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1. Weak Differentiation

Regularization. Let ρ ∈ C∞0 (Rn) be such that ρ ≥ 0, ρ(x) depends only on
|x|, supp ρ ⊂ B̄(0, 1) and

∫
ρ dλ = 1. For ε > 0 set ρε(y) := ε−nρ(y/ε). Then

ρε ∈ C∞0 (Rn), supp ρε ⊂ B̄(0, ε) and
∫

ρε dλ = 1. For any u ∈ L1
loc(Ω) we set

uε := u ∗ ρε, that is

uε(x) =
∫

Ω

u(y)ρε(x− y)dλ(y)

=
∫

B(0,ε)

u(x− y)ρε(y)dλ(y)

=
∫

B(0,1)

u(x− εy)ρ(y)dλ(y)

(note that the first integral is in fact over B(x, ε)). The function uε is defined in
the set

Ωε := {x ∈ Ω : B(x, ε) ⊂ Ω}.
Theorem 1.1. i) uε → u pointwise almost everywhere as ε → 0.

ii) If u ∈ C(Ω) then uε → u locally uniformly as ε → 0.
iii) For p ≥ 1 if u ∈ Lp

loc(Ω) then uε → u in Lp
loc(Ω) (that is in Lp

loc(Ω
′) for

Ω′ b Ω) as ε → 0.

Proof. i) By the Lebesgue differentiation theorem for almost all x we have

lim
ε→0

1
λ(B(x, ε))

∫

B(x,r)

|u(y)− u(x)| dλ(y) = 0.

For such an x

|uε(x)− u(x)| ≤
∫

B(x,ε)

ρε(x− y)|u(y)− u(x)|dλ(y)

≤ C

λ(B(x, ε))

∫

B(x,ε)

|u(y)− u(x)| dλ(y).
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ii) We have

|uε(x)− u(x)| ≤
∫

B(0,ε)

|u(x− y)− u(x)|ρε(y)dλ)y) ≤ sup
B(0,ε)

|u− u(x)|

and the convergence follows because continuous functions are locally uniformly
continuous.

iii) We first estimate by Hölder’s inequality

|uε(x)|p ≤
∫

B(0,ε)

|u(x− y)|pρε(y)dλ(y).

Integrating over x we will get

‖uε‖Lp(Ωε) ≤ ‖u‖Lp(Ω).

For every δ > 0 there exists v ∈ C0(Ω) with ‖v − u‖p ≤ δ (this is a consequence of
Lusin’s theorem). Then for sufficiently small ε

‖uε − u‖ ≤ ‖uε − vε‖+ ‖vε − v‖+ ‖v − u‖

(with norms in Lp(Ω′) for a fixed Ω′ b Ω). We have

‖uε − vε‖ ≤ ‖u− v‖p ≤ δ,

thus
‖uε − u‖ ≤ 2δ + ‖vε − v‖

and it is enough to use ii). ¤

Weak differentiation. We will use the notation

Dj =
∂

∂xj
, Dα =

∂|α|

∂xα1
1 . . . ∂xαn

n
,

where j = 1, . . . , n, α = (α1, . . . , αn) ∈ Nn and |α| = α1 + · · ·+ αn. Ω will denote
a domain in Rn. By Stokes’ theorem we have

∫

Ω

ϕDαu dλ = (−1)|α|
∫

Ω

uDαϕdλ

for u ∈ C |α|(Ω), ϕ ∈ C
|α|
0 (Ω). Now for u, v ∈ L1

loc(Ω) we say that v = Dαu in the
weak sense if

∫

Ω

ϕv dλ = (−1)|α|
∫

Ω

uDαϕdλ, ϕ ∈ C
|α|
0 (Ω).

The function v, if exists, is determined almost everywhere.
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Exercise 1. Set u(x) := |x| ∈ L1
loc(R). Show, directly from the definition, that u′

does exist but u′′ does not.

One can easily show that for the weak differentiation we also have DαDβ =
Dα+β .

Differentiating under the sign of integration, we see that

Dαuε = u ∗Dαρε

(in the strong sense) and uε ∈ C∞(Ωε).

Proposition 1.2. If Dαu exists in the weak sense then

Dαuε = (Dαu)ε.

Proof. We have

Dαuε(x) =
∫

Ω

u(y)Dαρε(x− y)dλ(y)

= (−1)|α|
∫

Ω

uDα(ρε(· − y))dλ

= (Dαu)ε(x). ¤

Sobolev Spaces. For k = 1, 2, . . . and p ≥ 1 define

W k,p(Ω) := {u ∈ Lp
loc(Ω) : Dαu ∈ Lp(Ω) if |α| ≤ k}.

This is a Banach space with the norm

‖u‖W k,p(Ω) :=




∫

Ω

∑

|α|≤k

|Dαu|p dλ




1/p

.

One can easily check that ∑

|α|≤k

‖Dαu‖p

(where we use the notation ‖ · ‖p = ‖ · ‖Lp(Ω)) is an equivalent norm. Of course
W k,p

loc (Ω) will denote the class of those functions that belong to W k,p(Ω′) for Ω′ b Ω.
The case p = 2 is special because W k,2(Ω) is a Hilbert space. It is often denoted

by Hk(Ω).

Proposition 1.3. For u ∈ W k,p
loc (Ω) we have uε → u in W k,p

loc (Ω) as ε → 0.

Proof. It follows immediately from Proposition 1.2 and Theorem 1.1.iii. ¤
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Proposition 1.4. C∞ ∩W k,p(Ω) is dense in W k,p(Ω).

Proof. Let ψj ∈ C∞0 (Ω) be a partition of unity in Ω (that is
∑

j ψj = 1 and the
sum is locally finite). Fix u ∈ W k,p(Ω) and δ > 0. For every j we can find εj

sufficiently small so that

‖(ψju)εj − ψju‖W k,p(Ω) ≤
δ

2j

and so that the sum
v :=

∑

j

(ψju)εj

is locally finite. It follows that v ∈ C∞(Ω) and ‖u− v‖W k,p(Ω) ≤ δ. ¤

By W k,p
0 (Ω) we will denote the closure of Ck

0 (Ω) in W k,p(Ω). From Proposition
1.3 it follows that if u ∈ W k,p(Ω) has compact support then u ∈ W k,p

0 (Ω).

Theorem 1.5 (Sobolev). For p < n we have W 1,p
0 (Ω) ⊂ Lnp/(n−p)(Ω) and

(1.1) ‖u‖np/(n−p) ≤ C(n, p)‖Du‖p, u ∈ W 1,p
0 (Ω).

Proof. It is enough to show the Sobolev inequality (1.1) for u ∈ C1
0 (Rn). First

assume that p = 1. We clearly have

|u(x)| ≤
∫

R
|Dju| dxj

and the right-hand side is a function in Rn independent of xj . We thus have

∫

R
|u|n/(n−1)dx1 ≤

∫

R

n∏

j=1

(∫

R
|Dju|dxj

)1/(n−1)

dx1

=
(∫

R
|D1u|dx1

)1/(n−1) ∫

R

n∏

j=2

(∫

R
|Dju|dxj

)1/(n−1)

dx1

≤
(∫

R
|D1u|dx1

)1/(n−1) n∏

j=2

(∫

R2
|Dju|dx1dxj

)1/(n−1)

by Hölder’s inequality. Proceeding further we obtain similarly

∫

R2
|u|n/(n−1)dx1dx2 ≤

(∫

R2
|D1u|dx1dx2

)1/(n−1) (∫

R2
|D2u|dx1dx2

)1/(n−1)

n∏

j=3

(∫

R3
|Dju|dx1dx2dxj

)1/(n−1)

and eventually

‖u‖n/(n−1) ≤



n∏

j=1

∫

Rn

|Dju| dλ




1/n

.
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From the inequality between geometric and arithmetic means we get

‖u‖n/(n−1) ≤
1
n

∫

Rn

n∑

j=1

|Dju| dλ ≤ 1√
n
‖Du‖1.

For arbitrary p set ũ := |u|q for some q > 1. Then Dj ũ = q|u|q−1Dju and |Dũ| =
q|u|q−1|Du|, therefore

‖u‖q
qn/(n−1) = ‖ũ‖n/(n−1) ≤

1√
n
‖Dũ‖1

=
q√
n

∫

Rn

|u|q−1|Du| dλ ≤ q√
n

(∫

Rn

|u|p′(q−1) dλ

)1/p′

‖Du‖p

by Hölder’s inequality, where 1/p + 1/p′ = 1. We now solve qn/(n− 1) = p′(q − 1)
in q and get q = (n− 1)p/(n− p) (since p < n, we have q > 1). We thus obtain

‖u‖np/(n−p) ≤
(n− 1)p√
n(n− p)

‖Du‖p. ¤

Corollary 1.6. For p < n one has W 1,p
loc ⊂ L

np/(n−p)
loc .

Proof. For Ω′ b Ω′′ b Ω choose ψ ∈ C∞0 (Ω′′) with ψ = 1 in Ω′. Then for u ∈
W 1,p(Ω′′) we have ψu ∈ W 1,p

0 (Ω′′) (this is because directly from the definition of
weak differentiation we have

Dj(ψu) = Djψu + ψDju)

and the result follows. ¤

Exercise 2. Show that

|x|α ∈ Lq
loc(R

n) ⇐⇒ α > −n/q and |x|α ∈ W 1,p
loc (Rn) ⇐⇒ α > 1− n/p.

Conclude that the exponent np/(n− p) in the Sobolev theorem is optimal for every
1 ≤ p < n.

Theorem 1.7 (Morrey). For p > n we have W 1,p
0 (Ω) ⊂ C0,1−n/p(Ω̄). Moreover,

for u ∈ W 1,p
0 (Ω)

(1.2)
|u(x)− u(y)|
|x− y|1−n/p

≤ C(n, p)‖Du‖p, x, y ∈ Ω, x 6= y.

Proof. We claim that it is enough to show Morrey’s inequality (1.2) for u ∈ C1
0 (Rn).

For if u ∈ W 1,p
0 (Ω) and uj ∈ C1

0 (Ω) ⊂ C1
0 (Rn) are such that uj → u in W 1,p(Ω) and

pointwise almost everywhere (because from every sequence converging in L1
loc one

can choose a subsequence converging pointwise almost everywhere) then it follows
that (1.2) holds almost everywhere, and thus everywhere.
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Assume therefore that u ∈ C1
0 (Rn) and denote r = |x−y|. Let B any closed ball

of radius R containing x and y. Then r ≤ 2R and B ⊂ B(x, r + R) ⊂ B(x, 3R).
We have, assuming for simplicity that x = 0,

(1.3) u(y)− u(0) =
∫ r

0

d

dρ
u
(
ρ

y

|y|
)
dρ =

∫ r

0

〈Du
(
ρ

y

|y|
)
,

y

|y| 〉dρ.

Set
uB :=

1
λ(B)

∫

B

u dλ

and

V (x) :=
{ |Du(x)|, x ∈ B

0, x /∈ B.

Integrating (1.3) over B w.r.t. y we can estimate

λ(B)|uB − u(0)| ≤
∫

B

∫ r

0

V
(
ρ

y

|y|
)
dρ dλ(y)

≤
∫ 2R

0

∫

B(0,3R)

V
(
ρ

y

|y|
)
dλ(y) dρ

=
∫ 3R

0

∫ 3R

0

tn−1dt

∫

|ω|=1

V (ρω)dσ(ω) dρ

=
(3R)n

n

∫

B

|y|1−n|Du(y)|dλ(y)

≤ (3R)n

n
‖Du‖p

(∫

B

|y|(1−n)p′dλ(y)
)1/p′

where 1/p + 1/p′ = 1. Since
∫

B

|y|(1−n)p′dλ(y) ≤
∫

B(0,3R)

|y|(1−n)p′dλ(y)

= cn

∫ 3R

0

ρ(n−1)(1−p′)dρ

= c′nRn+p′(1−n)

and n/p′ + 1− n = 1− n/p, we now get

|uB − u(x)| ≤ C(n, p)R1−n/p‖Du‖p

and

|u(x)− u(y)| ≤ |uB − u(x)|+ |uB − u(y)| ≤ 2C(n, p)R1−n/p‖Du‖p. ¤

From the proof we can deduce the following estimate:

Theorem 1.8. Assume that B is an open ball with radius R and u ∈ W 1,p(B) for
some p > n. Then for x, y ∈ B

|u(x)− u(y)| ≤ C(n, p)R1−n/p‖Du‖Lp(B).
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Proof. By the proof of Theorem 1.7 the inequality holds for u ∈ C1∩W 1,p(B). For
general u we can now use Proposition 1.4 to get it for almost all x, y. But since,
by Morrey’s theorem, u is in particular continuous, the theorem follows. ¤

We also have the following counterpart of Corollary 1.6 (with the same proof):

Corollary 1.9. For p > n we have W 1,p
loc (Ω) ⊂ C0,1−n/p(Ω). ¤

Exercise 3. Considering again the function |x|α show that the Hölder exponent
1− n/p in Morrey’s theorem is optimal.

Morrey’s theorem for p = ∞ asserts that functions from W 1,∞
loc are locally Lip-

schitz continuous. In fact in this case the opposite also holds:

Theorem 1.10. We have W 1,∞
loc = C0,1.

Proof. ⊂ follows from Morrey’s theorem but we can in fact show it independently.
For u ∈ W 1,∞(Ω) we have

|Duε(x)| = |(Du)ε| ≤ ‖Du‖∞
and

|uε(x)− uε(y)| ≤ ‖Du‖∞|x− y|
(if Ω is convex). Therefore for almost all x, y ∈ Ωε

|u(x)− u(y)| ≤ ‖Du‖∞|x− y|,

and thus for all x, y ∈ Ω.
On the other hand, take Lipschitz continuous u with compact support. For h 6= 0

consider the difference quotient

Dh
j u(x) =

u(x + hej)− u(x)
h

.

Then |Dh
j u(x)| ≤ C and by the Banach-Alaoglu theorem there exists a sequence

hm → 0 and vj ∈ L∞(Rn) such that Dhm
j u(x) → vj weakly in L2(Rn). Then for

ϕ ∈ C∞0 (Rn)
∫

Rn

uDjϕdλ = lim
m→∞

∫

Rn

uD−hm
j ϕ dλ

= − lim
m→∞

∫

Rn

Dhm
j u ϕdλ

= −
∫

Rn

vj ϕ dλ

and vj = Dju weakly. ¤
Iterating the Sobolev theorem we will get

W k,p
loc ⊂ W

k−1,np/(n−p)
loc ⊂ W

k−2,np/(n−2p)
loc ⊂ · · · ⊂ L

np/(n−kp)
loc

provided that p < n/k. If p is such that n/(j + 1) < p < n/j then

W k,p
loc ⊂ W

k−j,np/(n−jp)
loc ⊂ Ck−j−1,j+1−n/p
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(we may denote the latter as Ck−n/p) by Morrey’s theorem. We thus get:

Theorem 1.11. Let p ≥ 1 and k = 1, 2, . . . If p < n/k then W k,p
loc ⊂ L

np/(n−kp)
loc .

For p > n/k such that p 6= n/j for j = 1, . . . , k − 1 we have W k,p
loc ⊂ Ck−n/p. ¤

For p = 1, without invoking neither Sobolev nor Morrey’s theorems, one can
show in a simple way that W k,1

loc ⊂ Ck−n, where k ≥ n, proceeding as follows:

Exercise 4. Prove that:
i) ‖u‖∞ ≤ ‖D1 . . . Dnu‖1 if u ∈ C∞0 (Rn);
ii) uε → u uniformly as ε → 0 if u ∈ Wn,1(Rn) has compact support.

Conclude that Wn,1
loc ⊂ C and then that W k,1

loc ⊂ Ck−n.

In particular we have W 1,n
loc ⊂ C if n = 1. This is however no longer true for

n ≥ 2:

Exercise 5. Show the function log(− log |x|) is in W 1,n
loc near the origin for n ≥ 2

but not for n = 1.

It shows that the second part of Theorem 1.11 is not true for p = n/j.

Differentiability almost everywhere. As an application of Morrey’s inequality
we will get the following:

Theorem 1.12. For p > n functions from W 1,p
loc are differentiable almost every-

where.

Proof. By the Lebesgue differentiation theorem for almost all x

lim
r→0

1
λ(B(x, r))

∫

B(x,r)

|Du(y)−Du(x)|p dλ(y) = 0,

where Du = (D1u, . . . , Dnu) and Dju ∈ Lp
loc. Fix such an x and set

v(y) := u(y)− u(x)− 〈Du(x), y − x〉.
Then by Theorem 1.8 with B = B(x, R) and R = r = 2|x− y|

|v(y)|
|x− y| ≤ C1r

−n/p‖Dv‖Lp(B(x,r))

= C2

(
1

λ(B(x, r))

∫

B(x,r)

|Du(z)−Du(x)|p dλ(z)

)1/p

and it converges to 0 as r → 0. It follows that Du(x) is the classical derivative of
u at x. ¤
Corollary 1.13 (Rademacher). Lipschitz continuous functions are differentiable
almost everywhere. ¤

Compactness. It will be important for the existence theorems later on to know
when the imbedding in the Sobolev theorem is compact.

Theorem 1.14 (Rellich-Kondrachov). Assume that Ω is bounded. Then for
p < n and q < np/(n − p) the embedding W 1,p

0 (Ω) ↪→ Lq(Ω) is compact (that is
continuous and images of bounded sets are relatively compact).
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Proof. Continuity is a consequence of the Sobolev inequality. We first show com-
pactness for q = 1. Let A be a bounded set in W 1,p

0 (Ω), without loss of gen-
erality we may assume that A ⊂ C1

0 (Rn) with ‖u‖W 1,p(Ω) ≤ 1 for u ∈ A and
supp u ⊂ Ω. Fix Ω̃ with Ω b Ω̃ b Rn and for ε > 0 sufficiently small define
Aε := {uε : u ∈ A} ⊂ C1

0 (Ω̃). We have

|uε(x)| ≤
∫

B(x,ε)

|u(y)|ρε(x− y)dλ(y) ≤ sup ρε ‖u‖1 ≤ sup ρε

and similarly
|Duε(x)| ≤ sup |Dρε|.

It follows that Aε is equicontinuous and from the Arzela-Ascoli theorem we deduce
that Aε is relatively compact in L1(Ω̃) for every single ε.

We also have

|uε(x)− u(x)| ≤
∫

B(0,ε)

ρε(y)|u(x− y)− u(x)| dλ(y)

=
∫

B(0,ε)

ρε(y)
∣∣
∫ 1

0

d

dt
u(x− ty) dt

∣∣ dλ(y)

≤ ε

∫

B(0,ε)

ρε(y)
∫ 1

0

|Du(x− ty)| dt dλ(y)

and thus, integrating w.r.t. x

‖uε − u‖1 ≤ ε‖Du‖1 ≤ ελ(Ω)1−1/p‖Du‖p.

It is now sufficient to use the following simple fact:

Lemma 1.15. Let V be a Banach space with the following property: for every
u ∈ V and ε > 0 there exists uε ∈ V with ‖u−uε‖ ≤ Cε for some uniform constant
C. Assume moreover that A is a bounded subset of V such that for every ε > 0 the
set Aε := {uε : u ∈ A} is relatively compact. Then A is relatively compact.

Proof. We have to show that every sequence um in A has a convergent subsequence.
For δ > 0 set ε := C/δ. We can find a subsequence umj ,ε such that ‖umj ,ε−umk,ε‖ ≤
δ for all j, k, and by the assumption ‖umj

−umk
‖ ≤ 3δ. Using the diagonal method

we will now easily get a Cauchy subsequence of um. ¤

Proof of Theorem 1.14, continued. For q > 1 from Hölder’s inequality we infer, if
0 ≤ λ < 1,

‖uε − u‖q
q ≤ ‖uε − u‖λ

1‖uε − u‖q−λ
(q−λ)/(1−λ).

We choose λ with (q − λ)/(1 − λ) = np/(n − p) =: µ, that is λ = (µ − q)/(µ − 1)
(note that µ > q > 1). By the Sobolev inequality

‖uε − u‖q ≤ C‖uε − u‖λ/q
1

and we can use the previous part. ¤
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2. Elliptic Equations of Second Order

We will consider second order operators in divergence form

(2.1) Lu := Di(aijDju) + biDiu + cu,

where aij , bi, c are functions defined in Ω, aij = aji. Note that operators in non-
divergence form

aijDiDju + biDiu + cu

can be written in divergence form

Di(aijDju) + (bi −Dia
ij)Diu + cu

provided that aij are sufficiently regular.
A function u is a weak solution of the equation

(2.2) Lu = f

if

−L(u, ϕ) =
∫

Ω

f ϕ dλ, ϕ ∈ C∞0 (Ω),

where

L(u, v) =
∫

Ω

aijDiuDjv dλ−
∫

Ω

(
biDiu + cu

)
vdλ.

The equation (2.2) makes sense for u ∈ W 1,2
loc (Ω) and aij , bi, c, f ∈ L2

loc(Ω). We can
also write Lu ≥ 0 if −L(u, ϕ) ≥ 0 for ϕ ∈ C∞0 (Ω) with ϕ ≥ 0. On the other hand,
the definition of L(u, v) makes sense for u, v ∈ W 1,2(Ω) if

(2.3) aij , bi, c ∈ L∞(Ω).

We can also impose weak boundary condition: for u, ϕ ∈ W 1,2(Ω) we say that
u = ϕ on ∂Ω if u−ϕ ∈ W 1,2

0 (Ω). We will say that u ≤ ϕ on ∂Ω if (u−ϕ)+ ∈ W 1,2
0 (Ω)

(where u+ := max{u, o}). We will need a simple fact:

Lemma 2.1. If u ∈ W 1,p(Ω) then u+ ∈ W 1,p(Ω) and D(u+) = χ{u>0}Du.

Proof. Let ρ ∈ C∞(R) be such that ρ(t) = 0 for t ≤ −1, ρ(t) = t for t ≥ 1 and
ρ′ ≥ 0. For ε > 0 define ρε(t) := ερ(t/ε). Then ρε ∈ C∞(R), ρε(t) = 0 for t ≤ −ε,
ρ(t) = t for t ≥ ε and ρε decreases to t+ as ε decreases to 0.

The sequence ρε ◦ u decreases to u+. Using Proposition 1.4 one can show that
for ϕ ∈ C∞0 (Ω) ∫

Ω

ρε ◦ uDjϕdλ = −
∫

Ω

ϕρ′ε ◦ u Dju dλ.

Therefore
∫

Ω

u+Djϕdλ = − lim
ε→0

∫

Ω

ϕρ′ε ◦ uDju dλ = −
∫

Ω

ϕχ{u>0}Dju dλ. ¤
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The operator (2.1) is called uniformly elliptic if there exists a constant λ > 0
such that

(2.4) aijζiζj ≥ λ|ζ|2, ζ ∈ Rn,

that is the lowest eigenvalue of the matrix (aij(x)) is ≥ λ for every x ∈ Ω.

Dirichlet problem. From now on we will always assume that L satisfies (2.3),
(2.4), and that Ω is a bounded domain. We will analyze existence and uniqueness
of solutions of the Dirichlet problem

(2.5)
{

Lu = f

u = ϕ on ∂Ω

for f ∈ L2(Ω) and ϕ ∈ W 1,2(Ω). We will concentrate on the zero-value boundary
problem

(2.6)
{

Lu = f

u = 0 on ∂Ω

It will be essentially no loss of generality:

Remark (reduction to ϕ = 0). Clearly uniqueness for (2.5) and (2.6) is equiva-
lent. If ũ solves {

Lũ = f − Lϕ

ũ = 0 on ∂Ω

then u = ũ + ϕ solves (2.5), but we have to assume in addition that Lϕ ∈ L2(Ω),
whereas in general we are only guaranteed that Lϕ ∈ L1(Ω). To get around this
problem one can consider a more general equation than (2.2)

(2.2’) Lu = f + Dif
i,

where f i ∈ L2(Ω). A function u is a weak solution of this if

−L(u, ϕ) =
∫

Ω

f ϕ dλ−
∫

Ω

f iDiϕ dλ, ϕ ∈ C∞0 (Ω),

or more generally ϕ ∈ W 1,2
0 (Ω). It turns out that the results below also hold for

(2.2’) replaced with (2.2). Then however

f + Dif
i − Lϕ = f − biDiϕ− cϕ + Di

(
f i − aijDjϕ

)

and now the problem reduces to ϕ = 0 without any problem.

Exercise 6. Find all σ ∈ R for which the problem

{
u′′ − σu = 0
u(0) = u(1) = 0

has a nonzero smooth solution.
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The main tool will be Hilbert space methods, namely the following result:

Theorem 2.3 (Lax-Milgram). Let B be a bilinear form on a Hilbert space H
such that

|B(x, y)| ≤ C‖x‖ ‖y‖
and

|B(x, x)| ≥ c‖x‖2

for some positive constants C, c and all x, y ∈ H. Then for any f ∈ H ′ there exists
unique x ∈ H with

f(y) = B(x, y), y ∈ H.

In other words, the mapping

H 3 x 7−→ B(x, ·) ∈ H ′

is bijective.

Proof. By the Riesz theorem, which says that the mapping

H 3 x 7−→ 〈x, ·〉 ∈ H ′

is bijective, we get
T : H −→ H

given by
B(x, ·) = 〈Tx, ·〉, x ∈ H.

By the Riesz theorem again it suffices to show that T is bijective. It is clear that
T is linear, by the assumptions we have moreover

c‖x‖ ≤ ‖Tx‖ ≤ C‖x‖, x ∈ H.

It follows that T is one-to-one and has closed range (the latter by the Banach-
Alaoglu theorem). If x is perpendicular to the range then in particular 0 =
〈Tx, x〉 = B(x, x), and thus x = 0. Therefore T is onto. ¤

Of course, if B is in addition symmetric then it is another scalar product in
H and in this case the Lax-Milgram theorem is a direct consequence of the Riesz
theorem.

We first check the assumptions of the Lax-Milgram theorem for L and the Hilbert
space H = W 1,2

0 (Ω).

Proposition 2.4. For u, v ∈ W 1,2(Ω) we have

|L(u, v)| ≤ C‖u‖W 1,2(Ω)‖v‖W 1,2(Ω)

and
L(u, u) ≥ λ

2

∫

Ω

|Du|2dλ− C

∫

Ω

u2dλ,

where C depends only on λ, n and an upper bound for the coefficients of L.
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Proof. The first part is a consequence of the Schwarz inequality. On the other hand,

L(u, u) ≥ λ

∫

Ω

|Du|2dλ− C1

∫

Ω

|Du| |u| dλ− C2

∫

Ω

u2dλ.

The desired inequality now easily follows, since for every ε > 0

2|Du| |u| ≤ ε|Du|2 +
1
ε
u2. ¤

The following result is an easy consequence of the Lax-Milgram theorem and
Proposition 2.4:

Theorem 2.5. There exists µ0 ≥ 0 depending only on L such that for every µ ≥ µ0

and every f ∈ L2(Ω) the problem

{
Lu− µu = f

u = 0 on ∂Ω

has a unique solution in W 1,2(Ω).

Proof. For the operator L̃u = Lu− µu the associated form is

L̃(u, v) = L(u, v) + µ〈u, v〉,

where 〈·, ·〉 denotes the scalar product in L2(Ω). Then for µ ≥ λ/2 + C (where C
is the constant from Proposition 2.4) we have

L̃(u, u) ≥ λ

2
‖u‖2W 1,2(Ω).

By the Lax-Milgram theorem for f ∈ L2(Ω) there exists unique u ∈ W 1,2
0 (Ω) with

L̃(u, v) = −
∫

Ω

fv dλ, v ∈ W 1,2
0 (Ω). ¤

Theorem 2.6 (Fredholm alternative). For a given operator L precisely one of
the following statements holds:

i) either for every f ∈ L2(Ω) the equation Lu = f has a unique solution in
W 1,2

0 (Ω);
ii) or there exists a nonzero u ∈ W 1,2

0 (Ω) such that Lu = 0.

Proof. Let µ, given by Theorem 2.5, be such that the equation

Lu− µu = g

is uniquely solvable in W 1,2
0 (Ω) for g ∈ L2(Ω). In other words, we have a well

defined operator
L̃−1 : L2(Ω) → W 1,2

0 (Ω),
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where L̃u = Lu − µu. Now the equation Lu = f is equivalent to L̃u = f − µu,
which means that u = L̃−1(f − µu). We can write it as

u− Tu = h,

where T = −µL̃−1 and h = L̃−1f .
If L̃u = g then by the proof of Theorem 2.5

λ

2
‖u‖22 ≤ L̃(u, u) = −〈g, u〉 ≤ ‖g‖2‖u‖2.

It follows that
‖Tg‖2 ≤ 2µ

λ
‖g‖2, g ∈ L2(Ω).

Therefore the linear operator

T : L2(Ω) → L2(Ω)

is bounded. Since the range of T is contained in W 1,2
0 (Ω), by the Rellich-Kondra-

chov theorem we infer that T is also compact.
To finish the proof it now suffices to use the following fact from functional anal-

ysis:

Theorem 2.7. Let H be a Hilbert space and T : H → H a compact linear operator
such that ker (I − T ) = {0}. Then I − T is onto.

Proof. Suppose H1 := (I −T )(H)  H. Then H2 := (I −T )(H1) = (I −T )2(H)  
H1 (because I−T is one-to-one) and we can define subspaces Hk := (I−T )k(H) such
that Hk+1  Hk. We claim that Hk are closed. For this it will be enough to show
that if H̃ is a closed subspace of H then (I−T )(H̃) is also closed. Take a convergent
sequence yj = xj−Txj , where xj ∈ H̃. We may assume that xj ∈ H̃∩(ker (I−T ))⊥.
If we show that for some constant C

(2.7) ‖x‖ ≤ C‖x− Tx‖, x ∈ (ker (I − T ))⊥,

then ‖xj−xk‖ ≤ C‖yj−yk‖ and xj will also be convergent. To show that (I−T )(H̃)
is closed it therefore remains to prove (2.7).

Suppose (2.7) does not hold. Then we can find x̃j ∈ (ker (I−T ))⊥ with ‖x̃j‖ = 1
and such that

(2.8) x̃j − T x̃j → 0.

Since T is compact, choosing a subsequence if necessary, we may assume that
T x̃j is convergent and thus by (2.8) x̃j is also convergent to some x̃. But then
x̃ ∈ ker (I − T ) ∩ (ker (I − T ))⊥ and ‖x̃‖ = 1 which is a contradiction. We thus
showed that (I − T )(H̃) is closed and therefore so are the subspaces Hk.

We can now choose x̂k ∈ Hk ∩H⊥
k+1 with ‖x̂k‖ = 1. For k > l write

T x̂k − T x̂l = −(x̂k − T x̂k) + (x̂l − T x̂l) + x̂k − x̂l.
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Since Hk+1  Hk ⊂ Hl+1, we have x̂k − T x̂k, x̂l − T x̂l, x̂k ∈ Hl+1. But x̂l ∈ H⊥
l+1

and thus ‖T x̂k−T x̂l‖ ≥ ‖x̂l‖ = 1 which contradicts the fact that T is compact. ¤
As a consequence of the Fredholm alternative we will get in particular the fol-

lowing improvement of Theorem 2.5:

Theorem 2.8. Assume that c ≤ 0. Then for every f ∈ L2(Ω) the equation Lu = f

has a unique solution in W 1,2
0 (Ω).

This result follows immediately from the following weak maximum principle
which excludes the case ii) in Theorem 2.6:

Theorem 2.9. Assume that c ≤ 0. Let u ∈ W 1,2(Ω) be such that u ≤ 0 on ∂Ω
and Lu ≥ 0. Then u ≤ 0 in Ω.

Proof. By approximation we have L(u, v) ≤ for v ∈ W 1,2
0 (Ω) with v ≥ 0. Therefore,

since c ≤ 0, for v ∈ W 1,2
0 (Ω) with v ≥ 0 and uv ≥ 0 we obtain

∫

Ω

aijDiu Djv dλ ≤
∫

Ω

biDiu v dλ ≤ C

∫

Ω

|Du| v dλ.

Suppose supΩ u > 0 and choose a with 0 < a < supΩ u. Set v := (u − a)+. Then
v ∈ W 1,2

0 (Ω) (by Lemma 2.1 and regularization), v ≥ 0, uv ≥ 0. Therefore by
Lemma 2.1 ∫

Ω

aijDiv Djv dλ ≤ C1

∫

Ω

|Dv| v dλ

and thus by (2.4)

‖Dv‖22 ≤ C2

∫

Ω

|Dv| v dλ.

We will get
‖Dv‖2 ≤ C3‖v‖L2({Dv 6=0})

and by the Sobolev inequality for n ≥ 3

‖v‖2n/(n−2) ≤ C4‖Dv‖2 ≤ C5‖v‖L2({Dv 6=0}) ≤ C5(λ({Dv 6= 0}))1/n‖v‖2n/(n−2)

and thus

(2.9) λ({Dv 6= 0}) ≥ c > 0,

where c does not depend on a. (For n = 2 we choose any p with 1 < p < 2 and
similarly obtain

‖v‖2p/(2−p) ≤ C‖Dv‖p ≤ C(λ(Ω))1/p−1/2‖Dv‖2.)
By Lemma 2.1 (applied twice) we have {Dv 6= 0} ⊂ {a < u < supΩ u} which easily
contradicts (2.9). ¤
Eigenvalues. For a given operator L (which in turn depends also on Ω) by Σ we
denote the set of eigenvalues of −L, that is those σ ∈ R such that the problem

{
Lu + σu = 0
u = 0 on ∂Ω

has a nonzero solution in W 1,2(Ω). The set Σ is called a spectrum of −L.
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Theorem 2.10. For σ /∈ Σ the problem

(2.10)
{

Lu + σu = f

u = 0 on ∂Ω

has a unique solution in W 1,2(Ω) for every f ∈ L2(Ω). The set Σ is either finite
or consists of a sequence converging to +∞.

Proof. The first part follows directly from the Fredholm alternative applied to the
operator Lu + σu. Let µ > 0, L̃u = Lu − µu and T = −µL̃−1 be as in the
proof of Theorem 2.6. For σ ∈ Σ we then have L̃u = −(σ + µ)u for some nonzero
u ∈ W 1,2

0 (Ω) and thus
Tu =

µ

σ + µ
u.

Therefore, σ is an eigenvalue of −L if and only if µ/(σ + µ) is an eigenvalue of T .
Since by Theorem 2.5 Σ is bounded from below, it is enough to use the following
result:

Theorem 2.11. Let T : H → H be a linear compact operator, where H is a
Hilbert space. Then the set of nonzero eigenvalues of T is either finite or consists
of a sequence converging to 0.

Proof. If Twk = ηkwk, where ‖wk‖ = 1, then, choosing subsequence if necessary, by
compactness we see that the sequence ηkwk is convergent, and thus ηk is bounded.
We thus have to show that if ηk → η, where all ηk are distinct, then η = 0. Suppose
that η 6= 0 and ηk 6= 0. By Hk denote the space spanned by w1, . . . , wk. Then,
since wk are linearly independent, we have Hk  Hk+1. For k ≥ 2 we also have
(T − ηkI)(Hk) ⊂ Hk−1. We can find xk ∈ Hk ∩H⊥

k−1 with ‖xk‖ = 1. For k > l we
have Hl−1  Hl ⊂ Hk−1  Hk and

Txk

ηk
− Txl

ηl
=

Txk − ηkxk

ηk
− Txl − ηlxl

ηl
+ xk − xl.

Now Txk − ηkxk, Txl − ηlxl, xl ∈ Hk−1 and xk ∈ H⊥
k−1, therefore

∥∥∥∥
Txk

ηk
− Txl

ηl

∥∥∥∥ ≥ ‖xk‖ = 1.

We get a contradiction with the compactness of T . ¤
Theorem 2.12. Assume that

(2.11) Lu = Di(aijDju),

that is the coefficients bi and c vanish. Then the eigenvalues of −L are positive and
there exists a complete orthonormal system in L2(Ω) consisting of eigenfunctions
of −L from W 1,2

0 (Ω). Eigenspaces of −L are finite dimensional.

Proof. Positivity of the eigenvalues follows from Theorem 2.9. Together with the
Fredholm alternative it also implies that the operator

L−1 : L2(Ω) → W 1,2
0 (Ω)
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is well defined. Thus
S : L2(Ω) → L2(Ω)

given by S := −L−1 is a compact operator by the Rellich-Kondrachov theorem.
We claim that

〈Sf, g〉 = 〈f, Sg〉,
that is S is symmetric. This follows immediately from

〈Lu, v〉 = 〈u, Lv〉,

which we first prove for u, v ∈ C∞0 (Ω) (integrating by parts), and thus it holds for
u, v ∈ W 1,2

0 (Ω).
It is clear that kerS = {0}. Therefore the eigenvalues of S are precisely 1/σ,

where σ is an eigenvalue of −L. By λk denote all eigenvalues of S and let Hk =
ker (S − λkI) be the corresponding eigenspaces. Note that if Sf = λkf , Sg = λlg
then

λk〈f, g〉 = 〈Sf, g〉 = 〈f, Sg〉 = λl〈f, g〉
and thus the spaces Hk and Hl are perpendicular for k 6= l.

Set H̃ :=
⊕

Hk (that is H̃ consists of finite linear combinations of elements from
Hk). We have to show that H̃ is dense in L2(Ω). We clearly have S(H̃) ⊂ H̃. Set
Ĥ := H̃⊥. If f ∈ Ĥ and g ∈ H̃ then 〈Sf, g〉 = 〈f, Sg〉 = 0, and thus S(Ĥ) ⊂ Ĥ.
Since kerS = {0}, for density of H̃ it is enough to show that S(Ĥ) = 0. For that
it suffices to prove that

(2.12) 〈Sf, f〉 = 0, f ∈ Ĥ

(because the corresponding form 〈Sf, g〉 is symmetric). Suppose

M := sup
f∈Ĥ, ||f ||=1

〈Sf, f〉 > 0

(if the corresponding infimum is negative then we may consider −S instead of S).
We can find fj ∈ Ĥ with ||fj || = 1 and such that 〈Sfj , fj〉 → M . By compactness
we may assume in addition that Sfj → f̃ . We then have by the Schwarz inequality
applied to the positive form 〈Mf − Sf, g〉

||Mfj − Sfj || = sup
g∈Ĥ, ||g||=1

|〈Mfj − Sfj , g〉|

≤ sup
g∈Ĥ, ||g||=1

〈Mg − Sg, g〉1/2 〈Mfj − Sfj , fj〉1/2.

It follows that Mfj − Sfj → 0 and Sf̃ = Mf̃ . We thus get an eigevector in
Ĥ = H̃⊥, which is a contradiction. Therefore (2.12) and the density of H̃ follows.

The last statement of the theorem is a consequence of the following result.

Proposition 2.13. Assume that T : H → H is a compact operator on a Hilbert
space H. Then dimker (T − I) < ∞.
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Proof. If the dimension were not finite then we would find an orthonormal sequence
xk ∈ ker (T − I). For k 6= l

||Txk − Txl||2 = ||xk − xl||2 = ||xk||2 − 2〈xk, xl〉+ ||xl||2 = 2.

Thus Txk has no convergent subsequence which contradicts compactness. ¤
The dimension of the corresponding eigenspace is called a multiplicity of an

eigenvalue. Summing up, we see that eigenvalues of a symmetric elliptic operator
(2.11) form a sequence of positive numbers converging to +∞

0 < σ1 ≤ σ2 ≤ . . .

(we repeat an eigenvalue in this sequence k times, where k is the multiplicity).
One can in fact show that the first eigenvalue is simple (multiplicity is 1), that is
σ1 < σ2.

The famous problem Can one hear the shape of a drum? whether one can tell
the shape of a domain knowing the eigenvalues of the Laplacian. It turned out
that in general one cannot, but the problem is still open for example for smooth or
convex domains.

Example. For Ω = (0, 2π) and L = ∆ we have to solve

{
u′′ + σu = 0
u(0) = u(2π) = 0.

For a solution to exist we have to assume σ > 0, they are of the form A cos(
√

σt)+
B sin(

√
σt). The boundary condition implies that A = 0 and sin(2π

√
σ) = 0, and

thus

σk =
k2

4
, k = 1, 2, . . . ,

whereas uk = sin(kt/2) are the corresponding eigenfunctions.

Exercise 7. Show that sin(kt/2), k = 1, 2, . . . , forms a complete orthogonal system
in L2((0, 2π)).

The eigenvalue equation for the Laplacian

∆u + σu = 0

is called the Helmholtz equation. For product domains it can be solved using the
method of separation of variables (by ΣΩ we denote the spectrum of −∆ for Ω).

Proposition 2.14. ΣΩ1×Ω2 = ΣΩ1 + ΣΩ2 .

Sketch of proof. Let σj ∈ ΣΩj , j = 1, 2, and let uj ∈ W 1,2
0 (Ωj) be corresponding

eigenfunctions. Set

w(x, y) := u1(x)u2(y), x ∈ Ω1, y ∈ Ω2.

One can show that
∆w = v∆u + u∆v
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(in the weak sense). Therefore
∆w + (σ1 + σ2)w = v(∆u + σ1u) + u(∆v + σ2v) = 0

and thus we have ⊃. To show ⊂ it is enough to prove (using Fubini theorem)
that if uk(x) is a complete orthogonal system in L2(Ω1) and vl(y) a complete
orthogonal system in L2(Ω2) then uk(x)vl(y) is a complete orthogonal system in
L2(Ω1 × Ω2). ¤

Example (rectangle). Similarly as in the previous example we can show that for
a > 0

Σ(0,a) = {π2k2

a2
: k = 1, 2 . . . }.

Therefore, by Proposition 2.14

Σ(0,a)×(0,b) = {π2(
k2

a2
+

l2

b2
) : k, l = 1, 2, . . . }.

Example (disc). It turns out that we can solve the Helmholtz equation in a
disc also using separation of variables but applied to polar coordinates x = r cosφ,
y = r sin φ. It is known that

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
.

Consider the function of the form
u(x, y) = R(r)Φ(φ).

Then
∆u + σu =

(
R′′(r) +

1
r
R′(r) + σR(r)

)
Φ(φ) +

1
r2

R(r)Φ′′(φ).

To get a single variable equation we assume that
Φ′′ + cΦ = 0.

We will get nontrivial periodic solutions of period 2π only if c ≥ 0: Φ = A0 for
c = 0 and

Φ = Ak cos(kφ) + Bk sin(kφ)
for c = k2, k = 1, 2, . . . . The equation for R now becomes

r2Rrr + rRr + (σr2 − k2)R = 0,

and, after the substitution ρ =
√

σr,
ρ2Rρρ + ρRρ + (ρ2 − k2)R = 0.

The solutions are Bessel functions of order k = 0, 1, . . . :

Jk(ρ) =
∞∑

j=0

(−1)j

j!(k + j)!

(ρ

2

)k+2j

.

We thus got the following solutions to the Helmholtz equation
Jk(

√
σr)

(
Ak cos(kφ) + Bk sin(kφ)

)
, k = 0, 1, . . . ,

where B0 = 0 (one can check that these functions are smooth at the origin). The
boundary condition in the unit disc gives

Jk(
√

σ) = 0,

therefore the eigenvalues are the squares of zeros of the Bessel functions (for J0 the
are of multiplicity 1 and for zeros of Jk, k = 1, 2, . . . , of multiplicity 2).


