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ON UNIQUENESS OF THE COMPLEX

MONGE-AMPÈRE EQUATION

ON COMPACT KÄHLER MANIFOLDS

Zbigniew BÃlocki

Abstract. We prove a partial uniqueness for solutions of the complex Monge-Am-
père equation on a compact Kähler manifold in the class of quasiplurisubharmonic
functions introduced recently by Guedj and Zeriahi.

1. Introduction

Let (X, ω) be a compact Kähler manifold of complex dimension n. PSH(X, ω)
will denote the class of quasiplurisubharmonic functions ϕ on X satisfying ωϕ :=
ω + ddcϕ ≥ 0. Guedj and Zeriahi [9] introduced the class E(X, ω) of functions
ϕ ∈ PSH(X, ω) satisfying

∫
{ϕ>−∞} ωn

ϕ =
∫

X
ωn (the measure ωn

ϕ = ωϕ ∧ · · · ∧ ωϕ

is well defined on {ϕ > −∞} for any ϕ ∈ PSH(X, ω) by [1]). They showed in
particular that for ϕ ∈ E(X, ω) the measure ωn

ϕ is well defined on X (with total
mass

∫
X

ωn), vanishes on pluripolar sets, and is continuous (in the weak∗ topology)
for decreasing sequences in E(X, ω).

One of the main results in [9], building on earlier work of Yau [11], KoÃlodziej
[10], and Cegrell [6] was the existence of a solution of the Dirichlet problem

(1)





ϕ ∈ E(X,ω)
ωn

ϕ = µ

max
X

ϕ = 0,

provided that µ is a measure on X vanishing on pluripolar sets and with total mass∫
X

ωn (which are of course necessary conditions).
The uniqueness in (1) was posed as a problem in [9]. It had been proved in

[3] for bounded ϕ,ψ (for X = Pn it had been earlier done in [2] with much more
complicated methods). As observed in [9] the method from [3] actually gives the fol-
lowing result: if ϕ ∈ E(X, ω) and ψ ∈ E1(X, ω) (where Ep(X,ω) := {ψ ∈ E(X, ω) :∫

X
|ψ|pωn

ψ < ∞}, p > 0) are such that ωn
ϕ = ωn

ψ then ϕ− ψ = const.
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The goal of this note is to prove the following improvement:

Theorem 1. Assume ϕ ∈ E(X,ω) and ψ ∈ Ep(X, ω) for some p > 1 − 21−n. If
ωn

ϕ = ωn
ψ then ϕ− ψ = const.

Let us mention that if ϕ ∈ E(X, ω) are such that ωn
ϕ = ωn

ψ =: µ then we must
have ωn

max{ϕ,ψ} = µ (see [9], Proposition 3.4, we will make use of this result in the
proof of Theorem 1) and also ωn

tϕ+(1−t)ψ = µ, 0 ≤ t ≤ 1 (see [8]).
In [4] and [5] the class D of (germs of) plurisubharmonic functions was defined

(it was shown that it is actually the same as the class E studied in [7]). It is the
maximal subclass of the class of plurisubharmonic functions where the complex
Monge-Ampère operator (ddc)n can be defined (as a regular measure) so that it is
continuous for decreasing sequences. It was shown in [4] that D = PSH ∩ W 1,2

loc

for n = 2 and it was characterized (similarly, but in a more complicated way) for
n ≥ 3 in [5].

A natural counterpart of the class D on a compact Kähler manifold is the class
D(X,ω) consisting of those ϕ ∈ PSH(X, ω) such that locally ϕ+ g ∈ D, where g is
a local potential for ω (that is ω = ddcg). In particular, for n = 2 we get D(X, ω) =
PSH(X, ω) ∩W 1,2(X) (and ⊂ for arbitrary n). The measure ωn

ϕ is of course well
defined for ϕ ∈ D(X, ω). By Da(X,ω) denote the class of those ϕ ∈ D(X, ω) for
which ωn

ϕ vanishes on pluripolar sets. It follows that Da(X,ω) ⊂ E(X,ω) but by
Example 2.14 in [9] we don’t have the equality in general.

By Lemma 5.14 in [7] the Dirichlet problem (1), where µ is a measure on X vani-
shing on pluripolar sets and with total mass

∫
X

ωn, always has a local solution inDa.
This is therefore perhaps natural to ask whether it has a global solution belonging
to Da(X, ω), which would be an improvement of Theorem A in [9]. However, using
Theorem 1 we can show that this is not the case:

Theorem 2. Let (X,ω) be the projective space Pn with the Fubini-Study metric.
There exists a measure µ on X, vanishing on pluripolar sets and with total mass∫

X
ωn, such that there is no ϕ ∈ E(X, ω) ∩W 1,2(X) satisfying ωn

ϕ = µ.

In the proofs of Theorems 1 and 2 we will follow the notation from [9] and use
various results proved in that article. We always assume that (X,ω) is a fixed
Kähler manifold.

The author is grateful to SÃlawomir Dinew and SÃlawomir KoÃlodziej for helpful
discussions on this subject.

Proofs

As the proof in dimension 2 is simpler and more transparent, we first prove
Theorem 1 in this case.

Proof of Theorem 1 in dimension 2. If ψ̃ := max{ϕ,ψ} then ψ̃ ≥ ψ, ψ̃ ∈ Ep(X, ω)
(by Lemma 2.3 in [9]), and by Proposition 3.4 in [9] we have ω2

ψ̃
= ω2

ψ = ω2
ϕ. We

may thus assume that ϕ ≤ ψ ≤ −1. Then, if we set ψj := max{ϕ,ψ − j}, we have
ψ − j ≤ ψj ≤ ψ, ψj ∈ Ep(X, ω), and ψj decreases to ϕ as j → ∞. Without loss
of generality we may thus assume that 0 ≤ ρ := ψ − ϕ ≤ C; then both ϕ and ψ
belong to Ep(X,ω).
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We now set ϕj := max{ϕ,−j}, ψj := max{ψ,−j}, ρj := ψj − ϕj , and hj :=
(ϕj + ψj)/2. First, we claim that

(2) lim
j→∞

∫

X

dρj ∧ dcρj ∧ ωhj
= 0.

We have
∫

X

ρj(ω2
ϕj
− ω2

ψj
) = −2

∫

X

ρjddcρj ∧ ωhj = 2
∫

X

dρj ∧ dcρj ∧ ωhj .

On the other hand,
∣∣∣∣
∫

X

ρj(ω2
ϕj
− ω2

ψj
)
∣∣∣∣ =

∣∣∣∣∣
∫

{ϕ≤−j}
ρj(ω2

ϕj
− ω2

ψj
)

∣∣∣∣∣

≤ C

(∫

{ϕ≤−j}
ω2

ϕj
+

∫

{ψ≤−j}
ω2

ψj

)
→ 0.

We thus get (2).
Set χ(t) := −√−t, t ≤ −1. We want to show the following improvement of (2)

(3) lim
j→∞

∫

X

χ ◦ hjdρj ∧ dcρj ∧ ωhj = 0.

Similarly as above we have

(4)

∣∣∣∣
∫

X

χ ◦ hjρj(ω2
ϕj
− ω2

ψj
)
∣∣∣∣ =

∣∣∣∣∣
∫

{ϕ≤−j}
χ ◦ hjρj(ω2

ϕj
− ω2

ψj
)

∣∣∣∣∣

≤ C|χ(−j)|
(∫

{ϕ≤−j}
ω2

ϕj
+

∫

{ψ≤−j}
ω2

ψj

)
→ 0

because ϕ,ψ ∈ Ep(X, ω) and p > 1/2. On the other hand,
∫

X

χ ◦ hjρj(ω2
ϕj
− ω2

ψj
) = 2

∫

X

d(χ ◦ hjρj) ∧ dcρj ∧ ωhj
.

By (4) it is enough to estimate, using the Schwarz inequality,
∣∣∣∣
∫

X

ρjχ
′ ◦ hjdhj ∧ dcρj ∧ ωhj

∣∣∣∣

≤ C

√∫

X

χ′ ◦ hj dρj ∧ dcρj ∧ ωhj

√∫

X

χ′ ◦ hj dhj ∧ dchj ∧ ωhj .

In order to show that the last integral is bounded in j we write
∫

X

χ′ ◦ hj dhj ∧ dchj ∧ ωhj = −
∫

X

χ ◦ hj ddchj ∧ ωhj

≤ −
∫

X

χ ◦ hj ω2
hj

≤ −4
∫

X

χ ◦ ϕj ω2
ϕj
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by Lemma 2.3 in [9]. Now from (2) (note that 0 ≤ χ′ ≤ 1) we thus get (3).
Proceeding as in [3] we write∫

X

dρj ∧ dcρj ∧ ω =
∫

X

dρj ∧ dcρj ∧ ωhj −
∫

X

dρj ∧ dcρj ∧ ddchj ,

so by (2) it is enough to estimate the last integral. We have

−
∫

X

dρj ∧ dcρj ∧ ddchj =
∫

X

dρj ∧ dchj ∧ ddcρj =
∫

X

dρj ∧ dchj ∧ (ωψj − ωϕj ).

By the Schwarz inequality and since ωψj ≤ 2ωhj∣∣∣∣
∫

X

dρj ∧ dchj ∧ ωψj

∣∣∣∣

≤ 2

√∫

X

1
χ′ ◦ hj

dρj ∧ dcρj ∧ ωhj

√∫

X

χ′ ◦ hj dhj ∧ dchj ∧ ωhj .

The last integral is bounded in j. In our case we also have 1/χ′ = 2χ and by (3)
we get

lim
j→∞

∫

X

dρj ∧ dchj ∧ ωψj = 0.

Similarly we show that

lim
j→∞

∫

X

dρj ∧ dchj ∧ ωϕj = 0,

and thus
lim

j→∞

∫

X

dρj ∧ dcρj ∧ ω = 0. ¤

For the proof of Theorem 1 in arbitrary dimension we will need some preparatory
results.

Lemma 3. For p > 0, k = 1, . . . , n, and ϕ ∈ PSH(X, ω) ∩ L∞(X) with ϕ ≤ −1
we have

(5)
∫

X

(−ϕ)pωn−k
ϕ ∧ ωk ≤

∫

X

(−ϕ)pωn
ϕ

and

(6)
∫

X

(−ϕ)p−1dϕ ∧ dcϕ ∧ ωn−k
ϕ ∧ ωk−1 ≤ 1

p

∫

X

(−ϕ)pωn
ϕ.

Proof. Set T := ωn−k
ϕ ∧ ωk−1. Then

∫

X

(−ϕ)p−1dϕ ∧ dcϕ ∧ T = −1
p

∫

X

d((−ϕ)p) ∧ dcϕ ∧ T =
1
p

∫

X

(−ϕ)pddcϕ ∧ T.

Therefore the last integral is nonnegative and thus∫

X

(−ϕ)pω ∧ T ≤
∫

X

(−ϕ)pωϕ ∧ T,

so by induction on k we get (5). We also obtain∫

X

(−ϕ)p−1dϕ ∧ dcϕ ∧ T ≤ 1
p

∫

X

(−ϕ)pωϕ ∧ T

which, by virtue of (5), gives (6). ¤
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Lemma 4. For k = 0, 1, . . . , n − 1 set pk := 1 − 2−k. Assume that ϕ,ψ ∈
PSH(X, ω) ∩ L∞(X) are ≤ −1 and denote ρ := ψ − ϕ, h := (ϕ + ψ)/2. Then
for p ≥ pn−1

∫

X

(−h)p−pkdρ ∧ dcρ ∧ ωn−1−k
h ∧ ωk ≤ C

(∫

X

(−h)pdρ ∧ dcρ ∧ ωn−1
h

)2−k

,

where C is a positive constant depending only on n and on upper bounds for∫
X

(−h)pωn
h and

∫
X

(−h)pdρ ∧ dcρ ∧ ωn−1
h .

Proof. We use induction on k. For k = 0 there is nothing to prove and we assume
the estimate holds for k − 1. We may write the left-hand side as

∫

X

(−h)p−pkdρ ∧ dcρ ∧ ωh ∧ T −
∫

X

(−h)p−pkdρ ∧ dcρ ∧ ddch ∧ T,

where T = ωn−1−k
h ∧ ωk−1. The first integral is now estimated by the inductive

assumption (and since h ≤ −1), so it is enough to bound the second term from
above. Note that for q ≥ 0 we have

−(−h)qddch =
1

q + 1
ddc((−h)q+1)− q(−h)q−1dh ∧ dch ≤ 1

q + 1
ddc((−h)q+1).

Therefore

−
∫

X

(−h)p−pkdρ ∧ dcρ ∧ ddch ∧ T

≤ 1
p− pk + 1

∫

X

dρ ∧ dcρ ∧ ddc((−h)p−pk+1) ∧ T

= − 1
p− pk + 1

∫

X

d((−h)p−pk+1) ∧ dcρ ∧ ddcρ ∧ T

=
∫

X

(−h)p−pkdh ∧ dcρ ∧ (ωψ − ωϕ) ∧ T.

Since ωψ ≤ 2ωh, by the Schwarz inequality we get
∣∣∣∣
∫

X

(−h)p−pkdh ∧ dcρ ∧ ωψ ∧ T

∣∣∣∣

≤ 2

√∫

X

(−h)p−1dh ∧ dch ∧ ωh ∧ T

√∫

X

(−h)p−pk−1dρ ∧ dcρ ∧ ωh ∧ T .

Similarly we can deal with the term involving ωϕ and the required estimate follows
from Lemma 3. ¤

Lemma 4 easily gives Theorem 1:

Proof of Theorem 1 for arbitrary n. Using the same notation as previously we can
similarly as in the proof of (3) show that

lim
j→∞

∫

X

(−hj)1−21−n

dρj ∧ dcρj ∧ ωn−1
hj

= 0.
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Lemma 4 applied for k = n− 1, together with Lemma 2.3 in [9], now give

lim
j→∞

∫

X

dρj ∧ dcρj ∧ ωn−1 = 0. ¤

For the proof of Theorem 2 we will need the following quantitative version of
Example 2.14 in [9]:

Proposition 5. Assume that ψ ∈ PSH(X, ω) is negative and 0 < α < 1. Then
−(−ψ)α ∈ Ep(X, ω) for p < (1− α)/α.

Proof. Without loss of generality we may assume that ψ ≤ −1. Set ϕ := −(−ψ)α.
We have

ωϕ = α(1− α)|ψ|α−2dψ ∧ dcψ + α|ψ|α−1ωψ + (1− α|ψ|α−1)ω

≤ α(1− α)|ψ|α−2dψ ∧ dcψ + α|ψ|α−1ωψ + ω

and (for bounded ψ)

ωn
ϕ/C ≤

n−1∑

k=0

|ψ|α−2+k(α−1)dψ ∧ dcψ ∧ ωk
ψ ∧ ωn−1−k

+
n∑

l=1

|ψ|l(α−1)ωl
ψ ∧ ωn−l + ωn,

where C is a positive constant depending on α and n. For a > 0 and T = ωk
ψ ∧

ωn−1−k we get
∫

X

(−ψ)−a−1dψ ∧ dcψ ∧ T =
1
a

∫

X

d(−ψ)−a ∧ dcψ ∧ T

= −1
a

∫

X

(−ψ)−addcψ ∧ T

≤ 1
a

∫

X

(−ψ)−aω ∧ T

≤ 1
a

∫

X

ω ∧ T

=
1
a

∫

X

ωn.

Therefore for b < 1− α we obtain
∫

X

|ψ|bωn
ϕ ≤ C(n, α, b)

(
1 +

∫

X

|ψ|bωn

)

and approximating arbitrary ψ by max{ψ,−j} the proposition follows. ¤
Proof of Theorem 2. For z ∈ Cn set

ψ(z) := log |z1| − 1
2

log(1 + |z|2)− 1.

It can be extended to a function from PSH(X, ω). Then ψ̃ := −√−ψ /∈ W 1,2(X)
and by Proposition 5 ψ̃ ∈ Ep(X, ω) for p < 1. Using Theorem 1 we then conclude
that for any ϕ ∈ E(X,ω) satisfying ωn

ϕ = ωn
ψ̃

we have ϕ = ψ̃+const /∈ W 1,2(X). ¤
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[1] E. Bedford, B.A.Taylor, Fine topology, Šilov boundary, and (ddc)n, J. Funct.Anal. 72 (1987),
225-251.

[2] E. Bedford, B.A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions
of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469.

[3] Z. BÃlocki, Uniqueness and stability for the Monge-Ampère equation on compact Kähler mani-
folds, Indiana Univ.Math. J. 52 (2003), 1697-1702.

[4] Z. BÃlocki, On the definition of the Monge-Ampère operator in C2, Math.Ann. 328 (2004),
415-423.

[5] Z. BÃlocki, The domain of definition of the complex Monge-Ampère operator, Amer. J.Math.
128 (2006), 519-530.

[6] U.Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217.
[7] U.Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier

54 (2004), 159-179.
[8] S.Dinew, An inequality for mixed Monge-Ampère measures, preprint, 2007.
[9] V.Guedj, A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic func-

tions, J. Funct.Anal. 443 (2007), 442-482.
[10] S.KoÃlodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
[11] S.-T.Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-

Ampère equation, I, Comm. Pure Appl.Math. 31 (1978,), 339-411.

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków,
Poland

E-mail address: Zbigniew.Blocki@im.uj.edu.pl


