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ON UNIQUENESS OF THE COMPLEX
MONGE-AMPERE EQUATION
ON COMPACT KAHLER MANIFOLDS

ZBIGNIEW BLOCKI

ABSTRACT. We prove a partial uniqueness for solutions of the complex Monge-Am-
peére equation on a compact Kahler manifold in the class of quasiplurisubharmonic
functions introduced recently by Guedj and Zeriahi.

1. INTRODUCTION

Let (X,w) be a compact Kéhler manifold of complex dimension n. PSH(X,w)
will denote the class of quasiplurisubharmonic functions ¢ on X satisfying w, :=
w+ dd°p > 0. Guedj and Zeriahi [9] introduced the class £(X,w) of functions
¢ € PSH(X,w) satisfying f{¢>_oo} Wl = [y w" (the measure wf = wy, A -+ Aw,
is well defined on {¢ > —oo} for any ¢ € PSH(X,w) by [1]). They showed in
particular that for ¢ € £(X,w) the measure wy is well defined on X (with total
mass [, w"), vanishes on pluripolar sets, and is continuous (in the weak* topology)
for decreasing sequences in £(X,w).

One of the main results in [9], building on earlier work of Yau [11], Kolodziej

[10], and Cegrell [6] was the existence of a solution of the Dirichlet problem

p € (X, w)
(1) Wo =
Tmax =0,

provided that p is a measure on X vanishing on pluripolar sets and with total mass
[ w™ (which are of course necessary conditions).

The uniqueness in (1) was posed as a problem in [9]. It had been proved in
[3] for bounded ¢, (for X = P™ it had been earlier done in [2] with much more
complicated methods). As observed in [9] the method from [3] actually gives the fol-
lowing result: if p € £(X,w) and ¢ € E1(X,w) (where EP(X,w) := {¢ € E(X,w) :
Jx WPw) < oo}, p > 0) are such that Wl = w}} then ¢ — 1) = const.

2000 Mathematics Subject Classification. 32W20, 32Q15.

Key words and phrases. Complex Monge-Ampere equation, Kéhler manifolds.

This paper was written during the author stay at the Institut Mittag-Leffler (Djursholm,
Sweden). It was also partially supported by the projects N N201 3679 33 and 189/6 PR EU/2007/7
of the Polish Ministry of Science and Higher Education

Typeset by ApS-TEX



2 ZBIGNIEW BLOCKI

The goal of this note is to prove the following improvement:

Theorem 1. Assume ¢ € £(X,w) and ¢ € EP(X,w) for some p > 1 — 217" If
wg = wy, then ¢ — 1) = const.

Let us mention that if ¢ € £(X,w) are such that wj = wy =: u then we must
have wii. o py = 1 (see [9], Proposition 3.4, we will make use of this result in the
proof of Theorem 1) and also wy, (), =, 0 < <1 (see [8]).

In [4] and [5] the class D of (germs of) plurisubharmonic functions was defined
(it was shown that it is actually the same as the class € studied in [7]). It is the
maximal subclass of the class of plurisubharmonic functions where the complex
Monge-Ampere operator (dd®)™ can be defined (as a regular measure) so that it is
continuous for decreasing sequences. It was shown in [4] that D = PSH N Wllof
for n = 2 and it was characterized (similarly, but in a more complicated way) for
n >3 in [5].

A natural counterpart of the class D on a compact Kéahler manifold is the class
D(X,w) consisting of those ¢ € PSH(X,w) such that locally ¢ + g € D, where g is
a local potential for w (that is w = dd®g). In particular, for n = 2 we get D(X,w) =
PSH(X,w)NW2(X) (and C for arbitrary n). The measure wg, is of course well
defined for ¢ € D(X,w). By D,(X,w) denote the class of those ¢ € D(X,w) for
which wj} vanishes on pluripolar sets. It follows that D,(X,w) C £(X,w) but by
Example 2.14 in [9] we don’t have the equality in general.

By Lemma 5.14 in [7] the Dirichlet problem (1), where y is a measure on X vani-
shing on pluripolar sets and with total mass [  w", always has a local solution in D,.
This is therefore perhaps natural to ask whether it has a global solution belonging
to D, (X, w), which would be an improvement of Theorem A in [9]. However, using
Theorem 1 we can show that this is not the case:

Theorem 2. Let (X,w) be the projective space P with the Fubini-Study metric.
There exists a measure y on X, vanishing on pluripolar sets and with total mass
[ w", such that there is no ¢ € £(X,w) NWH?(X) satisfying w} = .

In the proofs of Theorems 1 and 2 we will follow the notation from [9] and use
various results proved in that article. We always assume that (X,w) is a fixed
Kéhler manifold.

The author is grateful to Stawomir Dinew and Stawomir Kotodziej for helpful
discussions on this subject.

PROOFS

As the proof in dimension 2 is simpler and more transparent, we first prove
Theorem 1 in this case.

Proof of Theorem 1 in dimension 2. If Y= max{p, 1} then V>, P e EP(X,w)

by Lemma 2.3 in [9]), and by Proposition 3.4 in [9] we have w? = w? = w?. We
b P ®

may thus assume that ¢ <1 < —1. Then, if we set ¢/ := max{p, 1 — j}, we have
W — G <Pl <, Pl € EP(X,w), and 97 decreases to p as j — oo. Without loss
of generality we may thus assume that 0 < p := 1 — ¢ < C'; then both ¢ and
belong to EP(X,w).
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We now set ¢; = max{p, —j}, ¥, := max{y, —j}, p; = ¢; — ¢;, and h; :=
(¢j +;)/2. First, we claim that

(2) lim dp; Nd°p; ANwp, = 0.
j—oo Jx

We have
/ ,oj(wij — wij) = —2/ piddSp; N wy,; = 2/ dpj Nd°p; N wh;.
X X X

On the other hand,
2 24| _ (2 2
‘/X pj(w%‘ —w%)’ - /{soé—j} pﬂ(w@j w%ﬁj)‘

<C / w2,+/ w?,) — 0.
( fe<t 7 Sy
We thus get (2).

Set x(t) := —v/—t, t < —1. We want to show the following improvement of (2)

(3) lim x o hjdp; Nd°pj Nwp; = 0.

J—0 Jx

Similarly as above we have

2 2
xohjpi(w, —wy,
/{wéj} ! ]( 7 wj)

< Clx(—5)| (/ W2, +/ wij) 0
{p<—-3j} {yp<—j}

because ¢, € EP(X,w) and p > 1/2. On the other hand,

[ xomipir, - k)
@)

/ XOthj(Wij —wij) = 2/ d(XOh]pJ) /\dcpj /\Whj.
X X

By (4) it is enough to estimate, using the Schwarz inequality,

'/ piX o hjdh; Nd°p; N\ wh,
X

X X

In order to show that the last integral is bounded in j we write

/X/Ohjdhj/\dchj/\whj:—/Xohjddchj/\whj
X X

S—/ Xohjw]%.
X J

< —4/ X0 pjwy,
X J
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by Lemma 2.3 in [9]. Now from (2) (note that 0 < x’ < 1) we thus get (3).
Proceeding as in [3] we write

/ dpj Nd°p; Nw = / dp; Nd°p; N wp, — / dpj Nd°p; N\ dd°h;,
b'e X b's

so by (2) it is enough to estimate the last integral. We have

—/ dpj VAN dcpj N ddchj = / dpj N dchj VAN ddcpj = / dpj N dchj N (W¢j — w%.).
X X X

By the Schwarz inequality and since wy,, < 2wy,

/ dpj VAN dchj N W¢j‘
X

1
<2 / - dpj Nd°pj N\ wp; /X’ohjdthdchj/\whj.
x X' °oh X

The last integral is bounded in j. In our case we also have 1/x’ = 2x and by (3)
we get

lim dpj Nd°hj N wy, = 0.
J—00 X

Similarly we show that
hm dpj A dchj N Wp,; = 0,
j—oo Jx
and thus
lim [ dpj Nd°pj A\w=0. O

Jj—o0
For the proof of Theorem 1 in arbitrary dimension we will need some preparatory
results.
Lemma 3. Forp>0,k=1,...,n, and p € PSH(X,w) N L>®(X) with ¢ < —1
we have

(5) [ orapnct < [ (o
X X
and
1
(6) / (—)Ptdp A dyp /\wg_k AWt < —/ (—p)Pwi.
X pJx

Proof. Set T := wg_k A wF=1. Then

1 1
[ ertapnaont =2 [ dop)ndont =2 [ (praront.
X PJx pPJx

Therefore the last integral is nonnegative and thus
[ oront< [ (—opw,nr,
b's b's
so by induction on k we get (5). We also obtain
1
[ ortapnaont < [ (opw, a1
X bJx

which, by virtue of (5), gives (6). [
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Lemma 4. For k = 0,1,...,n — 1 set p; := 1 — 27%.  Assume that p,7) €
PSH(X,w)NL>®(X) are < —1 and denote p := ¢ — ¢, h := (¢ + 1)/2. Then
forp > pn-1

27k
/ (=h)P~Prdp Adp Awl T TR AWR < C (/ (=h)Pdp N d°p N w}f—l) :
X X

where C' is a positive constant depending only on n and on upper bounds for
[x (=R)Pw} and [, (—h)Pdp A dp Awj ™"

Proof. We use induction on k. For k = 0 there is nothing to prove and we assume
the estimate holds for £k — 1. We may write the left-hand side as

/(—h)p_pkdp/\dcp/\wh/\T—/(—h)p_pkdp/\dcp/\ddch/\T,
X X

where T = wZ_l_k A wF~1. The first integral is now estimated by the inductive

assumption (and since h < —1), so it is enough to bound the second term from
above. Note that for ¢ > 0 we have

1 1
—(=h)4ddh = ——dd°((—=h)?T) — g(=h)?TYdh A d°h < ——dd°((—h)?T1).
(—h) | ((=h)T) —q(=h) . ((=h)T)

Therefore

— / (—h)P"Pedp Nd°p N dd°h N'T
X

<
p—pr+1

1
=——— [ d((=R)P P Ao ANddp N'T
s [ dhy nap

/ dp N d°p A dd((—h)P~PETIY AT
X

= / (=h)P7PedR N dp N (wy — wy) AT
X
Since wy < 2wy, by the Schwarz inequality we get

‘/X(—h)pp’“dh/\dc,o/\wd, /\T‘

< 2\// (—h)P=tdh A d°h N\ wy, /\T\// (—=h)p=Pr-1dp ANdep ANwp AT.
X X

Similarly we can deal with the term involving w, and the required estimate follows
from Lemma 3. [J

Lemma 4 easily gives Theorem 1:

Proof of Theorem 1 for arbitrary n. Using the same notation as previously we can
similarly as in the proof of (3) show that

. —gt—n c n—1
]ll)rglo X(—hj)1 > dp; Ndpj Awp = =0.
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Lemma 4 applied for k = n — 1, together with Lemma 2.3 in [9], now give

lim dp; Ndpj AW =0. O

j—o0
For the proof of Theorem 2 we will need the following quantitative version of
Example 2.14 in [9]:

Proposition 5. Assume that ¢ € PSH(X,w) is negative and 0 < a < 1. Then
—(—¢)* € EP(X,w) forp < (1 —a)/a.

Proof. Without loss of generality we may assume that ¢ < —1. Set ¢ := —(—1)*.
We have

wo = a1l = )| 2dip A dP + afp|* T wy + (1 = afp]|*
< afl — Q)| *2dyp A dp + alp|* oy +w
and (for bounded )

n—1

wi/C < |2 dy A dop A wh AT
k=0

+ Z W}‘l(a—l)wfp A wn—l + Wn7
=1

where C' is a positive constant depending on « and n. For a > 0 and T = wfz A
n—1—k

w we get
/X(—zp)—a—ldwdchT:é/xd(—w)—aAdczp/\T
:—%/X(—w)—addwm
< é/x(—w)“wAT
L[ unr

= l / w™.
a Jx
Therefore for b < 1 — o we obtain

X X

and approximating arbitrary i) by max{t, —j} the proposition follows. O
Proof of Theorem 2. For z € C" set

1
¥(2) = log |a1] — 5 log(1 + [2[*) — 1.

It can be extended to a function from PSH(X,w). Then )= —/ =2 ¢ Wh2(X)
and by Proposition 5 ¢ € EP(X,w) for p < 1. Using Theorem 1 we then conclude

that for any ¢ € £(X,w) satisfying wj; = wg we have ¢ = ¢+const ¢ WH2(X). O
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