Uniqueness and Stability for
the Complex Monge-Ampére Equation
on Compact Kihler Manifolds

ZBIGNIEW BLOCKI

ABSTRACT. We prove uniqueness of weak solutions of the Dirich-
let problem for the complex Monge-Ampere equation on com-
pact Kihler manifolds. A qualitative version of this result implies
the L2/ (=1 — L1 stability of solutions of this equation.

1. INTRODUCTION

Let M be a compact Kihler manifold of the complex dimension 7 with the Kahler
form w. We say that a function @ on M is admissible if it is upper semicontin-
uous, locally integrable and wg := dd® + w = 0, where d = 0 + 0 and d¢ =
V=1(0 - 2). By [1], for bounded admissible @ on M one can well define the
complex Monge-Ampére measure

n _
We =We A+ AWg.

The main goal of this note is to show the following uniqueness result.

Theorem 1.1. Let @, @ be bounded admissible functions on M such that wg, =
wiy. Then @ — Y is constant.

For M = P™ Theorem 1.1 was proved in [2]. In this case it is equivalent to
the uniqueness of the Dirichlet problem for the complex Monge-Ampére equation
for entire plurisubharmonic functions with logarithmic growth. For arbitrary M,
Calabi showed in the 1950’s that the uniqueness holds in the case when @, y are
smooth and wg, wy > 0. Recently in [5] Theorem 1.1 was proved under extra
assumption that wy and wj, have a density belonging to L1(M) for some g > 1.

In fact, we prove the following stability result, which is a quantitative version
of Theorem 1.1.
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Theorem 1.2. If @ and @ are bounded admissible on M, then

21—1’[

[ a@-wnac@-prer<c(]| w-orwp-wp)

where C is a positive constant depending only on n and upper bounds of ||@ |1~ m),
WL~y and the volume of M.

Theorem 1.2 and the Sobolev inequality give an L?™/(*~1 — L1 stability for the
complex Monge-Ampere operator on compact Kihler manifolds (compare with

[5]).
Theorem 1.3. Let @ and @ be bounded admissible functions on M such that

J cpw”=f Y™
M M

and wy = fw', wy, = gw™ for some f, g € LY(M). Then, ifn > 2,

2—7’1
||Q9 - (IJHLZYL/(n—l)(M) = CHf _g”Ll(M)’

where C is a positive constant depending on M and on upper bounds of || @ || 1> vy and
Nl ).

The proof of Theorem 1.2 is in a way quite elementary. Unlike in [5], it
does not use the existence of solutions of the Dirichlet problem (given directly or
indirectly by [0]).

Note that the uniqueness (Theorem 1.1) does not hold for unbounded solu-

tions: consider for example M = P" and for z = (20, z1,...,2n) € C""1\ {0}
VIzi2+ - - + [z ?
ZoiZ1 et z =1 ,
Pllzo:z D e T T
max{|zil,...,|znl}

VIzoP+ 1212+ -+ - + [z 2

One can then check that w{, = wy = ¢, d[1.0:..-.0] but of course @ — ¢ is not
constant.

2. PRELIMINARIES

We will now recall some facts that will be used in the proof of Theorem 2. They
were proved mostly in [1] (see also [3], [4]). We assume that M is just a complex
manifold of dimension n. Let T be a nonnegative (and thus in particular of
order zero, or, in other words, representable by integration) closed complex (p, p)
current on M (p < n — 1) and let n, p be functions defined on M which locally
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can be written in the form n = u; — Uy, p = U3 — U4, where uq, ..., U4 are
bounded and plurisubharmonic. One can then well define currents

ndd‘p AT, dnandp AT,
and they are of order zero. Moreover, we always have
dp Ad°p AT =0
and, if p is plurisubharmonic,
dd°p AT = 0.

Since currents of the form dx; A d°p A T are well defined, so are dp A T and
d°p A T (but they are not necessarily of order zero).
If p = n — 1, then the Schwarz inequality gives

1/2 1/2
‘J dn/\deAT‘s(J dn/\dcr’/\T> (J dp/\deAT>
M M M

If we take T = (dd€|z|*)"~! in some chart of M, it follows that dp Ad°p AT
has a locally bounded mass and therefore p € W52 (M).

(o]

Finally, by the Stokes theorem, if U is a real 2n — 1 current (with complex
coefhicients) on M such that dU is of order zero, and M is compact, then

J au = 0.
M

3. PROOF OF THEOREM 1.2

By C we will denote possibly different constants depending only on the required

quantities. Set p = @ — . Fork =0, 1, ..., n— 1 we will prove inductively that
(3.1) J dpAdeAwéDAwﬂ,AwksCaz_k,

M
where

a=J (w—m)(wg—w$)=J dp Andp AT,
M M
n-1
T=> wlawh !,
=0

and i, j are such thati+ j + k = n — 1. For k = n — 1 we will then obtain the
desired estimate.
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Ifk =0, then
J dpAdcp/\wﬁp/\w{),sJ dpAdp AT = a.
M M

Assume that (3.1) holds for 0, 1, ..., k — 1. We have

wh Ay Ak =i A w) - dde A «,

where
o k-l
— i J ¢
ox=wh AWy A D WA
1=0

k-1-¢

Therefore

dp A d°p A wi, Awl A wk<dpadpa(T—dden )
=d(pd°p AT —d° @ Anoxndp Ad°p)
—pdd°p AT —dp ANd°P A & A ddp.

This means that

ksa—J dp Ad°@ A A ddCp.
M

J dp/\dcp/\wfp/\w{[,/\w

M

We have

—J dprd°aranddp < H dpAqua/\(waq,’Jr” dp/\dc(p/\()(/\ww’.
M M M

If n is equal to @ or y, the Schwarz inequality gives

1/2 1/2
H dp/\dc(p/\()(/\wn’ < (J dpAde/\cx/\w,,> (J d(pAdC(p/\omw,,)
M M M

By the inductive assumption (and since a < C) it remains to show that
J dp Ad°@ Ax A wy<C.
M

But

J dcpAdCcp/\(x/\w,,z—J P Add“P A XA wy
M M

IA

WAXAW|+ We A XA W
1K o| <] @00 nanwn
< 2kl @Il z= () vol(M).

The proof is complete. O
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Remark 3.1. Approximating @ and ¢ by smooth admissible functions and
using the continuity theorems for the complex Monge-Ampére operator from [1],
one can reduce the proof of Theorem 1.2 to smooth @ and y.
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