
SCIENCE CHINA
Mathematics

. ARTICLES . July 2011 Vol. 54 No. 7: 1375–1377

doi: 10.1007/s11425-011-4197-6

c⃝ Science China Press and Springer-Verlag Berlin Heidelberg 2011 math.scichina.com www.springerlink.com

On the uniform estimate in the
Calabi-Yau theorem, II

B LOCKI Zbigniew

Institute of Mathematics, Jagiellonian University,  Lojasiewicza 6, Kraków 30-348, Poland
Email: Zbigniew.Blocki@im.uj.edu.pl, umblocki@cyf-kr.edu.pl

Received November 1, 2010; accepted January 21, 2011; published online March 23, 2011

Abstract We show that a pluripotential proof of the uniform estimate in the Calabi-Yau theorem works also

in the Hermitian case.
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Tosatti and Weinkove [15] recently proved a general L∞-estimate for the complex Monge-Ampère

equation on compact Hermitian manifolds. This gave, using estimates proved earlier in [6, 9, 8, 14], a

generalization of the Calabi-Yau theorem [16] to the Hermitian case. Subsequently, the estimate from [15]

was improved (with a different proof) by Dinew and Ko lodziej [7]. The aim of this note is to give yet

another proof of this estimate. We will show that in fact a very simple modification of the proof for

Kähler manifolds from [4] gives the required result.

We assume that M is a compact complex manifold of complex dimension n equipped with Hermitian

form ω. We will give a simple proof of the following estimate shown already in [7] (where the method

from [11] was used):

Main Theorem. Assume that φ ∈ C2(M) is such that ω + ddcφ > 0 and

(ω + ddcφ)n = fωn.

Then for p > 1,

oscφ 6 C(M,ω, p, ∥f∥Lp(M)).

Our proof, as in [4], will use the local Lq-stability for the complex Monge-Ampère operator which

is quite easy for q = 2 (it is due to Cheng and Yau) and much more involved for q > 1 (proved by

Ko lodziej [10]). We will thus obtain a very simple proof of the above result for p > 2, and for arbitrary

p > 1, we will have to use Ko lodziej’s local estimate (it is hidden in Proposition 2 below, see also Remark 2

below).

In the proof we will use the following two local results:

Proposition 1 [3]. Let Ω be a bounded domain in Cn. Suppose that u, v are continuous functions on

Ω̄ such that u 6 v on ∂Ω, u is plurisubharmonic in Ω, v ∈ C2(Ω). Assume moreover that on the set

{ddcv > 0} we have (ddcv)n 6 (ddcu)n. Then u 6 v in Ω.
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Proposition 2 [4]. Let u be a negative C2 plurisubharmonic function in a bounded domain Ω in Cn.

Let a > 0 be such that the sublevel set {u < infΩ u + a} is relatively compact in Ω. Then for p > 1, we

have

∥u∥L∞(Ω) 6 C(n, diam (Ω), a, ∥u∥L1(Ω), p, ∥f∥Lp(Ω)),

where f = det(ujk̄).

Remark 1. The generalized comparison principle Proposition 1 for the real Monge-Ampère was proved

in [12], the proof in [3] is essentially a repetition of that argument. In the complex case, in a slightly

weaker form than here, it was first proved in [13]. The inequality

∂2(u+ εψ − v)(z0 + ζα)/∂ζ∂ζ̄(0) > 0

at the end of proof of Theorem 3.7 in [3] should be understood in the weak sense, namely that the function

ζ 7→ (u+ εψ − v)(z0 + ζα) is strongly subharmonic near 0.

Remark 2. The main tool in the proof of Proposition 2 in [4] is the following counterpart of the

Aleksandrov-Bakelman estimate from the real case: if v is a C2 plurisubharmonic function in Ω vanishing

on ∂Ω, then for q > 1, we have

∥v∥L∞(Ω) 6 C(n, q, diam (Ω))∥f∥1/n
Lq(Ω), (1)

where f = det(vjk̄). For q = 2, it was proved by Cheng and Yau (see [1,5], and also [4]) and for arbitrary

q > 1 by Ko lodziej [10]. The inequality (1) is not stated explicitly in [10] but it can be easily deduced

from the proof of Theorem 3 in [10]. To see that the constant depends only on the diameter of Ω, let B

be a ball containing it and consider ṽ plurisubharmonic and continuous in B, vanishing on ∂B and such

that det(ṽjk̄) = f̃ (in the weak sense of [2]), where

f̃ =

{
f, in Ω,

0, in B\Ω.

Then ṽ 6 v 6 0 in Ω by the comparison principle and we get

∥v∥L∞(Ω) 6 ∥ṽ∥L∞(B) 6 C∥f̃∥1/n
Lq(B) = C∥f∥1/n

Lq(Ω).

Proof of Main Theorem. Assume that maxM φ = 0. Choose y ∈ M , where φ attains minimum. We

can find a local potential g near y such that

1

C
ddcg 6 ω 6 Cddcg (2)

for some uniform constant C > 0 (depending only on M and ω). The estimate

∥φ∥L1(M) 6 C(M,ω) (3)

follows easily from local properties of the plurisubharmonic function Cg+φ and a finite number of other

similar plurisubharmonic functions on a finite number of charts covering M (for this it is enough to use

only that they are subharmonic).

Similarly as in [4], using the Taylor expansion of g about y, we can find a, r > 0, depending only on M

and ω, and g ∈ C∞(B(y, r)) satisfying (2) and such that g < 0, g attains minimum at y, and g > g(y)+2a

on ∂B(y, r) (where B(y, r) is a ball centered at y with radius r in local Euclidean coordinates).

By [2] there exists u ∈ C(B(y, r)), plurisubharmonic in B(y, r), such that u = (1/C)g+φ on ∂B(y, r)

and (ddcu)n = fωn in B(y, r). We have

Cg + φ 6 u 6 1

C
g + φ, (4)
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where the first inequality follows from the standard comparison principle [2] and the second one from

Proposition 1. From (3) and the first inequality in (4), it follows that ∥u∥L1(B(y,r)) is under control. By

the second inequality in (4) on ∂B(y, r), we have

u = φ+
1

C
g > φ(y) +

1

C
(g(y) + 2a) > inf

B(y,r)
u+

2a

C
,

and therefore, {u < infΩ u + a/C} is relatively compact in B(y, r). Proposition 2 now implies that

∥u∥L∞(B(y,r)) is under control, and the required estimate follows. 2
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