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ZBIGNIEW BLOCKI

1. Weak Differentiation

Regularization. Let p € C5°(R"™) be such that p > 0, p(x) depends only on
|z|, suppp C B(0,1) and [pd\ = 1. For € > 0 set p.(y) := e "p(y/e). Then
pe € C&°(R™), suppp. C B(0,e) and [p.d\ = 1. For any u € L}, () we set
Ue 1= U * pg, that is

we@) = [ ul)ocla = p)irw
:/B(O )u(w—y)ps(y)dk(y)

_ / (@ — ey)p(y)dA(®y)
B(0,1)

(note that the first integral is in fact over B(x,¢)). The function wu. is defined in
the set
Q. :={x € Q:B(x,e) C N}

Theorem 1.1. i) u. — u pointwise almost everywhere as ¢ — 0.

ii) If u € C(Q) then u. — u locally uniformly as e — 0.

wi) For p > 1 ifu e L} (Q) then ue — w in L} (Q) (that is in L7 () for
Ve ase—0.

Proof. 1) By the Lebesgue differentiation theorem for almost all = we have

| 1 -
lim s /B ) )] X =0

For such an x

e () — ()| < / pe(z — 1) |u(y) — u(x)|dA(y)

B(z,e)
C

BT /B ) @] )
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2 ZBIGNIEW BLOCKI

ii) We have

e () — ()| < / (e — ) — u(@)lpe (W)dN)) < sup Ju — u(z)|
B(0,¢) B(0,e)

and the convergence follows because continuous functions are locally uniformly
continuous.
iii) We first estimate by Holder’s inequality

fus(£)|P < /B o =P,

Integrating over x we will get

el o) < llullrr )

For every 6 > 0 there exists v € Cp(§2) with |[v — u||, < § (this is a consequence of
Lusin’s theorem). Then for sufficiently small ¢

lue = ull < llue = vell + flve = ol + [lv =]
(with norms in LP (') for a fixed Q' € Q). We have
[ue = vel| < [lu— v, <6,

thus
[ue — ul| <26 + [Jve — v

and it is enough to use ii). O

Weak differentiation. We will use the notation

o olal
Dj=—, D*=—_"
7 xy’ Azt ... 0z’

where j =1,...,n, a = (aq,...,a,) € N" and |a| = a3 + -+ + ay,. 2 will denote
a domain in R™. By Stokes’ theorem we have

/goDD‘ud/\:(—l)|“/uDagod>\
Q Q

for u € C1*N(Q), p € C'(l)al(Q). Now for u,v € L, () we say that v = D*u in the
weak sense if

/WdA:(—l)'a/uD%dA, p € Cyl(Q).
Q Q

The function v, if exists, is determined almost everywhere.
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Exercise 1. Set u(z) := |z| € L}, (R). Show, directly from the definition, that v’
does exist but v does not.

One can easily show that for the weak differentiation we also have D*D? =
DotB,

Differentiating under the sign of integration, we see that
D%, = ux D%p,

(in the strong sense) and u. € C*°(£2,).

Proposition 1.2. If D%u exists in the weak sense then

D%, = (D%u)e.
Proof. We have

D%u.(z) = /Qu(y)Do‘pe(x —y)dA(y)

N
(1) /Q D(pe(- — y))dA
= (D%)(z). O

Sobolev Spaces. For k =1,2,... and p > 1 define

WhP(Q) ;== {u e LP (Q): D% € LP(Q) if |a| < k}.

loc

This is a Banach space with the norm

1/p
fullws sy = | [ 3 IDupay
*lal<k
One can easily check that
> ID%ul,
|| <k
(where we use the notation || - [[, = || - ||z»(q)) is an equivalent norm. Of course

WP () will denote the class of those functions that belong to W*2(Q') for ' € €.

loc

The case p = 2 is special because W*2(Q) is a Hilbert space. It is often denoted
by H*(Q).
Proposition 1.3. For u € W,"P(Q) we have ue — u in W}"P(Q) as e — 0.

loc

Proof. It follows immediately from Proposition 1.2 and Theorem 1.1.iii. [
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Proposition 1.4. C>* N Wk,P(Q) is dense in W*P(Q).

Proof. Let v; € C§°(€2) be a partition of unity in Q (that is Zj 1; = 1 and the
sum is locally finite). Fix u € W"P(Q) and § > 0. For every j we can find ¢;
sufficiently small so that

5

l@su)e, = vsullwesiy < 5

and so that the sum

V= Z(¢ju)€j

J

is locally finite. It follows that v € C*°(Q) and [[u — v||ywrpo) < 0. O

By Wé“’p(Q) we will denote the closure of C¥(Q) in W*?(§). From Proposition
1.3 it follows that if u € W*P(Q) has compact support then u € Wéc’p(Q).

Theorem 1.5 (Sobolev). For p < n we have Wy"*(Q) ¢ L"™/("=2)(Q) and

(1.1) [ullnp/nrpy < Cln,p) | Dully,  w € WyP(R).

Proof. Tt is enough to show the Sobolev inequality (1.1) for u € C}(R™). First
assume that p = 1. We clearly have

()| < / \Dju] de,

and the right-hand side is a function in R™ independent of x;. We thus have

n 1/(n—1)
R R \J/R
1/(n—1) n 1/(n—1)
R R 5 \JR

1/(n—=1) n 1/(n—1)
R j=2 R2

by Holder’s inequality. Proceeding further we obtain similarly

1/(n—1) 1/(n—1)
]u!”/(”*l)dacldxg < ( |D1u\dx1dx2> ( ]Dgu]dxldm)
R2 R2

n 1/(n—1)
H (/RS |Dju|dx1dx2dxj>
j=3

R2

and eventually
1/n



PDE II 5

From the inequality between geometric and arithmetic means we get

1 . 1
) < = D.u|d\ < —||Dul|1.
iy < 3 | 22 Dsular < lDul

For arbitrary p set @ := |u|? for some ¢ > 1. Then D;u = q|u|?"'D;u and |Du| =
q|u|9™1|Dul, therefore

- 1 -
[l sy = Wlinmy < =Dl

-1 9~ Dyl d\ < —L p'(a=1) gy v D
=L [ wrtipuin< (] | Dl

by Holder’s inequality, where 1/p+ 1/p’ = 1. We now solve gn/(n — 1) = p'(qg — 1)
in ¢ and get ¢ = (n — 1)p/(n — p) (since p < n, we have ¢ > 1). We thus obtain
(n—1p
) < —————||Dul|,. O
[llapsr-s < ~2 DD

Corollary 1.6. For p <n one has WL" C LZYZ’C/(”*”),

Proof. For ' € Q" € Q choose ¢ € C§°(Q) with ¢ = 1 in Q'. Then for u €
WLP(Q") we have ¢u € W, P(Q) (this is because directly from the definition of
weak differentiation we have

Dj(ypu) = Djpu + ¢ Dju)

and the result follows. [

Exercise 2. Show that

(R") <= a>-n/q and |z|* € WLP(R") <= a>1-—n/p.

loc

|z|* € L,
Conclude that the exponent np/(n — p) in the Sobolev theorem is optimal for every
1<p<n.

Theorem 1.7 (Morrey). For p > n we have WyP(Q) € C%1="/?(Q). Moreover,
for u € WyP(Q)

ulxr) —u
[l@) =Wl o, ) Dul,, wye @z y.

1.2
12) |z —y[t—n/p =

Proof. We claim that it is enough to show Morrey’s inequality (1.2) for u € CL(R™).
For if u € Wy'*(Q) and u; € C}(2) € C§(R™) are such that u; — u in W'?(Q) and
pointwise almost everywhere (because from every sequence converging in Lj,, one
can choose a subsequence converging pointwise almost everywhere) then it follows
that (1.2) holds almost everywhere, and thus everywhere.
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Assume therefore that v € C}(R") and denote r = |x —y|. Let B any closed ball

of radius R containing  and y. Then r < 2R and B C B(z,r + R) C B(z,3R).
We have, assuming for simplicity that = = 0,

13 - = [ Tulelar= [0l Ly

Plyl” Tyl
Set,

5,
U := ——— udA
A(B) Jp

[ |Du(z)], xze€B
Viw) = { 0, v ¢ B.

Integrating (1.3) over B w.r.t. y we can estimate

AB)us — u(0) g// dpd)\()
/ /B(O 3R)V(p|y’)d/\( u)dp
:/ / - 1dt/|w| Vi(pw)ido(w)dp

/ y['~ | Du(y)|dA(y)

1/p'
Sjoul ([ 10 )
where 1/p+1/p’ = 1. Since

/ ly| TP A (y) < / [yl =P A (y)
B B(0,3R)

3R ,
_ Cn/ p=D(=2)
0

’
— c/an—i-p (1-n)

and

IN

w
\:_g 3

and n/p’ +1—n=1—n/p, we now get
lup —u(z)| < C(n,p)R"~"/?|| Dul|,
and

[u(@) = u(y)| < Jup — u(@)| + lup — u(y)| < 2C(n, p)R*"?| Dull,. O

From the proof we can deduce the following estimate:

Theorem 1.8. Assume that B is an open ball with radius R and u € WP (B) for
some p >n. Then for x,y € B

lu(z) — u(y)| < C(n,p)R*?|| Dul Lo (p).-
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Proof. By the proof of Theorem 1.7 the inequality holds for v € C'NW1P(B). For
general u we can now use Proposition 1.4 to get it for almost all z,y. But since,
by Morrey’s theorem, w is in particular continuous, the theorem follows. [

We also have the following counterpart of Corollary 1.6 (with the same proof):
Corollary 1.9. For p > n we have I/Vllof(ﬂ) c CO1=n/p(Q). O

Exercise 3. Considering again the function |x|® show that the Hélder exponent
1 —n/p in Morrey’s theorem is optimal.

Morrey’s theorem for p = oo asserts that functions from I/VllocOo are locally Lip-

schitz continuous. In fact in this case the opposite also holds:
Theorem 1.10. We have VVlicOO =Co1,

Proof. C follows from Morrey’s theorem but we can in fact show it independently.
For u € Wh>°(Q) we have

|Due ()] = |(Du)e| < [[Dul|og

and
|ue(z) — ue(y)| < [[Dulloo|z — Yy

(if © is convex). Therefore for almost all z,y € Q.
u(z) = u(y)] < [[Dulloc|z =y,

and thus for all z,y € Q.
On the other hand, take Lipschitz continuous u with compact support. For h # 0
consider the difference quotient

x + hej) —u(x)
h :

D;Iu(a;) = u

Then ]D;‘u(x)] < C and by the Banach-Alaoglu theorem there exists a sequence
hm — 0 and v; € L>(R™) such that Djhu(m) — v;j weakly in L?(R"). Then for
¢ € C3°(R™)

/ uDjpd\ = lim uD; "™ dA

m—oo Jpn

= — lim D;‘u wdA

m—oo Jpn

:—/ v; pdA

Iterating the Sobolev theorem we will get

and v; = Dju weakly. [

whkr wh—Lnp/(n—p) - VVl’Zz?mp/(nf?p) C.o.C L&i/(nfkp)

loc loc

provided that p < n/k. If p is such that n/(j + 1) < p < n/j then

Wllz,f - I/Vllzzj,np/(n—jp) c Ok—i—Li+l-n/p
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(we may denote the latter as C*~"/P) by Morrey’s theorem. We thus get:
Theorem 1.11. Letp > 1 and k = 1,2,... If p < n/k then WP C Lo/ (n=kp)

loc loc

Forp > n/k such that p#n/j for j=1,...,k —1 we have VVZIZ’CP c ck—n/r O
For p = 1, without invoking neither Sobolev nor Morrey’s theorems, one can

show in a simple way that W/'l]:;’cl C C*~" where k > n, proceeding as follows:

Exercise 4. Prove that:
i) |ul|loo < ||D1...Dpully if u € C§(R™);

i) ue — u uniformly as e — 0 if u € W™ (R™) has compact support.
Conclude that W'  C and then that W)} < k.

In particular we have I/Vllof C C if n = 1. This is however no longer true for
n > 2:

Exercise 5. Show the function log(—log |x|) is in I/Vllof near the origin for n > 2
but not forn = 1.

It shows that the second part of Theorem 1.11 is not true for p = n/j.

Differentiability almost everywhere. As an application of Morrey’s inequality
we will get the following:

Theorem 1.12. For p > n functions from V[/li’f are differentiable almost every-
where.

Proof. By the Lebesgue differentiation theorem for almost all

i 1 p _
li S /B 1Duly) = Du@)P ix) =0,

where Du = (Dyu,...,Dyu) and Dju € L . Fix such an  and set
v(y) = u(y) —u(z) — (Du(z),y — x).
Then by Theorem 1.8 with B = B(z, R) and R =r = 2|z — y|
lv(y)l

< Cyr~ P\ Dull s » .
z—y| = i |1 Dv| e (B(2,r)

1/p
_ o (A(B(W /B IRCCE Du(x)\pd/\(z)>

and it converges to 0 as r — 0. It follows that Du(x) is the classical derivative of
watx. O

Corollary 1.13 (Rademacher). Lipschitz continuous functions are differentiable
almost everywhere. [

Compactness. It will be important for the existence theorems later on to know
when the imbedding in the Sobolev theorem is compact.

Theorem 1.14 (Rellich-Kondrachov). Assume that Q is bounded. Then for
p <n and g < np/(n — p) the embedding Wy*(Q) — LI() is compact (that is
continuous and images of bounded sets are relatively compact).
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Proof. Continuity is a consequence of the Sobolev inequality. We first show com-
pactness for ¢ = 1. Let A be a bounded set in I/VO1 P(Q), without loss of gen-
erality we may assume that A C C§(R™) with [lul|wie@) < 1 for u € A and

suppu C €. Fix Q with Q € Q € R* and for e > 0 sufficiently small define

Az i={u. :u € A} C C§(R2). We have
e ()] < /B e —p)ixy) < swpp. s < supp

and similarly
’DUE(IE)’ < sup ’Dpe"

It follows that A, is equicontinuous and from the Arzela-Ascoli theorem we deduce

that A, is relatively compact in L!(2) for every single .
We also have

jue () —u(z)| < / pe(y)|u(z —y) — u(x)| dA(y)

B(0,¢)

Ld

= [ pe0l [ G-
1

<e /B ey / Dulz — ty)] dt dA(y)

and thus, integrating w.r.t. x
lue = ull < el Dully < eX(Q)' P Dull,.

It is now sufficient to use the following simple fact:

Lemma 1.15. Let V be a Banach space with the following property: for every
u €V and e > 0 there exists u. € V with ||u—u.|| < Ce for some uniform constant
C. Assume moreover that A is a bounded subset of V' such that for every e > 0 the
set Ac := {u. : u € A} is relatively compact. Then A is relatively compact.

Proof. We have to show that every sequence u,, in A has a convergent subsequence.
For § > Oset e := C/5. We can find a subsequence ,,, . such that [t c—tm, || <
§ for all j, k, and by the assumption ||ty — U, || < 30. Using the diagonal method
we will now easily get a Cauchy subsequence of u,,. O

Proof of Theorem 1.1}, continued. For ¢ > 1 from Holder’s inequality we infer, if
0< A<,
Y
|ue — UIIZ < ue — UH%H“E - U”((Iq_,\)/(l_A)‘

We choose A with (¢ — A\)/(1 = X) =np/(n —p) =: pu, that is A = (u—q)/(p — 1)
(note that u > g > 1). By the Sobolev inequality

A
lue —ully < Cllue —ull’

and we can use the previous part. [
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2. Elliptic Equations of Second Order

We will consider second order operators in divergence form
(2.1) Lu := D;(a” Dju) + b'D;u + cu,

where a', b%, ¢ are functions defined in , a” = a’*. Note that operators in non-
divergence form
CL”DZ‘D]‘U + lezU + cu

can be written in divergence form
D;(a” Dju) + (b" — D;a")D;u + cu

provided that a* are sufficiently regular.
A function u is a weak solution of the equation

(2.2) Lu=f

if
—E(u,w):/gfcpd% @ € 057 (%),

where

E(u,v):/aijDiuDjvd)\—/ (b'Dyu + cu)vdA.
Q Q

The equation (2.2) makes sense for u € Wllof () and a¥,b", ¢, f € LE (Q). We can

loc

also write Lu > 0 if —L(u, ) > 0 for ¢ € C5°(Q2) with ¢ > 0. On the other hand,
the definition of £(u,v) makes sense for u,v € W12(Q) if

(2.3) a’, b’ c € L>=(Q).

We can also impose weak boundary condition: for u,p € W12(Q) we say that
u = pondNif u—p € Wy *(Q). We will say that u < ¢ on 9 if (u—p)* € W,*(Q)
(where u := max{u,0}). We will need a simple fact:

Lemma 2.1. Ifu € W'?(Q) then ut € WH?(Q) and D(u™) = x{u>0}Du.

Proof. Let p € C*°(R) be such that p(t) = 0 for t < —1, p(t) =t for t > 1 and
p' > 0. For £ > 0 define p.(t) := ep(t/e). Then p. € C*(R), p-(t) =0 for t < —¢,
p(t) =t for t > & and p. decreases to t as ¢ decreases to 0.

The sequence p. o u decreases to u™. Using Proposition 1.4 one can show that

for p € C§°(Q)
/pgoungod)\:/gop;ouDjud)\.
Q Q

Therefore

/u+ng0d)\:—lin%/wp;ouDjudA:—/¢X{U>O}Djud)\. O
Q e~vJa Q
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The operator (2.1) is called uniformly elliptic if there exists a constant A > 0
such that

(2.4) a”’ ¢ > ACP?, CER™,

that is the lowest eigenvalue of the matrix (a(z)) is > A for every x € .

Dirichlet problem. From now on we will always assume that L satisfies (2.3),
(2.4), and that € is a bounded domain. We will analyze existence and uniqueness
of solutions of the Dirichlet problem

(2.5) {Lu:f
u = @ on O}

for f € L?(Q2) and ¢ € W12(Q). We will concentrate on the zero-value boundary
problem

Lu=f
(2.6) { u =0 on 0f2

It will be essentially no loss of generality:

Remark (reduction to ¢ = 0). Clearly uniqueness for (2.5) and (2.6) is equiva-

lent. If w solves
{ Lu=f— Ly
u =0 on 0f)

then u = u + ¢ solves (2.5), but we have to assume in addition that Ly € L?(€),
whereas in general we are only guaranteed that Ly € L'(2). To get around this
problem one can consider a more general equation than (2.2)

(2.2) Lu= f+ D,f,

where f' € L*(2). A function u is a weak solution of this if
—L(u, ) = /QfsocM - /inandA, v € (),

or more generally ¢ € W,*(Q). It turns out that the results below also hold for
(2.27) replaced with (2.2). Then however

J+Dif' — Lo =f~'Dip —co+Di(f' ~ a” Djy)
and now the problem reduces to ¢ = 0 without any problem.
Exercise 6. Find all o € R for which the problem

{0 it o

has a nonzero smooth solution.
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The main tool will be Hilbert space methods, namely the following result:

Theorem 2.3 (Lax-Milgram). Let B be a bilinear form on a Hilbert space H
such that
|B(z,y)| < Cllz[|{lyl]

and
|B(x,z)| > cflz||”

for some positive constants C,c and all x,y € H. Then for any f € H' there exists
unique x € H with

f(y) = B(x,y), ye€H.

In other words, the mapping
H>z+— B(x,-) € H
1s bijective.
Proof. By the Riesz theorem, which says that the mapping
H>z+—(z,) € H
is bijective, we get
T:-H—H

given by
B(z,-)=(Tz,-), x¢€ H.

By the Riesz theorem again it suffices to show that T is bijective. It is clear that
T is linear, by the assumptions we have moreover

cllal| < |[Ta]| < Cllzfl, =€ H.

It follows that 7' is one-to-one and has closed range (the latter by the Banach-
Alaoglu theorem). If x is perpendicular to the range then in particular 0 =
(T'r,z) = B(x,z), and thus z = 0. Therefore T" is onto. [

Of course, if B is in addition symmetric then it is another scalar product in
H and in this case the Lax-Milgram theorem is a direct consequence of the Riesz
theorem.

We first check the assumptions of the Lax-Milgram theorem for £ and the Hilbert

1,2
space H = W, 7 ().

Proposition 2.4. For u,v € W12(Q) we have
[L(u, 0)| < Cllullwr2@)llvllwr2

and

L(u,u) > )\/ |Du|2d)\—C'/ u?d,
2 Jo Q

where C' depends only on X\, n and an upper bound for the coefficients of L.
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Proof. The first part is a consequence of the Schwarz inequality. On the other hand,
L(u,u) > )\/ | Dul?d)\ — C’l/ | Dul |u| d\ — 02/ u?dA.
Q Q Q
The desired inequality now easily follows, since for every ¢ > 0

1
2|Dul |u| < e|Dul®* + =u?. O
€

The following result is an easy consequence of the Lax-Milgram theorem and
Proposition 2.4:

Theorem 2.5. There exists g > 0 depending only on L such that for every p > o
and every f € L?(Q) the problem

Lu—pu=f
u =0 on 0

has a unique solution in W1H2(Q).

Proof. For the operator Lu=Lu— pu the associated form is

Elu,0) = £uy0) + i, v),
where (-,-) denotes the scalar product in L?(Q2). Then for u > /2 + C (where C
is the constant from Proposition 2.4) we have
~ A 9
L(u,u) > §HUHWL2(Q)'

By the Lax-Milgram theorem for f € L2(€2) there exists unique u € W, *(€2) with

Z(u,v):—/ fodx, veW) Q). O
Q

Theorem 2.6 (Fredholm alternative). For a given operator L precisely one of
the following statements holds:
i) either for every f € L*(Q) the equation Lu = f has a unique solution in
1,2 .
WO (Q);
i) or there exists a nonzero u € Wy>(Q) such that Lu = 0.

Proof. Let pu, given by Theorem 2.5, be such that the equation
Lu—pu=g

is uniquely solvable in W,*(Q) for g € L?(Q). In other words, we have a well
defined operator
L7 L2(Q) — Wy (Q),
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where Lu = Lu — pu. Now the equation Lu = f is equivalent to Lu = f— pu,
which means that u = L™!(f — pu). We can write it as

u—"Tu=h,

where T' = —,uz_l and h = z_lf.
If Lu = g then by the proof of Theorem 2.5

by ~
5HUH§ < L(u, u) = —(g,u) < [|gl2[lull2-

It follows that
24 2
ITgllz < ~-llgll2, g € L)

Therefore the linear operator
T:L*Q) — L*(Q)

is bounded. Since the range of T is contained in W, *(Q), by the Rellich-Kondra-
chov theorem we infer that T' is also compact.

To finish the proof it now suffices to use the following fact from functional anal-
ysis:

Theorem 2.7. Let H be a Hilbert space and T : H — H a compact linear operator
such that ker (I —T') = {0}. Then I — T is onto.

Proof. Suppose Hy := (I —=T)(H) & H. Then Hy := (I -T)(H,) = (I -T)*(H) &
H; (because I—T is one-to-one) and we can define subspaces Hy, := (I-T)*(H) such
that Hp41 & Hy. We claim that Hy, are closed. For this it will be enough to show
that if H is a closed subspace of H then (I—T)(H) is also closed. Take a convergent
sequence y; = x;—Tx;, where x; € H. We may assume that x; € HN(ker (I-T))*.
If we show that for some constant C

(2.7) |zl < Clla = Tzll, =€ (ker (I —T)),
then [|x;—x|| < Clly; —yi| and z; will also be convergent. To show that (I-T)(H)
is closed it therefore remains to prove (2.7).

Suppose (2.7) does not hold. Then we can find Z; € (ker (I —T))* with ||Z;|| = 1
and such that

(2.8) - Ti; — 0.

Since T' is compact, choosing a subsequence if necessary, we may assume that
Tz; is convergent and thus by (2.8) Z; is also convergent to some Z. But then
T €ker (I —T)N (ker (I —T))* and ||Z|| = 1 which is a contradiction. We thus

showed that (I —T')(H) is closed and therefore so are the subspaces Hy.
We can now choose Zj, € Hy, N Hi,, with [|Z| = 1. For k > [ write

Tz, — Tz = *(fk — Tfﬂ\k) + (Eﬂ\l — Ti?\l) + T — 7.
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Since Hy11 & Hy C Hyyq, we have Ty — Txy, 7, — 17, T € Hyy1. But 7 € Hlﬁ_l
and thus || T2, —TZ;|| > ||Z;|| = 1 which contradicts the fact that T is compact. O

As a consequence of the Fredholm alternative we will get in particular the fol-
lowing improvement of Theorem 2.5:

Theorem 2.8. Assume that ¢ < 0. Then for every f € L?>(Q) the equation Lu = f
: S 1,2
has a unique solution in Wy = (Q).

This result follows immediately from the following weak maximum principle
which excludes the case ii) in Theorem 2.6:

Theorem 2.9. Assume that ¢ < 0. Let u € WH2(Q) be such that u < 0 on 99
and Lu > 0. Then u <0 in Q.

Proof. By approximation we have £(u,v) < for v € Wy**() with v > 0. Therefore,
since ¢ < 0, for v € W(}’Q(Q) with v > 0 and uwv > 0 we obtain

/aijDiuDjvd)\S / b’ Diuvd\ < C/ |Dul v dA.
Q Q Q

Suppose supg v > 0 and choose a with 0 < a < supgu. Set v := (u —a)™. Then
v E W&’Z(Q) (by Lemma 2.1 and regularization), v > 0, uv > 0. Therefore by
Lemma 2.1

/aijDiijvd)\gCl/ | Du|vdA
Q Q

and thus by (2.4)
| Du|2 SCQ/ Du| v dA.
Q

We will get
[Dvll2 < Cs[vl|z2({Dvso})

and by the Sobolev inequality for n > 3

[v]|2n/(n=2) < CallDvll2 < CsllvllL2(puroy) < CsA{ DV # O™ [0]l2n)(n—2)
and thus
(2.9) A{Dv #0}) > ¢ >0,

where ¢ does not depend on a. (For n = 2 we choose any p with 1 < p < 2 and
similarly obtain

[0ll2p/(2-p) < CllDvIlp < CA)YP72|| Doll2.)

By Lemma 2.1 (applied twice) we have {Dv # 0} C {a < u < supg u} which easily
contradicts (2.9). O

Eigenvalues. For a given operator L (which in turn depends also on §2) by 3 we
denote the set of eigenvalues of —L, that is those o € R such that the problem

{Lu+au:0
uw =0 on 0f)

has a nonzero solution in W12(£2). The set X is called a spectrum of —L.
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Theorem 2.10. For o ¢ ¥ the problem

{Lu—l—au:f

2.10
( ) u =0 on 0N

has a unique solution in W42(Q) for every f € L*(Q2). The set X is either finite
or consists of a sequence converging to +oo.

Proof. The first part follows directly from the Fredholm alternative applied to the
operator Lu + ou. Let yp > 0, Lu = Lu — pu and T = —uL~" be as in the
proof of Theorem 2.6. For o € ¥ we then have Lu = —(o + p)u for some nonzero

u € W&’Q(Q) and thus
1

U.
o+ u

Tu =

Therefore, o is an eigenvalue of —L if and only if p/(0 4 p) is an eigenvalue of T
Since by Theorem 2.5 ¥ is bounded from below, it is enough to use the following
result:

Theorem 2.11. Let T : H — H be a linear compact operator, where H is a
Hilbert space. Then the set of nonzero eigenvalues of T is either finite or consists
of a sequence converging to 0.

Proof. If Twy, = nrwy, where ||wg| = 1, then, choosing subsequence if necessary, by
compactness we see that the sequence niwy, is convergent, and thus 7 is bounded.
We thus have to show that if n;, — 7, where all 7, are distinct, then n = 0. Suppose
that n # 0 and 1 # 0. By Hj denote the space spanned by wi,...,w. Then,
since wy, are linearly independent, we have Hy & Hypyq. For k > 2 we also have
(T —nel)(Hg) C Hi—1. We can find z, € Hy, N Hj- | with |lzx|| = 1. For k > [ we
have H;_4 g H;, C H, 4 g Hj;, and

ka Tavl ka — NkTk Tacl — M
- - = - + Tr — 2.
Nk m Nk Ul

Now Txi — ngrg, Tx; —mxy, x; € Hy—1 and z, € H,ﬂ-_l, therefore

T T
‘x"’_wl > ||z = 1.

Nk m

We get a contradiction with the compactness of T. [

Theorem 2.12. Assume that
(2.11) Lu = D;(a" Dju),

that is the coefficients b* and c vanish. Then the eigenvalues of —L are positive and
there exists a complete orthonormal system in L?(Q) consisting of eigenfunctions
of —L from Wol’z(Q). Eigenspaces of —L are finite dimensional.

Proof. Positivity of the eigenvalues follows from Theorem 2.9. Together with the
Fredholm alternative it also implies that the operator

L7 L2(Q) — WP (Q)
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is well defined. Thus
S:L%(Q) — L*(Q)

given by S := —L~! is a compact operator by the Rellich-Kondrachov theorem.
We claim that

(Sf,9)=(f,S9),

that is S is symmetric. This follows immediately from
(Lu,v) = (u, Lv),

which we first prove for u,v € C§°(f2) (integrating by parts), and thus it holds for
u,v € Wy (Q).

It is clear that ker S = {0}. Therefore the eigenvalues of S are precisely 1/,
where o is an eigenvalue of —L. By \p denote all eigenvalues of S and let Hy =
ker (S — A1) be the corresponding eigenspaces. Note that if Sf = ¢ f, Sg = \ig
then

Melfog) =(Sf.9) = (f,Sg) = N(f,9)

and thus the spaces Hy and H; are perpendicular for k # [.
Set H := P Hy, (that is H consists of finite linear combinations of elements from
Hj,). We have to show that H is dense in L2(Q). We clearly have S(H) - H. Set
H:=H' If fe H and g € H then (Sf,g) = (f,Sg) = 0, and thus S(H H) C H.
Since ker S = {0}, for density of H it is enough to show that S(H ) = 0. For that
it suffices to prove that

(2.12) (Sf.fy=0, feH
(because the corresponding form (Sf,g) is symmetric). Suppose

M = sup  (Sf,f)>0
feH, ||fl|=1

(if the corresponding infimum is negative then we may consider —S instead of 5).
We can find f; € H with ||f;|| =1 and such that (Sf;, f;) — M. By compactness
we may assume in addition that Sf; — f We then have by the Schwarz inequality
applied to the positive form (M f — Sf, g)

IMf; = Sfill=" sup  [(Mf;—Sf; 9)l
g€l ||gl|=1
< sup  (Mg—Sg,g)'* (Mf; =St ;)"
gedl, ||g||=1

It follows that Mf; — Sf; — 0 and Sf = Mf We thus get an eigevector in

H = H*, which is a contradiction. Therefore (2.12) and the density of H follows.
The last statement of the theorem is a consequence of the following result.

Proposition 2.13. Assume that T : H — H is a compact operator on a Hilbert
space H. Then dimker (T —I) < oo.
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Proof. If the dimension were not finite then we would find an orthonormal sequence
xp € ker (T'—1I). For k #1

1Tz, = Ta|l* = llow — @il * = [|lokl* = 2wg, @) + |2l = 2.

Thus Tz has no convergent subsequence which contradicts compactness. [

The dimension of the corresponding eigenspace is called a multiplicity of an
eigenvalue. Summing up, we see that eigenvalues of a symmetric elliptic operator
(2.11) form a sequence of positive numbers converging to +o0o

O0<op<o9<...

(we repeat an eigenvalue in this sequence k times, where k is the multiplicity).
One can in fact show that the first eigenvalue is simple (multiplicity is 1), that is
o1 < 03.

The famous problem Can one hear the shape of a drum? whether one can tell
the shape of a domain knowing the eigenvalues of the Laplacian. It turned out
that in general one cannot, but the problem is still open for example for smooth or
convex domains.

Example. For = (0,27) and L = A we have to solve

{ u' +ou=0
u(0) = u(2m) = 0.

For a solution to exist we have to assume o > 0, they are of the form A cos(y/ot) +
Bsin(y/ot). The boundary condition implies that A = 0 and sin(27/0) = 0, and
thus

whereas uy = sin(kt/2) are the corresponding eigenfunctions.

Exercise 7. Show that sin(kt/2), k = 1,2,..., forms a complete orthogonal system
in L?((0,27)).

The eigenvalue equation for the Laplacian
Au+ou=0

is called the Helmholtz equation. For product domains it can be solved using the
method of separation of variables (by X we denote the spectrum of —A for ).
Proposition 2.14. Zlegz = EQI + ZQz.

Sketch of proof. Let o; € ¥q,, j = 1,2, and let u; € Wol’2(Qj) be corresponding
eigenfunctions. Set

w(z,y) == ur(z)uz(y), =€, ye Q.

One can show that
Aw = vAu + ulAv
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(in the weak sense). Therefore

Aw + (01 + 02)w = v(Au + o1u) + u(Av 4 o3v) =0
and thus we have D. To show C it is enough to prove (using Fubini theorem)
that if uy(z) is a complete orthogonal system in L?(€;) and v;(y) a complete

orthogonal system in L?(£22) then wu(x)v;(y) is a complete orthogonal system in
LQ(Ql X Qg) O

Example (rectangle). Similarly as in the previous example we can show that for
a>0

2 k?
2(0761) = {7 : k': 1,2}
Therefore, by Proposition 2.14
kK2 12

2 (0,a)x(0,b) = {WQ(? + b—z) s kil=1,2,...}.

Example (disc). It turns out that we can solve the Helmholtz equation in a
disc also using separation of variables but applied to polar coordinates & = r cos ¢,
y = rsin¢. It is known that

e ¢ o 10 10

ox2 oy Or2  ror  r20¢?’

Consider the function of the form
u(z,y) = R(r)®(9).
Then . .
Au+ou= (R"(r)+ ;R/(T) +oR(r))®(¢) + T—QR(T)QD"(qb).
To get a single variable equation we assume that
O + cd = 0.
We will get nontrivial periodic solutions of period 27 only if ¢ > 0: ® = Aq for
c=0and
¢ = Ay, cos(ko) + By sin(ko)

for c = k%, k =1,2,.... The equation for R now becomes

R,y + 1R, + (0r? — k)R =0,
and, after the substitution p = /or,

IOQRPP + PR, + (p* = k)R =0.
The solutions are Bessel functions of order £k =0,1,...:

S (1T pyke
T =3 = (5)
k() jzoj!(kJrj)! 2
We thus got the following solutions to the Helmholtz equation
Ji(Vor)(Ag cos(k¢) + By sin(kg)), k=0,1,...,

where By = 0 (one can check that these functions are smooth at the origin). The
boundary condition in the unit disc gives

Jk(Vo) =0,

therefore the eigenvalues are the squares of zeros of the Bessel functions (for Jy the
are of multiplicity 1 and for zeros of Ji, k = 1,2, ..., of multiplicity 2).



