

Auravägen 17, SE-182 60 Djursholm, Sweden Tel. +46 8 622 05 60 Fax. +46 8 622 05 89 info@mittag-leffler.se www.mittag-leffler.se

On uniqueness of the complex Monge-Ampère equation on compact Kähler manifolds

Z. Błocki

REPORT No. 1, 2007/2008, spring ISSN 1103-467X ISRN IML-R- -1-07/08- -SE+spring

ON UNIQUENESS OF THE COMPLEX MONGE-AMPÈRE EQUATION ON COMPACT KÄHLER MANIFOLDS

ZBIGNIEW BŁOCKI

ABSTRACT. We prove a partial uniqueness for solutions of the complex Monge-Ampère equation on a compact Kähler manifold in the class of quasiplurisubharmonic functions introduced recently by Guedj and Zeriahi.

1. INTRODUCTION

Let (X, ω) be a compact Kähler manifold of complex dimension n. $PSH(X, \omega)$ will denote the class of quasiplurisubharmonic functions φ on X satisfying $\omega_{\varphi} := \omega + dd^c \varphi \ge 0$. Guedj and Zeriahi [9] introduced the class $\mathcal{E}(X, \omega)$ of functions $\varphi \in PSH(X, \omega)$ satisfying $\int_{\{\varphi > -\infty\}} \omega_{\varphi}^n = \int_X \omega^n$ (the measure $\omega_{\varphi}^n = \omega_{\varphi} \wedge \cdots \wedge \omega_{\varphi}$ is well defined on $\{\varphi > -\infty\}$ for any $\varphi \in PSH(X, \omega)$ by [1]). They showed in particular that for $\varphi \in \mathcal{E}(X, \omega)$ the measure ω_{φ}^n is well defined on X (with total mass $\int_X \omega^n$), vanishes on pluripolar sets, and is continuous (in the weak* topology) for decreasing sequences in $\mathcal{E}(X, \omega)$.

One of the main results in [9], building on earlier work of Yau [11], Kołodziej [10], and Cegrell [6] was the existence of a solution of the Dirichlet problem

(1)
$$\begin{cases} \varphi \in \mathcal{E}(X,\omega) \\ \omega_{\varphi}^{n} = \mu \\ \max_{X} \varphi = 0, \end{cases}$$

provided that μ is a measure on X vanishing on pluripolar sets and with total mass $\int_X \omega^n$ (which are of course necessary conditions).

The uniqueness in (1) was posed as a problem in [9]. It had been proved in [3] for bounded φ, ψ (for $X = \mathbb{P}^n$ it had been earlier done in [2] with much more complicated methods). As observed in [9] the method from [3] actually gives the following result: if $\varphi \in \mathcal{E}(X, \omega)$ and $\psi \in \mathcal{E}^1(X, \omega)$ (where $\mathcal{E}^p(X, \omega) := \{\psi \in \mathcal{E}(X, \omega) : \int_X |\psi|^p \omega_{\psi}^n < \infty\}, p > 0$) are such that $\omega_{\varphi}^n = \omega_{\psi}^n$ then $\varphi - \psi = const$.

²⁰⁰⁰ Mathematics Subject Classification. 32W20, 32Q15.

Key words and phrases. Complex Monge-Ampère equation, Kähler manifolds.

This paper was written during the author stay at the Institut Mittag-Leffler (Djursholm, Sweden). It was also partially supported by the projects N N201 3679 33 and 189/6 PR EU/2007/7 of the Polish Ministry of Science and Higher Education

ZBIGNIEW BŁOCKI

The goal of this note is to prove the following improvement:

Theorem 1. Assume $\varphi \in \mathcal{E}(X, \omega)$ and $\psi \in \mathcal{E}^p(X, \omega)$ for some $p > 1 - 2^{1-n}$. If $\omega_{\varphi}^n = \omega_{\psi}^n$ then $\varphi - \psi = const$.

Let us mention that if $\varphi \in \mathcal{E}(X, \omega)$ are such that $\omega_{\varphi}^n = \omega_{\psi}^n =: \mu$ then we must have $\omega_{\max\{\varphi,\psi\}}^n = \mu$ (see [9], Proposition 3.4, we will make use of this result in the proof of Theorem 1) and also $\omega_{t\varphi+(1-t)\psi}^n = \mu$, $0 \le t \le 1$ (see [8]).

In [4] and [5] the class \mathcal{D} of (germs of) plurisubharmonic functions was defined (it was shown that it is actually the same as the class \mathcal{E} studied in [7]). It is the maximal subclass of the class of plurisubharmonic functions where the complex Monge-Ampère operator $(dd^c)^n$ can be defined (as a regular measure) so that it is continuous for decreasing sequences. It was shown in [4] that $\mathcal{D} = PSH \cap W_{loc}^{1,2}$ for n = 2 and it was characterized (similarly, but in a more complicated way) for $n \geq 3$ in [5].

A natural counterpart of the class \mathcal{D} on a compact Kähler manifold is the class $\mathcal{D}(X,\omega)$ consisting of those $\varphi \in PSH(X,\omega)$ such that locally $\varphi + g \in \mathcal{D}$, where g is a local potential for ω (that is $\omega = dd^c g$). In particular, for n = 2 we get $\mathcal{D}(X,\omega) = \mathcal{P}SH(X,\omega) \cap W^{1,2}(X)$ (and \subset for arbitrary n). The measure ω_{φ}^n is of course well defined for $\varphi \in \mathcal{D}(X,\omega)$. By $\mathcal{D}_a(X,\omega)$ denote the class of those $\varphi \in \mathcal{D}(X,\omega)$ for which ω_{φ}^n vanishes on pluripolar sets. It follows that $\mathcal{D}_a(X,\omega) \subset \mathcal{E}(X,\omega)$ but by Example 2.14 in [9] we don't have the equality in general.

By Lemma 5.14 in [7] the Dirichlet problem (1), where μ is a measure on X vanishing on pluripolar sets and with total mass $\int_X \omega^n$, always has a local solution in \mathcal{D}_a . This is therefore perhaps natural to ask whether it has a global solution belonging to $\mathcal{D}_a(X, \omega)$, which would be an improvement of Theorem A in [9]. However, using Theorem 1 we can show that this is not the case:

Theorem 2. Let (X, ω) be the projective space \mathbb{P}^n with the Fubini-Study metric. There exists a measure μ on X, vanishing on pluripolar sets and with total mass $\int_X \omega^n$, such that there is no $\varphi \in \mathcal{E}(X, \omega) \cap W^{1,2}(X)$ satisfying $\omega_{\varphi}^n = \mu$.

In the proofs of Theorems 1 and 2 we will follow the notation from [9] and use various results proved in that article. We always assume that (X, ω) is a fixed Kähler manifold.

The author is grateful to Sławomir Dinew and Sławomir Kołodziej for helpful discussions on this subject.

Proofs

As the proof in dimension 2 is simpler and more transparent, we first prove Theorem 1 in this case.

Proof of Theorem 1 in dimension 2. If $\tilde{\psi} := \max\{\varphi, \psi\}$ then $\tilde{\psi} \ge \psi, \tilde{\psi} \in \mathcal{E}^p(X, \omega)$ (by Lemma 2.3 in [9]), and by Proposition 3.4 in [9] we have $\omega_{\tilde{\psi}}^2 = \omega_{\psi}^2 = \omega_{\varphi}^2$. We may thus assume that $\varphi \le \psi \le -1$. Then, if we set $\psi^j := \max\{\varphi, \psi - j\}$, we have $\psi - j \le \psi^j \le \psi, \psi^j \in \mathcal{E}^p(X, \omega)$, and ψ^j decreases to φ as $j \to \infty$. Without loss of generality we may thus assume that $0 \le \rho := \psi - \varphi \le C$; then both φ and ψ belong to $\mathcal{E}^p(X, \omega)$. We now set $\varphi_j := \max\{\varphi, -j\}, \ \psi_j := \max\{\psi, -j\}, \ \rho_j := \psi_j - \varphi_j$, and $h_j := (\varphi_j + \psi_j)/2$. First, we claim that

(2)
$$\lim_{j \to \infty} \int_X d\rho_j \wedge d^c \rho_j \wedge \omega_{h_j} = 0.$$

We have

$$\int_X \rho_j (\omega_{\varphi_j}^2 - \omega_{\psi_j}^2) = -2 \int_X \rho_j dd^c \rho_j \wedge \omega_{h_j} = 2 \int_X d\rho_j \wedge d^c \rho_j \wedge \omega_{h_j}.$$

On the other hand,

$$\begin{split} \left| \int_{X} \rho_{j} (\omega_{\varphi_{j}}^{2} - \omega_{\psi_{j}}^{2}) \right| &= \left| \int_{\{\varphi \leq -j\}} \rho_{j} (\omega_{\varphi_{j}}^{2} - \omega_{\psi_{j}}^{2}) \right| \\ &\leq C \left(\int_{\{\varphi \leq -j\}} \omega_{\varphi_{j}}^{2} + \int_{\{\psi \leq -j\}} \omega_{\psi_{j}}^{2} \right) \to 0. \end{split}$$

We thus get (2).

Set $\chi(t) := -\sqrt{-t}, t \le -1$. We want to show the following improvement of (2)

(3)
$$\lim_{j \to \infty} \int_X \chi \circ h_j d\rho_j \wedge d^c \rho_j \wedge \omega_{h_j} = 0.$$

Similarly as above we have

(4)
$$\begin{aligned} \left| \int_{X} \chi \circ h_{j} \rho_{j} (\omega_{\varphi_{j}}^{2} - \omega_{\psi_{j}}^{2}) \right| &= \left| \int_{\{\varphi \leq -j\}} \chi \circ h_{j} \rho_{j} (\omega_{\varphi_{j}}^{2} - \omega_{\psi_{j}}^{2}) \right| \\ &\leq C |\chi(-j)| \left(\int_{\{\varphi \leq -j\}} \omega_{\varphi_{j}}^{2} + \int_{\{\psi \leq -j\}} \omega_{\psi_{j}}^{2} \right) \to 0 \end{aligned}$$

because $\varphi, \psi \in \mathcal{E}^p(X, \omega)$ and p > 1/2. On the other hand,

$$\int_X \chi \circ h_j \rho_j (\omega_{\varphi_j}^2 - \omega_{\psi_j}^2) = 2 \int_X d(\chi \circ h_j \rho_j) \wedge d^c \rho_j \wedge \omega_{h_j}.$$

By (4) it is enough to estimate, using the Schwarz inequality,

$$\begin{split} \left| \int_{X} \rho_{j} \chi' \circ h_{j} dh_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}} \right| \\ & \leq C \sqrt{\int_{X} \chi' \circ h_{j} \, d\rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}} \sqrt{\int_{X} \chi' \circ h_{j} \, dh_{j} \wedge d^{c} h_{j} \wedge \omega_{h_{j}}}. \end{split}$$

In order to show that the last integral is bounded in j we write

$$\int_X \chi' \circ h_j \, dh_j \wedge d^c h_j \wedge \omega_{h_j} = -\int_X \chi \circ h_j \, dd^c h_j \wedge \omega_{h_j}$$
$$\leq -\int_X \chi \circ h_j \, \omega_{h_j}^2$$
$$\leq -4 \int_X \chi \circ \varphi_j \, \omega_{\varphi_j}^2$$

by Lemma 2.3 in [9]. Now from (2) (note that $0 \le \chi' \le 1$) we thus get (3). Proceeding as in [3] we write

$$\int_X d\rho_j \wedge d^c \rho_j \wedge \omega = \int_X d\rho_j \wedge d^c \rho_j \wedge \omega_{h_j} - \int_X d\rho_j \wedge d^c \rho_j \wedge dd^c h_j$$

so by (2) it is enough to estimate the last integral. We have

$$-\int_X d\rho_j \wedge d^c \rho_j \wedge dd^c h_j = \int_X d\rho_j \wedge d^c h_j \wedge dd^c \rho_j = \int_X d\rho_j \wedge d^c h_j \wedge (\omega_{\psi_j} - \omega_{\varphi_j}).$$

By the Schwarz inequality and since $\omega_{\psi_j} < 2\omega_{h_j}$.

By the Schwarz inequality and since $\omega_{\psi_j} \leq 2\omega_{h_j}$

$$\begin{split} \left| \int_{X} d\rho_{j} \wedge d^{c}h_{j} \wedge \omega_{\psi_{j}} \right| \\ & \leq 2\sqrt{\int_{X} \frac{1}{\chi' \circ h_{j}} \, d\rho_{j} \wedge d^{c}\rho_{j} \wedge \omega_{h_{j}}} \sqrt{\int_{X} \chi' \circ h_{j} \, dh_{j} \wedge d^{c}h_{j} \wedge \omega_{h_{j}}} \end{split}$$

The last integral is bounded in j. In our case we also have $1/\chi' = 2\chi$ and by (3) we get

$$\lim_{j \to \infty} \int_X d\rho_j \wedge d^c h_j \wedge \omega_{\psi_j} = 0.$$

Similarly we show that

$$\lim_{j \to \infty} \int_X d\rho_j \wedge d^c h_j \wedge \omega_{\varphi_j} = 0,$$

and thus

$$\lim_{j \to \infty} \int_X d\rho_j \wedge d^c \rho_j \wedge \omega = 0. \quad \Box$$

For the proof of Theorem 1 in arbitrary dimension we will need some preparatory results.

Lemma 3. For p > 0, k = 1, ..., n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ with $\varphi \leq -1$ we have

(5)
$$\int_{X} (-\varphi)^{p} \omega_{\varphi}^{n-k} \wedge \omega^{k} \leq \int_{X} (-\varphi)^{p} \omega_{\varphi}^{n}$$

and

(6)
$$\int_X (-\varphi)^{p-1} d\varphi \wedge d^c \varphi \wedge \omega_{\varphi}^{n-k} \wedge \omega^{k-1} \leq \frac{1}{p} \int_X (-\varphi)^p \omega_{\varphi}^n.$$

Proof. Set $T := \omega_{\varphi}^{n-k} \wedge \omega^{k-1}$. Then

$$\int_X (-\varphi)^{p-1} d\varphi \wedge d^c \varphi \wedge T = -\frac{1}{p} \int_X d((-\varphi)^p) \wedge d^c \varphi \wedge T = \frac{1}{p} \int_X (-\varphi)^p dd^c \varphi \wedge T.$$

Therefore the last integral is nonnegative and thus

$$\int_X (-\varphi)^p \omega \wedge T \le \int_X (-\varphi)^p \omega_\varphi \wedge T,$$

so by induction on k we get (5). We also obtain

$$\int_{X} (-\varphi)^{p-1} d\varphi \wedge d^{c}\varphi \wedge T \leq \frac{1}{p} \int_{X} (-\varphi)^{p} \omega_{\varphi} \wedge T$$

which, by virtue of (5), gives (6). \Box

Lemma 4. For k = 0, 1, ..., n - 1 set $p_k := 1 - 2^{-k}$. Assume that $\varphi, \psi \in PSH(X, \omega) \cap L^{\infty}(X)$ are ≤ -1 and denote $\rho := \psi - \varphi$, $h := (\varphi + \psi)/2$. Then for $p \geq p_{n-1}$

$$\int_X (-h)^{p-p_k} d\rho \wedge d^c \rho \wedge \omega_h^{n-1-k} \wedge \omega^k \le C \left(\int_X (-h)^p d\rho \wedge d^c \rho \wedge \omega_h^{n-1} \right)^{2^{-\kappa}},$$

where C is a positive constant depending only on n and on upper bounds for $\int_X (-h)^p \omega_h^n$ and $\int_X (-h)^p d\rho \wedge d^c \rho \wedge \omega_h^{n-1}$.

Proof. We use induction on k. For k = 0 there is nothing to prove and we assume the estimate holds for k - 1. We may write the left-hand side as

$$\int_X (-h)^{p-p_k} d\rho \wedge d^c \rho \wedge \omega_h \wedge T - \int_X (-h)^{p-p_k} d\rho \wedge d^c \rho \wedge dd^c h \wedge T,$$

where $T = \omega_h^{n-1-k} \wedge \omega^{k-1}$. The first integral is now estimated by the inductive assumption (and since $h \leq -1$), so it is enough to bound the second term from above. Note that for $q \geq 0$ we have

$$-(-h)^{q}dd^{c}h = \frac{1}{q+1}dd^{c}((-h)^{q+1}) - q(-h)^{q-1}dh \wedge d^{c}h \le \frac{1}{q+1}dd^{c}((-h)^{q+1}).$$

Therefore

$$\begin{split} -\int_X (-h)^{p-p_k} d\rho \wedge d^c \rho \wedge dd^c h \wedge T \\ &\leq \frac{1}{p-p_k+1} \int_X d\rho \wedge d^c \rho \wedge dd^c ((-h)^{p-p_k+1}) \wedge T \\ &= -\frac{1}{p-p_k+1} \int_X d((-h)^{p-p_k+1}) \wedge d^c \rho \wedge dd^c \rho \wedge T \\ &= \int_X (-h)^{p-p_k} dh \wedge d^c \rho \wedge (\omega_{\psi} - \omega_{\varphi}) \wedge T. \end{split}$$

Since $\omega_{\psi} \leq 2\omega_h$, by the Schwarz inequality we get

$$\left| \int_{X} (-h)^{p-p_{k}} dh \wedge d^{c} \rho \wedge \omega_{\psi} \wedge T \right|$$

$$\leq 2\sqrt{\int_{X} (-h)^{p-1} dh \wedge d^{c} h \wedge \omega_{h} \wedge T} \sqrt{\int_{X} (-h)^{p-p_{k-1}} d\rho \wedge d^{c} \rho \wedge \omega_{h} \wedge T}.$$

Similarly we can deal with the term involving ω_{φ} and the required estimate follows from Lemma 3. \Box

Lemma 4 easily gives Theorem 1:

Proof of Theorem 1 for arbitrary n. Using the same notation as previously we can similarly as in the proof of (3) show that

$$\lim_{j \to \infty} \int_X (-h_j)^{1-2^{1-n}} d\rho_j \wedge d^c \rho_j \wedge \omega_{h_j}^{n-1} = 0.$$

Lemma 4 applied for k = n - 1, together with Lemma 2.3 in [9], now give

$$\lim_{j \to \infty} \int_X d\rho_j \wedge d^c \rho_j \wedge \omega^{n-1} = 0. \quad \Box$$

For the proof of Theorem 2 we will need the following quantitative version of Example 2.14 in [9]:

Proposition 5. Assume that $\psi \in PSH(X, \omega)$ is negative and $0 < \alpha < 1$. Then $-(-\psi)^{\alpha} \in \mathcal{E}^p(X, \omega)$ for $p < (1 - \alpha)/\alpha$.

Proof. Without loss of generality we may assume that $\psi \leq -1$. Set $\varphi := -(-\psi)^{\alpha}$. We have

$$\omega_{\varphi} = \alpha(1-\alpha)|\psi|^{\alpha-2}d\psi \wedge d^{c}\psi + \alpha|\psi|^{\alpha-1}\omega_{\psi} + (1-\alpha|\psi|^{\alpha-1})\omega$$
$$\leq \alpha(1-\alpha)|\psi|^{\alpha-2}d\psi \wedge d^{c}\psi + \alpha|\psi|^{\alpha-1}\omega_{\psi} + \omega$$

and (for bounded ψ)

$$\begin{split} \omega_{\varphi}^{n}/C &\leq \sum_{k=0}^{n-1} |\psi|^{\alpha-2+k(\alpha-1)} d\psi \wedge d^{c}\psi \wedge \omega_{\psi}^{k} \wedge \omega^{n-1-k} \\ &+ \sum_{l=1}^{n} |\psi|^{l(\alpha-1)} \omega_{\psi}^{l} \wedge \omega^{n-l} + \omega^{n}, \end{split}$$

where C is a positive constant depending on α and n. For a > 0 and $T = \omega_{\psi}^k \wedge \omega^{n-1-k}$ we get

$$\int_X (-\psi)^{-a-1} d\psi \wedge d^c \psi \wedge T = \frac{1}{a} \int_X d(-\psi)^{-a} \wedge d^c \psi \wedge T$$
$$= -\frac{1}{a} \int_X (-\psi)^{-a} dd^c \psi \wedge T$$
$$\leq \frac{1}{a} \int_X (-\psi)^{-a} \omega \wedge T$$
$$\leq \frac{1}{a} \int_X \omega \wedge T$$
$$= \frac{1}{a} \int_X \omega^n.$$

Therefore for $b < 1 - \alpha$ we obtain

$$\int_X |\psi|^b \omega_{\varphi}^n \le C(n, \alpha, b) \left(1 + \int_X |\psi|^b \omega^n \right)$$

and approximating arbitrary ψ by $\max\{\psi, -j\}$ the proposition follows. \Box *Proof of Theorem 2.* For $z \in \mathbb{C}^n$ set

$$\psi(z) := \log |z_1| - \frac{1}{2} \log(1 + |z|^2) - 1.$$

It can be extended to a function from $PSH(X,\omega)$. Then $\tilde{\psi} := -\sqrt{-\psi} \notin W^{1,2}(X)$ and by Proposition 5 $\tilde{\psi} \in \mathcal{E}^p(X,\omega)$ for p < 1. Using Theorem 1 we then conclude that for any $\varphi \in \mathcal{E}(X,\omega)$ satisfying $\omega_{\varphi}^n = \omega_{\tilde{\psi}}^n$ we have $\varphi = \tilde{\psi} + const \notin W^{1,2}(X)$. \Box

6

References

- [1] E. Bedford, B.A. Taylor, Fine topology, Šilov boundary, and $(dd^c)^n$, J. Funct. Anal. **72** (1987), 225-251.
- [2] E. Bedford, B.A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469.
- [3] Z. Błocki, Uniqueness and stability for the Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 1697-1702.
- [4] Z. Błocki, On the definition of the Monge-Ampère operator in \mathbb{C}^2 , Math. Ann. **328** (2004), 415-423.
- [5] Z. Błocki, The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128 (2006), 519-530.
- [6] U. Cegrell, *Pluricomplex energy*, Acta Math. 180 (1998), 187-217.
- U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier 54 (2004), 159-179.
- [8] S. Dinew, An inequality for mixed Monge-Ampère measures, preprint, 2007.
- [9] V. Guedj, A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 443 (2007), 442-482.
- [10] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
- [11] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978,), 339-411.

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland

E-mail address: Zbigniew.Blocki@im.uj.edu.pl