Uniqueness and Stability for the Complex Monge-Ampère Equation on Compact Kähler Manifolds

ZBIGNIEW BŁOCKI

ABSTRACT. We prove uniqueness of weak solutions of the Dirichlet problem for the complex Monge-Ampère equation on compact Kähler manifolds. A qualitative version of this result implies the $L^{2n/(n-1)} - L^1$ stability of solutions of this equation.

1. INTRODUCTION

Let *M* be a compact Kähler manifold of the complex dimension *n* with the Kähler form ω . We say that a function φ on *M* is *admissible* if it is upper semicontinuous, locally integrable and $\omega_{\varphi} := dd^c \varphi + \omega \ge 0$, where $d = \partial + \bar{\partial}$ and $d^c = \sqrt{-1}(\bar{\partial} - \partial)$. By [1], for bounded admissible φ on *M* one can well define the complex Monge-Ampère measure

$$\omega_{\varphi}^{n} = \omega_{\varphi} \wedge \cdots \wedge \omega_{\varphi}.$$

The main goal of this note is to show the following uniqueness result.

Theorem 1.1. Let φ , ψ be bounded admissible functions on M such that $\omega_{\varphi}^{n} = \omega_{\psi}^{n}$. Then $\varphi - \psi$ is constant.

For $M = \mathbb{P}^n$ Theorem 1.1 was proved in [2]. In this case it is equivalent to the uniqueness of the Dirichlet problem for the complex Monge-Ampère equation for entire plurisubharmonic functions with logarithmic growth. For arbitrary M, Calabi showed in the 1950's that the uniqueness holds in the case when φ , ψ are smooth and ω_{φ} , $\omega_{\psi} > 0$. Recently in [5] Theorem 1.1 was proved under extra assumption that ω_{φ}^n and ω_{ψ}^n have a density belonging to $L^q(M)$ for some q > 1.

In fact, we prove the following stability result, which is a quantitative version of Theorem 1.1.

ZBIGNIEW BŁOCKI

Theorem 1.2. If φ and ψ are bounded admissible on M, then

$$\int_{M} d(\varphi - \psi) \wedge d^{c}(\varphi - \psi) \wedge \omega^{n-1} \leq C \bigg(\int_{M} (\psi - \varphi) (\omega_{\varphi}^{n} - \omega_{\psi}^{n}) \bigg)^{2^{1-n}},$$

where *C* is a positive constant depending only on *n* and upper bounds of $\|\varphi\|_{L^{\infty}(M)}$, $\|\psi\|_{L^{\infty}(M)}$ and the volume of *M*.

Theorem 1.2 and the Sobolev inequality give an $L^{2n/(n-1)} - L^1$ stability for the complex Monge-Ampère operator on compact Kähler manifolds (compare with [5]).

Theorem 1.3. Let φ and ψ be bounded admissible functions on M such that

$$\int_M \varphi \, \omega^n = \int_M \psi \omega^n$$

and $\omega_{\varphi}^{n} = f \omega^{n}$, $\omega_{\psi}^{n} = g \omega^{n}$ for some $f, g \in L^{1}(M)$. Then, if $n \ge 2$,

$$\|\varphi - \psi\|_{L^{2n/(n-1)}(M)} \le C \|f - g\|_{L^{1}(M)}^{2-n},$$

where C is a positive constant depending on M and on upper bounds of $\|\varphi\|_{L^{\infty}(M)}$ and $\|\psi\|_{L^{\infty}(M)}$.

The proof of Theorem 1.2 is in a way quite elementary. Unlike in [5], it does not use the existence of solutions of the Dirichlet problem (given directly or indirectly by [6]).

Note that the uniqueness (Theorem 1.1) does not hold for unbounded solutions: consider for example $M = \mathbb{P}^n$ and for $z = (z_0, z_1, \dots, z_n) \in \mathbb{C}^{n+1} \setminus \{0\}$

$$\varphi([z_0:z_1:\cdots:z_n]) := \log \frac{\sqrt{|z_1|^2 + \cdots + |z_n|^2}}{\sqrt{|z_0|^2 + |z_1|^2 + \cdots + |z_n|^2}}, \psi([z_0:z_1:\cdots:z_n]) := \log \frac{\max\{|z_1|,\ldots,|z_n|\}}{\sqrt{|z_0|^2 + |z_1|^2 + \cdots + |z_n|^2}}.$$

One can then check that $\omega_{\varphi}^n = \omega_{\psi}^n = c_n \delta_{[1:0:\cdots:0]}$ but of course $\varphi - \psi$ is not constant.

2. PRELIMINARIES

We will now recall some facts that will be used in the proof of Theorem 2. They were proved mostly in [1] (see also [3], [4]). We assume that M is just a complex manifold of dimension n. Let T be a nonnegative (and thus in particular of order zero, or, in other words, representable by integration) closed complex (p, p) current on M ($p \le n - 1$) and let η , ρ be functions defined on M which locally

can be written in the form $\eta = u_1 - u_2$, $\rho = u_3 - u_4$, where u_1, \ldots, u_4 are bounded and plurisubharmonic. One can then well define currents

$$\eta dd^c \rho \wedge T, \quad d\eta \wedge d^c \rho \wedge T,$$

and they are of order zero. Moreover, we always have

$$d\rho \wedge d^c \rho \wedge T \ge 0$$

and, if ρ is plurisubharmonic,

$$dd^c \rho \wedge T \ge 0.$$

Since currents of the form $dx_i \wedge d^c \rho \wedge T$ are well defined, so are $d\rho \wedge T$ and $d^c \rho \wedge T$ (but they are not necessarily of order zero).

If p = n - 1, then the Schwarz inequality gives

$$\left|\int_{M} d\eta \wedge d^{c}\rho \wedge T\right| \leq \left(\int_{M} d\eta \wedge d^{c}\eta \wedge T\right)^{1/2} \left(\int_{M} d\rho \wedge d^{c}\rho \wedge T\right)^{1/2}.$$

If we take $T = (dd^c |z|^2)^{n-1}$ in some chart of M, it follows that $d\rho \wedge d^c \rho \wedge T$ has a locally bounded mass and therefore $\rho \in W_{loc}^{1,2}(M)$.

Finally, by the Stokes theorem, if U is a real 2n - 1 current (with complex coefficients) on M such that dU is of order zero, and M is compact, then

$$\int_M dU = 0.$$

3. Proof of Theorem 1.2

By *C* we will denote possibly different constants depending only on the required quantities. Set $\rho = \varphi - \psi$. For k = 0, 1, ..., n - 1 we will prove inductively that

(3.1)
$$\int_{M} d\rho \wedge d^{c}\rho \wedge \omega_{\varphi}^{i} \wedge \omega_{\psi}^{j} \wedge \omega^{k} \leq Ca^{2^{-k}},$$

where

$$\begin{split} a &= \int_{M} (\psi - \varphi) (\omega_{\varphi}^{n} - \omega_{\psi}^{n}) = \int_{M} d\rho \wedge d^{c} \rho \wedge T, \\ T &= \sum_{l=0}^{n-1} \omega_{\varphi}^{\ell} \wedge \omega_{\psi}^{n-1-\ell}, \end{split}$$

and *i*, *j* are such that i + j + k = n - 1. For k = n - 1 we will then obtain the desired estimate.

If k = 0, then

$$\int_{M} d\rho \wedge d^{c}\rho \wedge \omega_{\varphi}^{i} \wedge \omega_{\psi}^{j} \leq \int_{M} d\rho \wedge d^{c}\rho \wedge T = a.$$

Assume that (3.1) holds for 0, 1, ..., k - 1. We have

$$\omega_{\varphi}^{i} \wedge \omega_{\psi}^{j} \wedge \omega^{k} = \omega_{\varphi}^{i+k} \wedge \omega_{\psi}^{j} - dd^{c}\varphi \wedge \alpha,$$

where

$$\alpha = \omega_{\varphi}^{i} \wedge \omega_{\psi}^{j} \wedge \sum_{l=0}^{k-1} \omega_{\varphi}^{\ell} \wedge \omega^{k-1-\ell}.$$

Therefore

$$\begin{split} d\rho \wedge d^c \rho \wedge \omega^i_{\varphi} \wedge \omega^j_{\psi} \wedge \omega^k &\leq d\rho \wedge d^c \rho \wedge (T - dd^c \varphi \wedge \alpha) \\ &= d(\rho d^c \rho \wedge T - d^c \varphi \wedge \alpha \wedge d\rho \wedge d^c \rho) \\ &- \rho dd^c \rho \wedge T - d\rho \wedge d^c \varphi \wedge \alpha \wedge dd^c \rho. \end{split}$$

This means that

$$\int_{M} d\rho \wedge d^{c}\rho \wedge \omega_{\varphi}^{i} \wedge \omega_{\varphi}^{j} \wedge \omega^{k} \leq a - \int_{M} d\rho \wedge d^{c}\varphi \wedge \alpha \wedge dd^{c}\rho$$

We have

$$-\int_{M} d\rho \wedge d^{c} \varphi \wedge \alpha \wedge dd^{c} \rho \leq \left| \int_{M} d\rho \wedge d^{c} \varphi \wedge \alpha \wedge \omega_{\varphi} \right| + \left| \int_{M} d\rho \wedge d^{c} \varphi \wedge \alpha \wedge \omega_{\psi} \right|.$$

If η is equal to φ or ψ , the Schwarz inequality gives

$$\left|\int_{M} d\rho \wedge d^{c} \varphi \wedge \alpha \wedge \omega_{\eta}\right| \leq \left(\int_{M} d\rho \wedge d^{c} \rho \wedge \alpha \wedge \omega_{\eta}\right)^{1/2} \left(\int_{M} d\varphi \wedge d^{c} \varphi \wedge \alpha \wedge \omega_{\eta}\right)^{1/2}$$

By the inductive assumption (and since $a \leq C$) it remains to show that

$$\int_M d\varphi \wedge d^c \varphi \wedge \alpha \wedge \omega_\eta \leq C.$$

But

$$\begin{split} \int_{M} d\varphi \wedge d^{c}\varphi \wedge \alpha \wedge \omega_{\eta} &= -\int_{M} \varphi \wedge dd^{c}\varphi \wedge \alpha \wedge \omega_{\eta} \\ &\leq \Big| \int_{M} \varphi \, \omega \wedge \alpha \wedge \omega_{\eta} \Big| + \Big| \int_{M} \varphi \, \omega_{\varphi} \wedge \alpha \wedge \omega_{\eta} \\ &\leq 2k \|\varphi\|_{L^{\infty}(M)} \operatorname{vol}(M). \end{split}$$

The proof is complete.

1700

Remark 3.1. Approximating φ and ψ by smooth admissible functions and using the continuity theorems for the complex Monge-Ampère operator from [1], one can reduce the proof of Theorem 1.2 to smooth φ and ψ .

Acknowledgement. The author was partially supported by KBN Grant #2 P03A 028 19.

The author would like to thank S. Kołodziej for his assistance and discussions on [2].

References

- [1] E. BEDFORD and B.A. TAYLOR, A new capacity for plurisubharmonic functions, Acta Math 149 (1982), 1-41.
- [2] _____, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. **38** (1989), 455-469.
- [3] J.-P. DEMAILLY, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math. Plenum, New York, 1993, pp. 115-193.
- [4] M. KLIMEK, Pluripotential Theory, Clarendon Press, 1991.
- [5] S. KOŁODZIEJ, Stability of solutions to the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686.
- [6] S.-T. YAU, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I Comm. Pure Appl. Math. 31 (1978), 339-411.

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059, Kraków, Poland. blocki@im.uj.edu.pl

KEY WORDS AND PHRASES: complex Monge-Ampère equation; compact Kähler manifolds. 2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary: 32W20; secondary: 32Q15. *Received: August 1st, 2002; revised: March 26th, 2003.*