n+1)( )n/(n—H)

2nwsy, + 2’1/(”“%2”,27 > an%( Won + Wop_ 1T
Comparing the derivatives at 7 = 0 we would get
27V D g o > 200,

and one can check that this is false for every n > 2. This finishes the proof of Theorem
1.

Remark. If € is bounded and smooth in C”, u is smooth up to the boundary with u = 0
on 0f) then

‘/ufwn:al K|Vu|"do.
Q oN

On the other hand, by the Stokes theorem we immediately get

‘/uf@n:/mquume¥
Q 0N

In general, it is not true however that

du A (dd“u)""' = b, K|Vu|"do
on ). If it were true then for n = 2 and smooth p on Q we would have

d(pu) A dd°(pu) = p*d°u A dd“u
on 0f). This would mean that

pdp N\ du N du=0
on 0. If a piece of 0N is of the form {Rez; = 0} then we have u,, = 0 there and
pd°p A du A du = 2p|u., |*idzy A dZ) A i(,oEQdEg — pZQdZQ).

If we choose u, p with p # 0, p,, # 0 and u,, # 0 then this term does not vanish. Note
however that the Stokes theorem easily gives

/ pdp A du N du=D0.
o9
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The proof of Theorem 2 is similar. We assume that 2 is bounded, smooth and
strongly convex in R™, u,v, f are smooth up to the boundary, satisfy (4) and that 0
is a regular value of u. We write v(z) = n(|z|), v*(z) = v(|z|), and Q* = B(0, R). If
v < u* then n'(R) > +/(R). We have

/ fdx= [ frdx= / det D*vd\ = w, (1'(R))"
Q O B(0,R)

and

1
/ fdx= / det D*ud\ = ~— | H|Vu|"do,
Q Q n Jao
where H is the Gauss curvature of 0f). Differentiating

A{u <(r)}) = A{u” <~(r)}) = A(B(0,7)) = war”

and using the co-area formula we get

d
7/(7’)/ 49 = nw,r" 1.
fu=(y [Vl

Therefore n'(R) > +/(R) implies that
A(Q))nt

o0 (/ do )n
o0 |VU|

Since a result corresponding to Lemma 5 also holds in the real case, we can find apprio-
priate u with |Vu| = H=Y®*+) on 9Q. This would imply the following isoperimetric
inequality

(8) / HY O g > nu?/ ) (A(Q)) 77
0N

By approximation, it would also hold for bounded convex domains with C'**! boundary.
To see that it is not true in general consider an elongated ball again:

Q:={zeR": 2z <0, || <1}
U{z €R":0<Rex; <7, 25+ ---+22 <1}
U{z eR™ 2y >7, (17— 1)+ 25+ + 22 <1}

for 7 > 0. Then H = 1 on the sphere parts but it vanishes on the cylinder part.
Therefore it is clear that (8) does not hold for any 7 > 0.
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