INSTITUT
MITTAG-LEFFLER

On uniqueness of the complex
 Monge-Ampère equation on compact Kähler manifolds

Z. Błocki

REPORT No. 1, 2007/2008, spring
ISSN 1103-467X
ISRN IML-R- $1-07 / 08-$-SE + spring

ON UNIQUENESS OF THE COMPLEX
 MONGE-AMPÈRE EQUATION ON COMPACT KÄHLER MANIFOLDS

Zbigniew BŁocki

Abstract

We prove a partial uniqueness for solutions of the complex Monge-Ampère equation on a compact Kähler manifold in the class of quasiplurisubharmonic functions introduced recently by Guedj and Zeriahi.

1. Introduction

Let (X, ω) be a compact Kähler manifold of complex dimension $n . \operatorname{PSH}(X, \omega)$ will denote the class of quasiplurisubharmonic functions φ on X satisfying $\omega_{\varphi}:=$ $\omega+d d^{c} \varphi \geq 0$. Guedj and Zeriahi [9] introduced the class $\mathcal{E}(X, \omega)$ of functions $\varphi \in \operatorname{PSH}(X, \omega)$ satisfying $\int_{\{\varphi>-\infty\}} \omega_{\varphi}^{n}=\int_{X} \omega^{n}$ (the measure $\omega_{\varphi}^{n}=\omega_{\varphi} \wedge \cdots \wedge \omega_{\varphi}$ is well defined on $\{\varphi>-\infty\}$ for any $\varphi \in \operatorname{PSH}(X, \omega)$ by [1]). They showed in particular that for $\varphi \in \mathcal{E}(X, \omega)$ the measure ω_{φ}^{n} is well defined on X (with total mass $\int_{X} \omega^{n}$), vanishes on pluripolar sets, and is continuous (in the weak ${ }^{*}$ topology) for decreasing sequences in $\mathcal{E}(X, \omega)$.

One of the main results in [9], building on earlier work of Yau [11], Kołodziej [10], and Cegrell [6] was the existence of a solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\varphi \in \mathcal{E}(X, \omega) \tag{1}\\
\omega_{\varphi}^{n}=\mu \\
\max _{X} \varphi=0
\end{array}\right.
$$

provided that μ is a measure on X vanishing on pluripolar sets and with total mass $\int_{X} \omega^{n}$ (which are of course necessary conditions).

The uniqueness in (1) was posed as a problem in [9]. It had been proved in [3] for bounded φ, ψ (for $X=\mathbb{P}^{n}$ it had been earlier done in [2] with much more complicated methods). As observed in [9] the method from [3] actually gives the following result: if $\varphi \in \mathcal{E}(X, \omega)$ and $\psi \in \mathcal{E}^{1}(X, \omega)$ (where $\mathcal{E}^{p}(X, \omega):=\{\psi \in \mathcal{E}(X, \omega)$: $\left.\left.\int_{X}|\psi|^{p} \omega_{\psi}^{n}<\infty\right\}, p>0\right)$ are such that $\omega_{\varphi}^{n}=\omega_{\psi}^{n}$ then $\varphi-\psi=$ const.

[^0]The goal of this note is to prove the following improvement:
Theorem 1. Assume $\varphi \in \mathcal{E}(X, \omega)$ and $\psi \in \mathcal{E}^{p}(X, \omega)$ for some $p>1-2^{1-n}$. If $\omega_{\varphi}^{n}=\omega_{\psi}^{n}$ then $\varphi-\psi=$ const.

Let us mention that if $\varphi \in \mathcal{E}(X, \omega)$ are such that $\omega_{\varphi}^{n}=\omega_{\psi}^{n}=: \mu$ then we must have $\omega_{\max \{\varphi, \psi\}}^{n}=\mu$ (see [9], Proposition 3.4, we will make use of this result in the proof of Theorem 1) and also $\omega_{t \varphi+(1-t) \psi}^{n}=\mu, 0 \leq t \leq 1$ (see [8]).

In [4] and [5] the class \mathcal{D} of (germs of) plurisubharmonic functions was defined (it was shown that it is actually the same as the class \mathcal{E} studied in [7]). It is the maximal subclass of the class of plurisubharmonic functions where the complex Monge-Ampère operator $\left(d d^{c}\right)^{n}$ can be defined (as a regular measure) so that it is continuous for decreasing sequences. It was shown in [4] that $\mathcal{D}=P S H \cap W_{l o c}^{1,2}$ for $n=2$ and it was characterized (similarly, but in a more complicated way) for $n \geq 3$ in [5].

A natural counterpart of the class \mathcal{D} on a compact Kähler manifold is the class $\mathcal{D}(X, \omega)$ consisting of those $\varphi \in \operatorname{PSH}(X, \omega)$ such that locally $\varphi+g \in \mathcal{D}$, where g is a local potential for ω (that is $\omega=d d^{c} g$). In particular, for $n=2$ we get $\mathcal{D}(X, \omega)=$ $\mathcal{P} S H(X, \omega) \cap W^{1,2}(X)$ (and \subset for arbitrary n). The measure ω_{φ}^{n} is of course well defined for $\varphi \in \mathcal{D}(X, \omega)$. By $\mathcal{D}_{a}(X, \omega)$ denote the class of those $\varphi \in \mathcal{D}(X, \omega)$ for which ω_{φ}^{n} vanishes on pluripolar sets. It follows that $\mathcal{D}_{a}(X, \omega) \subset \mathcal{E}(X, \omega)$ but by Example 2.14 in [9] we don't have the equality in general.

By Lemma 5.14 in [7] the Dirichlet problem (1), where μ is a measure on X vanishing on pluripolar sets and with total mass $\int_{X} \omega^{n}$, always has a local solution in \mathcal{D}_{a}. This is therefore perhaps natural to ask whether it has a global solution belonging to $\mathcal{D}_{a}(X, \omega)$, which would be an improvement of Theorem A in [9]. However, using Theorem 1 we can show that this is not the case:

Theorem 2. Let (X, ω) be the projective space \mathbb{P}^{n} with the Fubini-Study metric. There exists a measure μ on X, vanishing on pluripolar sets and with total mass $\int_{X} \omega^{n}$, such that there is no $\varphi \in \mathcal{E}(X, \omega) \cap W^{1,2}(X)$ satisfying $\omega_{\varphi}^{n}=\mu$.

In the proofs of Theorems 1 and 2 we will follow the notation from [9] and use various results proved in that article. We always assume that (X, ω) is a fixed Kähler manifold.

The author is grateful to Sławomir Dinew and Sławomir Kołodziej for helpful discussions on this subject.

Proofs

As the proof in dimension 2 is simpler and more transparent, we first prove Theorem 1 in this case.

Proof of Theorem 1 in dimension 2. If $\widetilde{\psi}:=\max \{\varphi, \psi\}$ then $\widetilde{\psi} \geq \psi, \widetilde{\psi} \in \mathcal{E}^{p}(X, \omega)$ (by Lemma 2.3 in [9]), and by Proposition 3.4 in [9] we have $\omega_{\tilde{\psi}}^{2}=\omega_{\psi}^{2}=\omega_{\varphi}^{2}$. We may thus assume that $\varphi \leq \psi \leq-1$. Then, if we set $\psi^{j}:=\max \{\varphi, \psi-j\}$, we have $\psi-j \leq \psi^{j} \leq \psi, \psi^{j} \in \mathcal{E}^{p}(X, \omega)$, and ψ^{j} decreases to φ as $j \rightarrow \infty$. Without loss of generality we may thus assume that $0 \leq \rho:=\psi-\varphi \leq C$; then both φ and ψ belong to $\mathcal{E}^{p}(X, \omega)$.

We now set $\varphi_{j}:=\max \{\varphi,-j\}, \psi_{j}:=\max \{\psi,-j\}, \rho_{j}:=\psi_{j}-\varphi_{j}$, and $h_{j}:=$ $\left(\varphi_{j}+\psi_{j}\right) / 2$. First, we claim that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}=0 \tag{2}
\end{equation*}
$$

We have

$$
\int_{X} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)=-2 \int_{X} \rho_{j} d d^{c} \rho_{j} \wedge \omega_{h_{j}}=2 \int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}} .
$$

On the other hand,

$$
\begin{aligned}
\left|\int_{X} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)\right| & =\left|\int_{\{\varphi \leq-j\}} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)\right| \\
& \leq C\left(\int_{\{\varphi \leq-j\}} \omega_{\varphi_{j}}^{2}+\int_{\{\psi \leq-j\}} \omega_{\psi_{j}}^{2}\right) \rightarrow 0
\end{aligned}
$$

We thus get (2).
Set $\chi(t):=-\sqrt{-t}, t \leq-1$. We want to show the following improvement of (2)

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} \chi \circ h_{j} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}=0 \tag{3}
\end{equation*}
$$

Similarly as above we have

$$
\begin{align*}
\left|\int_{X} \chi \circ h_{j} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)\right| & =\left|\int_{\{\varphi \leq-j\}} \chi \circ h_{j} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)\right| \tag{4}\\
& \leq C|\chi(-j)|\left(\int_{\{\varphi \leq-j\}} \omega_{\varphi_{j}}^{2}+\int_{\{\psi \leq-j\}} \omega_{\psi_{j}}^{2}\right) \rightarrow 0
\end{align*}
$$

because $\varphi, \psi \in \mathcal{E}^{p}(X, \omega)$ and $p>1 / 2$. On the other hand,

$$
\int_{X} \chi \circ h_{j} \rho_{j}\left(\omega_{\varphi_{j}}^{2}-\omega_{\psi_{j}}^{2}\right)=2 \int_{X} d\left(\chi \circ h_{j} \rho_{j}\right) \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}} .
$$

By (4) it is enough to estimate, using the Schwarz inequality,

$$
\begin{aligned}
\mid \int_{X} \rho_{j} \chi^{\prime} \circ h_{j} d h_{j} & \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}} \mid \\
& \leq C \sqrt{\int_{X} \chi^{\prime} \circ h_{j} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}} \sqrt{\int_{X} \chi^{\prime} \circ h_{j} d h_{j} \wedge d^{c} h_{j} \wedge \omega_{h_{j}}}
\end{aligned}
$$

In order to show that the last integral is bounded in j we write

$$
\begin{aligned}
\int_{X} \chi^{\prime} \circ h_{j} d h_{j} \wedge d^{c} h_{j} \wedge \omega_{h_{j}} & =-\int_{X} \chi \circ h_{j} d d^{c} h_{j} \wedge \omega_{h_{j}} \\
& \leq-\int_{X} \chi \circ h_{j} \omega_{h_{j}}^{2} \\
& \leq-4 \int_{X} \chi \circ \varphi_{j} \omega_{\varphi_{j}}^{2}
\end{aligned}
$$

by Lemma 2.3 in [9]. Now from (2) (note that $0 \leq \chi^{\prime} \leq 1$) we thus get (3).
Proceeding as in [3] we write

$$
\int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega=\int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}-\int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge d d^{c} h_{j}
$$

so by (2) it is enough to estimate the last integral. We have

$$
-\int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge d d^{c} h_{j}=\int_{X} d \rho_{j} \wedge d^{c} h_{j} \wedge d d^{c} \rho_{j}=\int_{X} d \rho_{j} \wedge d^{c} h_{j} \wedge\left(\omega_{\psi_{j}}-\omega_{\varphi_{j}}\right)
$$

By the Schwarz inequality and since $\omega_{\psi_{j}} \leq 2 \omega_{h_{j}}$

$$
\begin{aligned}
& \left|\int_{X} d \rho_{j} \wedge d^{c} h_{j} \wedge \omega_{\psi_{j}}\right| \\
& \quad \leq 2 \sqrt{\int_{X} \frac{1}{\chi^{\prime} \circ h_{j}} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}} \sqrt{\int_{X} \chi^{\prime} \circ h_{j} d h_{j} \wedge d^{c} h_{j} \wedge \omega_{h_{j}}}
\end{aligned}
$$

The last integral is bounded in j. In our case we also have $1 / \chi^{\prime}=2 \chi$ and by (3) we get

$$
\lim _{j \rightarrow \infty} \int_{X} d \rho_{j} \wedge d^{c} h_{j} \wedge \omega_{\psi_{j}}=0
$$

Similarly we show that

$$
\lim _{j \rightarrow \infty} \int_{X} d \rho_{j} \wedge d^{c} h_{j} \wedge \omega_{\varphi_{j}}=0
$$

and thus

$$
\lim _{j \rightarrow \infty} \int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega=0
$$

For the proof of Theorem 1 in arbitrary dimension we will need some preparatory results.
Lemma 3. For $p>0, k=1, \ldots, n$, and $\varphi \in \operatorname{PSH}(X, \omega) \cap L^{\infty}(X)$ with $\varphi \leq-1$ we have

$$
\begin{equation*}
\int_{X}(-\varphi)^{p} \omega_{\varphi}^{n-k} \wedge \omega^{k} \leq \int_{X}(-\varphi)^{p} \omega_{\varphi}^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{X}(-\varphi)^{p-1} d \varphi \wedge d^{c} \varphi \wedge \omega_{\varphi}^{n-k} \wedge \omega^{k-1} \leq \frac{1}{p} \int_{X}(-\varphi)^{p} \omega_{\varphi}^{n} \tag{6}
\end{equation*}
$$

Proof. Set $T:=\omega_{\varphi}^{n-k} \wedge \omega^{k-1}$. Then

$$
\int_{X}(-\varphi)^{p-1} d \varphi \wedge d^{c} \varphi \wedge T=-\frac{1}{p} \int_{X} d\left((-\varphi)^{p}\right) \wedge d^{c} \varphi \wedge T=\frac{1}{p} \int_{X}(-\varphi)^{p} d d^{c} \varphi \wedge T
$$

Therefore the last integral is nonnegative and thus

$$
\int_{X}(-\varphi)^{p} \omega \wedge T \leq \int_{X}(-\varphi)^{p} \omega_{\varphi} \wedge T
$$

so by induction on k we get (5). We also obtain

$$
\int_{X}(-\varphi)^{p-1} d \varphi \wedge d^{c} \varphi \wedge T \leq \frac{1}{p} \int_{X}(-\varphi)^{p} \omega_{\varphi} \wedge T
$$

which, by virtue of (5), gives (6).

Lemma 4. For $k=0,1, \ldots, n-1$ set $p_{k}:=1-2^{-k}$. Assume that $\varphi, \psi \in$ $\operatorname{PSH}(X, \omega) \cap L^{\infty}(X)$ are ≤-1 and denote $\rho:=\psi-\varphi, h:=(\varphi+\psi) / 2$. Then for $p \geq p_{n-1}$

$$
\int_{X}(-h)^{p-p_{k}} d \rho \wedge d^{c} \rho \wedge \omega_{h}^{n-1-k} \wedge \omega^{k} \leq C\left(\int_{X}(-h)^{p} d \rho \wedge d^{c} \rho \wedge \omega_{h}^{n-1}\right)^{2^{-k}}
$$

where C is a positive constant depending only on n and on upper bounds for $\int_{X}(-h)^{p} \omega_{h}^{n}$ and $\int_{X}(-h)^{p} d \rho \wedge d^{c} \rho \wedge \omega_{h}^{n-1}$.
Proof. We use induction on k. For $k=0$ there is nothing to prove and we assume the estimate holds for $k-1$. We may write the left-hand side as

$$
\int_{X}(-h)^{p-p_{k}} d \rho \wedge d^{c} \rho \wedge \omega_{h} \wedge T-\int_{X}(-h)^{p-p_{k}} d \rho \wedge d^{c} \rho \wedge d d^{c} h \wedge T
$$

where $T=\omega_{h}^{n-1-k} \wedge \omega^{k-1}$. The first integral is now estimated by the inductive assumption (and since $h \leq-1$), so it is enough to bound the second term from above. Note that for $q \geq 0$ we have

$$
-(-h)^{q} d d^{c} h=\frac{1}{q+1} d d^{c}\left((-h)^{q+1}\right)-q(-h)^{q-1} d h \wedge d^{c} h \leq \frac{1}{q+1} d d^{c}\left((-h)^{q+1}\right)
$$

Therefore

$$
\begin{aligned}
-\int_{X}(-h)^{p-p_{k}} d \rho \wedge d^{c} \rho & \wedge d d^{c} h \wedge T \\
& \leq \frac{1}{p-p_{k}+1} \int_{X} d \rho \wedge d^{c} \rho \wedge d d^{c}\left((-h)^{p-p_{k}+1}\right) \wedge T \\
& =-\frac{1}{p-p_{k}+1} \int_{X} d\left((-h)^{p-p_{k}+1}\right) \wedge d^{c} \rho \wedge d d^{c} \rho \wedge T \\
& =\int_{X}(-h)^{p-p_{k}} d h \wedge d^{c} \rho \wedge\left(\omega_{\psi}-\omega_{\varphi}\right) \wedge T
\end{aligned}
$$

Since $\omega_{\psi} \leq 2 \omega_{h}$, by the Schwarz inequality we get

$$
\begin{aligned}
& \left|\int_{X}(-h)^{p-p_{k}} d h \wedge d^{c} \rho \wedge \omega_{\psi} \wedge T\right| \\
& \quad \leq 2 \sqrt{\int_{X}(-h)^{p-1} d h \wedge d^{c} h \wedge \omega_{h} \wedge T} \sqrt{\int_{X}(-h)^{p-p_{k-1}} d \rho \wedge d^{c} \rho \wedge \omega_{h} \wedge T}
\end{aligned}
$$

Similarly we can deal with the term involving ω_{φ} and the required estimate follows from Lemma 3.

Lemma 4 easily gives Theorem 1 :
Proof of Theorem 1 for arbitrary n. Using the same notation as previously we can similarly as in the proof of (3) show that

$$
\lim _{j \rightarrow \infty} \int_{X}\left(-h_{j}\right)^{1-2^{1-n}} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega_{h_{j}}^{n-1}=0
$$

Lemma 4 applied for $k=n-1$, together with Lemma 2.3 in [9], now give

$$
\lim _{j \rightarrow \infty} \int_{X} d \rho_{j} \wedge d^{c} \rho_{j} \wedge \omega^{n-1}=0
$$

For the proof of Theorem 2 we will need the following quantitative version of Example 2.14 in [9]:
Proposition 5. Assume that $\psi \in \operatorname{PSH}(X, \omega)$ is negative and $0<\alpha<1$. Then $-(-\psi)^{\alpha} \in \mathcal{E}^{p}(X, \omega)$ for $p<(1-\alpha) / \alpha$.
Proof. Without loss of generality we may assume that $\psi \leq-1$. Set $\varphi:=-(-\psi)^{\alpha}$. We have

$$
\begin{aligned}
\omega_{\varphi} & =\alpha(1-\alpha)|\psi|^{\alpha-2} d \psi \wedge d^{c} \psi+\alpha|\psi|^{\alpha-1} \omega_{\psi}+\left(1-\alpha|\psi|^{\alpha-1}\right) \omega \\
& \leq \alpha(1-\alpha)|\psi|^{\alpha-2} d \psi \wedge d^{c} \psi+\alpha|\psi|^{\alpha-1} \omega_{\psi}+\omega
\end{aligned}
$$

and (for bounded ψ)

$$
\begin{aligned}
\omega_{\varphi}^{n} / C \leq & \sum_{k=0}^{n-1}|\psi|^{\alpha-2+k(\alpha-1)} d \psi \wedge d^{c} \psi \wedge \omega_{\psi}^{k} \wedge \omega^{n-1-k} \\
& +\sum_{l=1}^{n}|\psi|^{l(\alpha-1)} \omega_{\psi}^{l} \wedge \omega^{n-l}+\omega^{n}
\end{aligned}
$$

where C is a positive constant depending on α and n. For $a>0$ and $T=\omega_{\psi}^{k} \wedge$ ω^{n-1-k} we get

$$
\begin{aligned}
\int_{X}(-\psi)^{-a-1} d \psi \wedge d^{c} \psi \wedge T & =\frac{1}{a} \int_{X} d(-\psi)^{-a} \wedge d^{c} \psi \wedge T \\
& =-\frac{1}{a} \int_{X}(-\psi)^{-a} d d^{c} \psi \wedge T \\
& \leq \frac{1}{a} \int_{X}(-\psi)^{-a} \omega \wedge T \\
& \leq \frac{1}{a} \int_{X} \omega \wedge T \\
& =\frac{1}{a} \int_{X} \omega^{n}
\end{aligned}
$$

Therefore for $b<1-\alpha$ we obtain

$$
\int_{X}|\psi|^{b} \omega_{\varphi}^{n} \leq C(n, \alpha, b)\left(1+\int_{X}|\psi|^{b} \omega^{n}\right)
$$

and approximating arbitrary ψ by $\max \{\psi,-j\}$ the proposition follows.
Proof of Theorem 2. For $z \in \mathbb{C}^{n}$ set

$$
\psi(z):=\log \left|z_{1}\right|-\frac{1}{2} \log \left(1+|z|^{2}\right)-1
$$

It can be extended to a function from $\operatorname{PSH}(X, \omega)$. Then $\widetilde{\psi}:=-\sqrt{-\psi} \notin W^{1,2}(X)$ and by Proposition $5 \widetilde{\psi} \in \mathcal{E}^{p}(X, \omega)$ for $p<1$. Using Theorem 1 we then conclude that for any $\varphi \in \mathcal{E}(X, \omega)$ satisfying $\omega_{\varphi}^{n}=\omega_{\widetilde{\psi}}^{n}$ we have $\varphi=\widetilde{\psi}+$ const $\notin W^{1,2}(X)$.

References

[1] E. Bedford, B.A. Taylor, Fine topology, Šilov boundary, and (dd $d^{c}{ }^{n}$, J. Funct. Anal. 72 (1987), 225-251.
[2] E. Bedford, B.A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469.
[3] Z. Błocki, Uniqueness and stability for the Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 1697-1702.
[4] Z. Błocki, On the definition of the Monge-Ampère operator in \mathbb{C}^{2}, Math. Ann. 328 (2004), 415-423.
[5] Z. Błocki, The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128 (2006), 519-530.
[6] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217.
[7] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier 54 (2004), 159-179.
[8] S. Dinew, An inequality for mixed Monge-Ampère measures, preprint, 2007.
[9] V. Guedj, A.Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 443 (2007), 442-482.
[10] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
[11] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation, I, Comm. Pure Appl. Math. 31 (1978,), 339-411.

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland

E-mail address: Zbigniew.Blocki@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification. 32W20, 32Q15.
 Key words and phrases. Complex Monge-Ampère equation, Kähler manifolds.
 This paper was written during the author stay at the Institut Mittag-Leffler (Djursholm, Sweden). It was also partially supported by the projects N N201 367933 and 189/6 PR EU/2007/7 of the Polish Ministry of Science and Higher Education

