
SEVERAL COMPLEX VARIABLES

UAM, POZNAŃ, FALL 2014
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Introduction

Our goal is two-fold: to present the most classical results of complex analysis in several

variables as well as the most recent developments in the area. The central point is the

Hörmander estimate for the ∂̄-equation, Theorem 7.1 below. It is the principal tool for

constructing holomorphic functions of several variables and it seems that essentially every

problem of this kind can be solved using this estimate more or less directly.

In Sections 1-4 we present basic results on subharmonic and plurisubharmonic functions,

holomorphic functions of several variables, domains of holomorphy and pseudoconvex sets

in Cn. We mostly follow Hörmander’s books [36] and [37]. We assume that the reader

is familiar with holomorphic and harmonic functions of one complex variable. One less

classical ingredient is the pluricomplex Green function which is an important tool later

on but can also be used to give a simple proof of the fact that euclidean balls are not

biholomorphic to polydiscs. Section 5 is an introduction to the Bergman kernel and metric.

The main result, Theorem 5.5, is a criterion due to Kobayashi [47] for completeness with

respect to the Bergman metric.
1



2 Z. B LOCKI

The Hörmander estimate is first proved in dimension one in Section 6. The proof is

simpler than in higher dimensions but gives a good idea of the general method. We follow

the expositions of Hörmander [37] and Berndtsson [2, 5]. The Hörmander estimate can be

quite useful already in dimension one, as an example we prove a result of Chen [21] which

simplifies the Kobayashi criterion for Bergman completeness in this case. In Section 7 we

prove the Hörmander estimate in arbitrary dimension following [36] and [37].

Sections 8-11 contain various more or less direct consequences of the Hörmander esti-

mate. First, we give a solution of the classical Levi problem, originally solved indepen-

dently by Oka [55], Bremermann [18] and Norguet [53]. Following Berndtsson [4] we show

that other estimates for ∂̄ due to Donnelly-Fefferman [28] and Berndtsson [3] are formal

consequences of the Hörmander estimate. We then prove a pluripotential criterion for

Bergman completeness, Theorem 8.5, due to Chen [20] and Herbort [34] (see also [15]).

We also establish a lower bound for the Bergman kernel in terms of the Green function

from [13] and deduce the one-dimensional Suita conjecture [60], originally shown in [12].

Another big topic is the Ohsawa-Takegoshi extension theorem. In Section 9 we present

the proof of this important result recently proposed by Chen [22] (see also [11]) who

was the first to notice that it can be deduced directly from the Hörmander estimate.

In Section 10 we discuss applications of the Ohsawa-Takegoshi theorem for singularities

of plurisubharmonic functions: the openness conjecture of Demailly-Kollár [26] recently

established by Berndtsson [6] and the Demailly approximation [25] of plurisubharmonic

functions. The latter can be used to give a simple proof of the Siu theorem [59] on

analyticity of level sets of Lelong numbers.

Finally, in Section 11 we discuss recent approach of Nazarov [52] to the Mahler con-

jecture [50] and the Bourgain-Milman inequality [17] from convex analysis using several

complex variables, in particular the Hörmander estimate. In this section the main tool is

the Fourier-Laplace transform, in particular the Parseval formula and the Paley-Wiener

theorem (they can be found for example in Chapters 7.1 and 7.3 in [38]).
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1. Subharmonic Functions

Let Ω ⊂ C be open. A function u : Ω→ R ∪ {−∞} is called subharmonic if it is upper

semi-continuous (usc), u 6≡ −∞ on every component of Ω and for any domain D b Ω and

h ∈ H(D) ∩ C(D̄) such that u ≤ h on ∂D we have u ≤ h in D. The set of subharmonic

functions in Ω will be denoted by SH(Ω).

Proposition 1.1. Let u be subharmonic in a neighbourhood of ∆̄(z0, r). Then

u(z) ≤ 1

2π

∫ 2π

0

r2 − |z − z0|2

|z − z0 − reit|2
u(z0 + reit) dt, z ∈ ∆(z0, r).

Proof. Let ϕn be a sequence of continuous functions decreasing to u on ∂∆(z0, r). Solving

the Dirchlet problem with this data we will find hn ∈ H(∆(z0, r))∩C(∆̄(z0, r)) such that

hn = ϕn on ∂∆(z0, r). By the definition we then have

u(z) ≤ hn(z) =
1

2π

∫ 2π

0

r2 − |z − z0|2

|z − z0 − reit|2
ϕn(z0 + reit) dt, z ∈ ∆(z0, r),

and it is enough to let n→∞. �

Theorem 1.2. Assume that u is usc on a domain Ω ⊂ C and u 6≡ −∞. Then u is

subharmonic if and only if for every z0 ∈ Ω there exists r0 > 0 such that ∆̄(z0, r0) ⊂ Ω

and we have the mean-value inequality

(1.1) u(z0) ≤ 1

2π

∫ 2π

0
u(z0 + reit)dt, 0 < r ≤ r0.

In particular, subharmonicity is a local condition.

Proof. If u is subharmonic then (1.1) follows from Proposition 1.1. In order to show the

converse take D b Ω and h ∈ H(D) ∩ C(D̄) with u ≤ h on ∂D. If {u > h} 6= ∅ then

u − h attains maximum at some z0 ∈ D, since u is usc. Using (1.1) one can show that

the set {u− h = u(z0)− h(z0)} contains all circles ∂∆(z0, r) such that ∆̄(z0, r) ⊂ Ω, and

therefore is open. Since it is also closed (it is of the form {u− h ≥ const}), it follows that

u− h = const > 0 in D which contradicts the boundary condition. �

Proposition 1.1 and the proof of Theorem 1.2 immediately give the maximum principle

for subharmonic functions:

Theorem 1.3. If u ∈ SH(Ω) attains maximum in a domain Ω then u is constant. �

For a real-valued function u defined on an open Ω ⊂ C we set

u∗(z) := lim sup
ζ→z

u(ζ), z ∈ Ω̄.

Then u∗, defined in Ω̄, is the smallest usc function which is ≥ u in Ω.

The following basic properties of subharmonic functions follow easily from the previous

results:
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Proposition 1.4. (i) H(Ω) ⊂ SH(Ω);

(ii) u, v ∈ SH(Ω), α ≥ 0 ⇒ max{u, v}, u+ v, αu ∈ SH(Ω);

(iii) If ∆̄(z0, r) ⊂ Ω and u ∈ SH(Ω) then

u(z0) ≤ 1

πr2

∫∫
∆(z0,r)

u dλ;

(iv) SH(Ω) ⊂ L1
loc(Ω);

(v) If un ∈ SH(Ω) is a non-increasing sequence converging tu u on a domain Ω then

either u ∈ SH(Ω) or u =≡ −∞. �

Here are some further properties of subharmonic functions:

Theorem 1.5. (i) If u ∈ SH(Ω) then
1

2π

∫ 2π

0
u(z0 + reit)dt is non-decreasing for r with

∆̄(z0, r) ⊂ Ω and converges to u(z0) as r → 0;

(ii) If u is subharmonic in the annulus {r < |z − z0| < R} then
1

2π

∫ 2π

0
u(z0 + ρeit)dt

and max
|z−z0|=ρ

u(z) are logarithmically convex functions of ρ ∈ (r,R) (that is convex w.r.t.

log ρ);

(iii) If u ∈ SH(Ω) and χ is a convex non-decreasing function defined on an interval

containing the image of u then χ ◦ u ∈ SH(Ω);

(iv) f ∈ O(Ω), f 6≡ 0 on every component of Ω, α ≥ 0 ⇒ log |f |, |f |α ∈ SH(Ω);

(v) For a non-empty family F ⊂ SH(Ω), locally uniformly bounded above, we have

(supF)∗ ∈ SH(Ω).

Proof. (i) Assume that r < R and let ϕn be a sequence of continuous functions on

∂∆(z0, R) decreasing to u there. We can find hn ∈ H(∆(z0, R)) ∩ C(∆̄(z0, R)) such that

hn = ϕn on ∂∆(z0, R). Then u ≤ hn in ∆̄(z0, R) and

1

2π

∫ 2π

0
u(z0 + reit)dt ≤ 1

2π

∫ 2π

0
hn(z0 + reit)dt =

1

2π

∫ 2π

0
ϕn(z0 +Reit)dt

and letting n → ∞ we get monotonicity. The upper semi-continuity of u implies conver-

gence to u(z0) as r → 0.

(ii) Let us first prove the second statement. Set Mρ := max
|z−z0|=ρ

u(z) and assume that

r < ρ1 < ρ2 < R. The function

h(z) = Mρ1 +
Mρ2 −Mρ1

log ρ2 − log ρ1
(log |z − z0| − log ρ1)

is harmonic away from z0 and such that u ≤ h on the boundary of P := {ρ1 < |z−z0| < ρ2}.
Since u ≤ h on P̄ ,

Mρ ≤Mρ1 +
Mρ2 −Mρ1

log ρ2 − log ρ1
(log ρ− log ρ1)

if ρ1 ≤ ρ ≤ ρ2, that is that Mρ is logarithmically convex.

To show the second statement let ϕn ∈ C(∂P ) be a sequence decreasing to u on ∂P and

hn ∈ H(P ) ∩ C(P̄ ) is such that hn = ϕn on ∂P . It now follows easily from the fact that

u ≤ hn and that the corresponding mean-value for harmonic functions is logarithmically
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linear. (The latter follows from the fact that every harmonic function in an annulus

centered at z0 is of the form Re f + C log |z − z0| where f is holomorphic.)

(iii) The function χ ◦ u is usc. For the disk ∆̄(z0, r) in Ω we have

χ(u(z0)) ≤ χ
(

1

2π

∫ 2π

0
u(z0 + reit)dt

)
≤ 1

2π

∫ 2π

0
χ(u(z0 + reit))dt,

where the first inequality follows since χ is non-decreasing and the second one since χ is

convex (by the Jensen inequality).

(iv) The function log |f | is harmonic on the set {f 6= 0} and = −∞ if f = 0, it is thus

enough to use Theorem 1.2. We also have |f |α = χ(log |f |), where χ(t) = eαt, and we use

(iii).

(v) For the disk ∆̄(z0, r) ⊂ Ω by Proposition 1.1

v(z) ≤ 1

2π

∫ 2π

0

r2 − |z − z0|2

|z − z0 − reit|2
v(z0 + reit) dt, v ∈ F .

Set u := supF . Then

u(z) ≤ 1

2π

∫ 2π

0

r2 − |z − z0|2

|z − z0 − reit|2
u(z0 + reit) dt.

By the Fatou lemma

u∗(z0) = lim sup
z→z0

u(z) ≤ 1

2π

∫ 2π

0
u(z0 + reit) dt ≤ 1

2π

∫ 2π

0
u∗(z0 + reit) dt. �

Proposition 1.6. Assume that u ∈ C2(Ω). Then u ∈ SH(Ω) if and only if ∆u ≥ 0.

Proof. Suppose u is subharmonic and ∆u < 0 in a disk ∆(z0, r) b Ω. Let h ∈ H(∆(z0, r))∩
C(∆̄(z0, r)) be such that h = u on ∂∆(z0, r). Then v := u−h ∈ SH(∆(z0, r))∩C(∆̄(z0, r))

has a local minimum in ∆(z0, r) and thus ∆u = ∆v ≥ 0 at this point, a contradiction.

On the other hand suppose that ∆u ≥ 0. Considering u+ ε|z|2 instead we may assume

that ∆u > 0. Take D b Ω and h ∈ H(D) ∩ C(D̄) such that u ≤ h on ∂D. If there exists

z ∈ D such that u − h has a maximum at z then ∆(u − h) ≤ 0 at z, a contradiction. It

follows that u ≤ h in D and thus u is subharmonic. �

Let ρ ∈ C∞0 (C) be radially symmetric (that is ρ(z) depends only on |z|), non-negative

and such that supp ρ = ∆̄ and
∫∫

C ρdλ = 1. For ε > 0 we set ρε(z) := ε−2ρ(z/ε), so that

supp ρε = ∆̄(0, ε) and
∫∫

C ρεdλ = 1. In particular, ρε → δ0 weakly as ε→ 0.

Theorem 1.7. For u ∈ SH(Ω) set

uε(z) := (u ∗ ρε)(z) =

∫∫
∆(0,ε)

u(w)ρε(z − w)dλ(w) =

∫∫
∆
u(z − εw)ρ(w)dλ(w).

Then uε is smooth, subharmonic in

Ωε := {z ∈ Ω: ∆(z, ε) ⊂ Ω},

and decreases to u as ε decreases to 0.
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Proof. It is clear that uε ∈ C∞(Ωε). By the Fubini theorem uε satisfies the mean-value

inequality and thus it is subharmonic. To show monotonicity in ε we have to use the fact

that ρ is radially symmetric:

uε(z) =

∫∫
∆
u(z − εw)ρ(w)dλ(w) =

∫ 1

0
rρ(r)

∫ 2π

0
u(z + εreit)dt dr

and use the first part of Theorem 1.5.i. By the second part uε converges to u. �

Theorem 1.8. Proposition 1.6 remains true if we merely assume that u is a distribution.

Proof. It follows easily Proposition 1.4.iii that subharmonic functions are locally inte-

grable, they can be therefore treated as distributions. Theorem 1.7 and the previous part

imply that they have a non-negative Laplacian. If u is an arbitrary distribution with

∆u ≥ 0 then ∆(u ∗ ρε) = ∆u ∗ ρε ≥ 0 and by the previous part u ∗ ρε is subharmonic.

By commutativity of convolution the expression u ∗ ρε ∗ ρδ is monotone both in ε and δ.

It follows that it decreases to u ∗ ρδ as ε decreases to 0, and u ∗ ρδ decreases to some u0

as δ decreases to 0. Since u ∗ ρδ also converges weakly to u, it follows that for every test

function ϕ the integral
∫
ϕu∗ρδ is bounded, and thus u0 must be locally integrable, hence

subharmonic. By the Lebesgue bounded convergence theorem the convergence u∗ρδ → u0

is also weak, and thus u0 = u. �

Theorem 1.8 can be treated as an alternative definition of subharmonic functions.

Proposition 1.9. If f ∈ O(Ω1,Ω2), f 6= const on any component of Ω1, and u ∈ SH(Ω2)

then u ◦ f ∈ SH(Ω1).

Proof. It easily follows from Proposition 1.6 if u is smooth and from Theorem 1.7 for

arbitrary u. �

We have the following versions of the Riemann removable singularity and Liouville

theorems for subharmonic functions:

Proposition 1.10. Assume that u ∈ SH(Ω \ {w} is bounded above near w. Then u can

be uniquely extended to a subharmonic function in Ω.

Proof. The uniqueness follows from Theorem 1.5(i). For every n ≥ 1 the function un =

u+ 1
n log |z − w| clearly extends to a subharmonic function in Ω and near w (supnun)∗ is

a subharmonic extension of u. �

Proposition 1.11. Entire subharmonic functions which are bounded above are constant.

Proof. Follows easily from Theorem 1.5(ii) and (i). �

The following lemma due to Hartogs will be crucial in the proof that separate holomor-

phic functions are holomorphic.

Lemma 1.12. Let uk be a sequence of subharmonic functions on a domain Ω in C locally

uniformly bounded from above. Assume that

lim sup
k→∞

uk(z) ≤ C, z ∈ Ω.
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Then for every ε > 0 and K compact in Ω one has

uk(z) ≤ C + ε, z ∈ K,

for sufficiently big k.

Proof. Without loss of generality we may assume that uk ≤ 0 in Ω. Choose r > 0 such

that ∆(z, 2r) ⊂ Ω for z ∈ K. For w ∈ K by the Fatou lemma we have

lim sup
k→∞

1

πr2

∫∫
∆(w,r)

ukdλ ≤ C

and therefore we can find k0 depending on w such that

1

πr2

∫∫
∆(w,r)

ukdλ ≤ C +
ε

2
, k ≥ k0.

If |z − w| < δ < r then by the mean-value inequality and since uk is negative

uk(z) ≤
1

π(r + δ)2

∫∫
∆(z,r+δ)

uk dλ

≤ 1

π(r + δ)2

∫∫
∆(w,r)

uk dλ

≤
(
C +

ε

2

) πr2

π(r + δ)2

≤ C + ε

if δ is sufficiently small. The lemma now follows if we cover K with finite collection of

disks with radius δ. �
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2. Holomorphic Functions of Several Variables

Let Ω be an open set in Cn. A function f : Ω → C is called holomorphic if it is

continuous and holomorphic with respect to every variable. We will later see that the

continuity assumption is superfluous. The class of holomorphic functions in Ω will be

denoted by O(Ω).

If f is holomorphic in a neighbourhood of P̄ , where P = P (w, r) = ∆(w1, r1) × · · · ×
∆(wn, rn) is a polydisk centered at w with multi-radius r = (r1, . . . , rn), then by the

one-dimensional Cauchy formula

(2.1) f(z) =
1

(2πi)n

∫
∂∆(w1,r1)

. . .

∫
∂∆(wn,rn)

f(ζ1, . . . , ζn)

(ζ1 − z1) . . . (ζn − zn)
dζn . . . dζ1, z ∈ P.

By the continuity of f the right-hand-side can be treated as an multi-dimensional integral

over ∂SP = ∂∆(w1, r1)× · · · × ∂∆(wn, rn) (which is called the Shilov boundary of P ), we

can write it as

(2.2) ∂Sf(z) =
1

(2πi)n

∫
∂SP

f(ζ)

ζ − z
dζ, z ∈ P.

We can also differentiate under the sign of integration. We see that in fact f must be C∞

smooth and for α ∈ Nn

∂αf(z) =
∂|α|f

∂zα1
1 . . . ∂zαn

n
(z) =

α!

(2πi)n

∫
∂SP

f(ζ)

(ζ − z)α+1
dζ, z ∈ P,

where |α| = α1+· · ·+αn, α! = α1! . . . αn!, α+1 = (α1+1, . . . , αn+1) and zα = zα1
1 . . . zαn

n .

Applying this in slightly shrinked polydisks gives the multidimensional Cauchy inequality:

Proposition 2.1. If f is holomorphic in a polydisk P (w, r) and |f | ≤M there then

|∂αf(w)| ≤ Mα!

rα
. �

If f is holomorphic in a polydisk P centered at w then from the corresponding one-

dimensional fact it follows that its power series converges absolutely in P :

f(z) =
∑
α∈Nn

∂αf(w)

α!
(z − w)α, z ∈ P.

The following proposition Coupled with the Cauchy inequality implies that the convergence

is also locally uniform in P :

Proposition 2.2. If for a multi-radius r one has |aα|rα ≤ M < ∞ for α with |α| is

sufficiently big then the power series
∑

α aαz
α converges absolutely and locally uniformly

in the polydisk P (0, r).

Proof. Fix t with 0 < t < 1 and let z ∈ P̄ (0, tr). Since |aαzα| ≤Mt|α|, |α| � 0, for every

m� 0 if k1, k2 � 0 we have

|Sk1(z)− Sk2(z)| ≤
∑
αj≥m

|aαzα| ≤
Mtnm

(1− t)n
,

where Sk(z) denotes the sequence of partial sums of the series
∑

α aαz
α. �
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The following two results can be proved using the Cauchy formula (2.2) in the same

way as in dimension 1:

Theorem 2.3. If fj is a sequence of holomorphic functions converging locally uniformly

to f then f is holomorphic and ∂αfj → ∂αf locally uniformly for every α. �

Theorem 2.4. If fj is a locally uniformly bounded sequence of holomorphic functions then

it has a subsequence converging locally uniformply. �

In what follows we will prove two theorems of Hartogs. The first says that the as-

sumption of continuity in the definition of a holomorphic function of several variables is

superfluous.

Theorem 2.5. If a function defined on an open subset of Cn is holomorphic with respect

to every variable separately then it is holomorphic.

Proof. The result is of course purely local. We first claim that it is enough to show

that separately holomorphic functions are locally bounded. Indeed, we claim that if f is

separately holomorphic in a neighbourhood of (∆̄R)n (where ∆R = ∆(0, R)) with |f | ≤M
then

|f(z)− f(w)| ≤ 2M
n∑
j=1

R|zj − wj |
|R2 − zjw̄j |

, z, w ∈ ∆n
R.

We have

f(z)− f(ζ) =
n∑
j=1

(f(ζ1, . . . , ζj−1, zj , . . . , zn)− f(ζ1, . . . , ζj , zj+1, . . . , zn))

which reduces the estimate to n = 1. Then it easily follows from the Schwarz lemma. The

estimate clearly implies that f is continuous.

To prove that a separately holomorphic function f is locally bounded we use the induc-

tion on n. Of course the result is true for n = 1 and we assume that it holds for n − 1

variables. If f(z) = f(z′, zn) is defined in a neighbourhood of (∆̄R)n, by the inductive

assumption the sets

{z′ ∈ ∆n−1
R : |f(z′, zn)| ≤M for zn ∈ ∆R}

are closed ∆n−1
R . Since their union is the whole ∆n−1

R , by the Baire theorem they have

non-empty interiors for large M . Slightly changing the polydisk if necessary we may thus

assume that f is defined in ∆n
R, holomorphic in z′ and zn separately, and bounded by M

(and in particular holomorphic) in ∆n−1
r ×∆R, where 0 < r < R. We can write

(2.3) f(z′, zn) =
∑

α∈Nn−1

fα(zn)(z′)α,

where

fα(zn) =
∂αf(0, zn)

α!
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are holomorphic in ∆R (because f is holomorphic in ∆n−1
r × ∆R). For R1 < R and

zn ∈ ∆R we have

(2.4) lim
|α|→∞

|fα(zn)|R|α|1 = 0

(the series (2.3) is absolutely convergent) and by the Cauchy inequality

|fα(zn)|r|α| ≤M.

Therefore the family of subharmonic functions

uα =
1

|α|
log |fα|

(for α 6= 0) is bounded from above by logM − log r in ∆R. By (2.4)

lim sup
|α|→∞

uα(zn) ≤ log
1

R1
, zn ∈ ∆R.

Therefore, if 0 < R2 < R1 and |α| is sufficiently large from Lemma 1.12 we will get

uα(zn) ≤ log
1

R2
, zn ∈ ∆R2 ,

that is

|fα(zn)|R|α|2 ≤ 1, |zn| < R2.

By Proposition 2.2 the series (2.3) converges locally uniformly in ∆n
R and f is holomorphic

there. �

Our next result is the Hartogs extension theorem:

Theorem 2.6. Assume that Ω is a domain in Cn, where n > 1, and K is a compact

subset of Ω such that Ω \K is connected. Then every holomorphic function in Ω \K can

be extended holomorphically to Ω.

It is clearly false in dimension one.

The main tool in the proof will be a solution of the ∂̄-equation in Cn. For a (0, 1)-form

α =

n∑
k=1

αkdz̄k

we consider the inhomogeneous Cauchy-Riemann equation (or ∂̄-equation)

(2.5) ∂̄u = α.

Since

∂̄u =

n∑
k=1

∂u

∂z̄k
dz̄k,

(2.5) is equivalent to the system of equations

∂u

∂z̄k
= αk, k = 1, . . . , n.

It is clear that for u ∈ C1 (and in fact for any distribution u) the condition ∂̄u = 0 is

equivalent to u being holomorphic.
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The (0, 2)-form ∂̄α is defined as

∂̄α =
n∑
k=1

∂̄αk ∧ dz̄k =
∑
j<k

(
∂αk
∂z̄j
− ∂αj
∂z̄k

)
dz̄j ∧ dz̄k.

The necessary condition for solvability of (2.5) is

∂̄α = 0,

that is
∂αk
∂z̄j

=
∂αj
∂z̄k

, j, k = 1, . . . , n.

Theorem 2.6 will easily follow from the following result:

Theorem 2.7. Assume that n > 1. Then for every α ∈ C∞0,(0,1)(C
n) with ∂̄α = 0 there

exists unique u ∈ C∞0 (Cn) solving (2.5).

Proof. Uniqueness follows immediately from the identity principle for holomorphic func-

tions. Recall the Green formula from dimension 1: if Ω ⊂ C is bounded and has C1

boundary then for f ∈ C1(Ω̄) and z ∈ Ω we have

2πif(z) =

∫
∂Ω

f(ζ)

ζ − z
dζ +

∫∫
Ω

∂f/∂z̄(ζ)

ζ − z
dζ ∧ dζ̄.

Set

u(z) =
1

2πi

∫∫
C

α1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄

= − 1

2πi

∫∫
C

α1(z1 − ζ, z2, . . . , zn)

ζ
dζ ∧ dζ̄.

It is clear that u ∈ C∞(Cn). Differentiating the second integral and using the Green

formula in a big disk we will get ∂u/∂z̄1 = α1. For k > 1 we have

∂u

∂z̄k
(z) =

1

2πi

∫∫
C

∂α1/∂z̄k(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄

=
1

2πi

∫∫
C

∂αk/∂z̄1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄

= αk(z)

again by the Green formula. We thus have (2.5), so in particular u is holomorphic away

from the support of α. From the definition of u it follows that the support of u is contained

in C×K whereK is compact in Cn−1, so by the identity principle for holomorphic functions

the support of u must in fact be compact. �

This theorem is also false in dimension one: then a necessary condition for the solution

of ∂u/∂z̄ = f to have a compact support is
∫∫

C f dλ = 0.

Proof of Theorem 2.6. Let f ∈ O(Ω\K) and let η ∈ C∞0 (Ω) be equal to 1 in a neighbour-

hood of K. Then α = −f∂̄η ∈ C∞0,(0,1)(C
n), so by Theorem 2.7 there exists u ∈ C∞0 (Cn)

with ∂̄u = α. We set

F = (1− η)f − u.
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It is clear that F is holomorphic in Ω. Since u vanishes in the unbounded component

of Cn \ supp η, it follows that F = f in an open subset of Ω \ supp η and thus also in

Ω \K. �

A mapping F : Ω → Cm is called holomorphic if its components are holomorphic

functions. By O(Ω,Ω′) we will denote the set holomorphic mappings whose range is

contained in Ω′. A mapping F ∈ O(Ω1,Ω2) is called biholomorphic if it is bijective,

holomorphic and F−1 is also holomorphic. Biholomorphic mappings Ω→ Ω will be called

automorphisms of Ω, their set will be denoted by Aut (Ω).

The cases n = 1 and n > 1 are quite different: for example it turns out that in the

latter a ball is not biholomorphic to a polydisk. This was originally proved by Poincaré

who did it comparing the automorphism groups of both domains. We will show it later

using the pluricomplex Green function.

Exercise 1. Fix r with 0 ≤ r < 1. Show that the mapping

F (z′, zn) =

(√
1− r2

1− rzn
z′,

zn − r
1− rzn

)
is an automorphism of the unit ball B. Conclude that the group Aut (B) is transitive, that

is for every z, w ∈ B there exists F ∈ Aut (B) such that F (z) = w.
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3. Plurisubharmonic Functions and the Pluricomplex Green Function

Let Ω be an open subset of Cn. A function u : Ω→ R∪{−∞} is called plurisubharmonic

(psh) if u is usc, u 6≡ −∞ on any connected component of Ω, and locally u is subharmonic

or u ≡ −∞ on every complex line intersected with Ω, that is for every z ∈ Ω and X ∈ Cn

the function ζ 7→ u(z + ζX) is subharmonic or ≡ −∞ near the origin. The set of psh

functions in Ω will be denoted by PSH(Ω).

Open Problem 1. Does upper semi-continuity in the definition of psh functions follow

from the other conditions?

It would be enough to show that u is locally bounded. Wiegerinck [62] found an example

of a separately subharmonic function which is not locally bounded.

Below we list basic properties of psh functions. They follow more or less directly from

the definition and corresponding one-dimensional results, the details are left to the reader.

Theorem 3.1. (i) u, v ∈ PSH(Ω), α ≥ 0 ⇒ max{u, v}, u+ v, αu ∈ PSH(Ω);

(ii) Psh functions are subharmonic, that is they satisfy the mean-value inequality

u(z) ≤ 1

σ(S(z, r))

∫
S(z,r)

u dσ

if B̄(z, r) ⊂ Ω;

(iii) If a psh function attains maximum in a domain then it is constant;

(iv) If u ∈ PSH(Ω) then
1

σ(S(z, r))

∫
S(z,r)

u dσ is non-decreasing for r with B̄(z0, r) ⊂ Ω

and converges to u(z0) as r → 0;

(iv) If B̄(z, r) ⊂ Ω then

u(z) ≤ 1

λ(B(z, r))

∫
B(z,r)

u dλ.

The right-hand side is non-decreasing in r and converges to u(z0) as r → 0;

(v) If two psh functions are equal almost everywhere then they are equal;

(vi) PSH(Ω) ⊂ L1
loc(Ω);

(vii) If u is psh in {r < |z − z0| < R} then
1

σ(S(z, r))

∫
S(z,r)

u dσ and max
|z|=ρ

u(z) are

logarithmically convex for ρ ∈ (r,R);

(viii) If u ∈ PSH(Ω) and χ is a convex non-decreasing function defined on an interval

containing the image of u then χ ◦ u ∈ PSH(Ω);

(ix) f ∈ O(Ω), f 6≡ 0 on every component of Ω, α ≥ 0 ⇒ log |f |, |f |α ∈ PSH(Ω);

(x) If un ∈ PSH(Ω) is a non-increasing sequence converging tu u on a domain Ω then

either u ∈ PSH(Ω) or u ≡ −∞;

(xi) For a non-empty family F ⊂ PSH(Ω), locally uniformly bounded above, we have

(supF)∗ ∈ PSH(Ω);

(xii) If F ∈ O(Ω1,Ω2), F 6= const on any component of Ω1, and u ∈ PSH(Ω2) then

u ◦ F ∈ PSH(Ω1);

(xiii) Entire psh functions bounded above are constant. �
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It is clear from the definition that if u ∈ C2(Ω) then it is psh if and only if

(3.1)
∂2u

∂ζ∂ζ̄

∣∣∣∣
ζ=0

u(z + ζX) =

n∑
j,k=1

∂2u

∂zj∂z̄k
(z)XjX̄k ≥ 0, z ∈ Ω, X ∈ Cn.

It is called the Levi form of u. We thus have

Proposition 3.2. For u ∈ C2

u is psh ⇔
(

∂2u

∂zj∂z̄k

)
≥ 0. �

Similarly as for n = 1 we can regularize psh functions using convolution. We take a

radially-symmetric, non-negative ρ ∈ C∞0 (Cn) such that supp ρ = B̄(0, 1) and
∫
Cn ρ dλ =

1. For ε > 0 we set ρε(z) = ε−2nρ(z/ε), so that supp ρε = B̄(0, ε) and
∫
Cn ρε dλ = 1. We

set

(3.2)

uε(z) := (u ∗ ρε)(z) =

∫
B(z,ε)

u(ζ)ρε(z − ζ)dλ(ζ)

=

∫
B(0,1)

u(z − εζ)ρ(ζ)dλ(ζ)

= ε1−2n

∫ 1

0
ρ̃(r)

∫
S(z,εr)

udσ dr, z ∈ Ωε,

where

Ωε := {z ∈ Ω : B(z, ε) ⊂ Ω}
and ρ̃ is such that ρ(z) = ρ̃(|z|). Using this and Proposition 3.2 we can prove:

Theorem 3.3. The functions uε are smooth and psh in Ωε and decrease to u as ε decreases

to 0. �

Using this regularization, similarly as in dimension 1 we can prove that Proposition 3.2

holds also for distributions:

Theorem 3.4. Psh functions can be characterized as distributions satisfying (3.1). �

For a domain Ω ⊂ Cn we define the pluricomplex Green function as

GΩ(z, w) := sup{u(z) : u ∈ BΩ,w}, z, w ∈ Ω

where

BΩ,w = {u ∈ PSH−(Ω): lim sup
z→w

(u(z)− log |z − w|) <∞}

(by PSH−(Ω) we denote negative psh functions in Ω).

Proposition 3.5. If F ∈ Aut (Ω1,Ω2) then

GΩ1(z, w) = GΩ2(F (z), F (w)).

Proof. It is enough to see that the mapping

BΩ2,F (w) 3 u 7−→ u ◦ F ∈ BΩ1,w

is bijective. �
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Proposition 3.6. (i) GB(w,r)(z, w) = log
|z − w|
r

;

(ii) GP (w,r)(z, w) = log max
j

|zj − wj |
rj

.

Proof. (i) We may assume that w = 0 and r = 1. The inequality ≥ is clear. To show the

reverse one take u ∈ BB,0, X ∈ Cn with |X| = 1 and define v(ζ) := u(ζX) − log |ζ|. By

Proposition 1.10 we have v ∈ SH(∆) and by the maximum principle v ≤ 0.

(ii) Similarly, we may assume that w = 0 and r = (1, . . . , 1). Again, the inequality

≥ is clear. Arguing similarly for u ∈ B∆n,0 and X ∈ Cn with |X1| = · · · = |Xn| = 1

we get ≤ on the set {z ∈ ∆n : |z1| = · · · = |zn|}. Elsewhere it now follows from the

maximum principle: if we fix zn ∈ ∆ then we will get u(z′, zn) ≤ log max |zj | for z′ with

|z1| = · · · = |zn−1| = |zn| and thus also for those with |zj | ≤ |zn|, j = 1, . . . , n− 1. �

We now immediately obtain

Theorem 3.7. For n > 1 the unit ball B and the unit polydisk ∆n are not biholomorphic.

Proof. If they were biholomorphic then, since Aut (∆n) is transitive, we would find F ∈
Aut (B,∆n) with F (0) = 0. But the Green function for B is smooth and the one for ∆n is

not, and this contradicts Proposition 3.5. �

We will now show other basic properties of the pluricomplex Green function.

Proposition 3.8. Either GΩ(·, w) ∈ BΩ,w or GΩ(·, w) ≡ −∞.

Proof. If r > 0 is such that B(w, r) ⊂ Ω then GΩ(z, w) ≤ log |z−w|r and the same is valid

for the usc regularization of GΩ(·, w). �

Proposition 3.9. If Ωj is a sequence of domains increasing to Ω (that is Ωj ⊂ Ωj+1 and⋃
Ωj = Ω) then GΩj decreases to GΩ.

Proof. Fix w ∈ Ω and r > 0 such that B(w, r) ⊂ Ωj for j sufficiently large. Then GΩj (·, w)

decreases to u ≥ GΩ(·, w). If u ≡ −∞ then there is nothing to prove. If u ∈ PSH(Ω)

then, since GΩj (z, w) ≤ log |z−w|r , it follows that u ∈ BΩ,w and thus u = GΩ(·, w). �

The pluricomplex Green function was originally defined independently by Klimek [45]

and Zakharyuta [63]. It is a classical result that GΩ is symmetric for n = 1. However,

this is no longer true for n > 1. The first example of this kind was found by Bedford and

Demailly [1]. The following simple one was found by Klimek [46]:

Proposition 3.10. Let Ω := {z ∈ C2 : |z1z2| < 1}. Then

GΩ(z, w) =


log

∣∣∣∣∣ z1z2 − w1w2

1− z1z2(w1w2)

∣∣∣∣∣ , w 6= 0

1

2
log |z1z2|, w = 0

.

In particular, GΩ(0, z) = log |z1z2| and GΩ is not symmetric.
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Proof. First note that by Propositions 1.10 and 1.11 any u ∈ PSH−(Ω) must be of the

form u(z) = v(z1z2), where v ∈ SH−(∆). It is clear that for w = 0 we have |z1z2| ≤ |z|2/2
and the exponent cannot be improved. Therefore u ∈ BΩ,0 if and only if v ∈ 1

2B∆,0. On

the other hand, for w 6= 0 we have

z1z2 − w1w2 = (z1 − w1)(z2 − w2) + (z1 − w1)w2 + (z2 − w2)w1

and the extra linear term does not vanish. The best estimate for z near w we can get is

|z1z2 − w1w2| ≤ C|z − w| and therefore u ∈ BΩ,w if and only if v ∈ B∆,w1w1 . �

By a deep theorem of Lempert [49] the Green function is symmetric if Ω is convex.
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4. Domains of Holomorphy and Pseudoconvex Sets

Let Ω be an open set in Cn. We say that Ω is a domain of holomorphy if for every open

polydisk P centered at w ∈ Ω such that for every f ∈ O(Ω) its Taylor series at w converges

in P we have P ⊂ Ω. It is easy to prove that for n = 1 all open subsets are domains of

holomorphy: it is enough to consider functions of the form 1/(z− z0) for z0 ∈ ∂Ω. On the

other hand, the Hartogs extension theorem clearly shows that for n > 1 there are open

sets which are not domains of holomorphy.

Theorem 4.1. For an open set Ω in Cn the following are equivalent:

i) Ω is a domain of holomorphy;

ii) For every compact subset K of Ω the O(Ω)-envelope of K

K̂O(Ω) := {z ∈ K : |f(z)| ≤ sup
K
|f | for all f ∈ O(Ω)}

is compact Ω;

iii) There exists f ∈ O(Ω) which cannot be continued holomorphically beyond Ω, that is

if P is a polydisk centered at w ∈ Ω such that the Taylor series of f at w converges in P

then P ⊂ Ω.

For a norm || · || it will be convenient to consider the distance function:

δΩ(z) = inf
w∈Cn\Ω

||z − w||, z ∈ Ω.

If not otherwise stated, δΩ will denote the distance with respect to the euclidean norm | · |.
We will need a lemma.

Lemma 4.2. Assume that Ω is a domain of holomorphy, K ⊂ Ω and F ∈ O(Ω) is such

that |F | ≤ δΩ on K, where δΩ is take w.r.t. ||z|| = maxj |zj |. Then |F | ≤ δΩ on K̂O(Ω).

Proof. Assume that 0 < t < 1 and f ∈ O(Ω). The set⋃
w∈K

(w + t|F (w)|∆̄n)

is compact and thus |f | ≤M <∞ there. The Cauchy inequality gives for w ∈ K

|∂αf(w)| ≤ Mα!

(t|F (w)|)|α|
,

that is

|∂αf(w)F (w)|α|| ≤ Mα!

t|α|
.

The same inequality holds for w ∈ K̂O(Ω) and by Proposition 2.2 the Taylor series of f at w

converges in w+t|F (w)|∆n. Since Ω is a domain of holomorphy, we have w+t|F (w)|∆n ⊂
Ω and the lemma follows. �

It is easy to show that the lemma holds for arbitrary norm, it is enough to approximate

it by norms whose unit ball is an arbitrary polydisk centered at the origin.
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Proof of Theorem 4.1. i)⇒ii) follows from Lemma 4.2 applied for constant F and iii)⇒i)

is obvious. It thus remains to prove ii)⇒iii). For z ∈ Ω by Pz denote the largest polydisk

of the form z + r∆n contained in Ω. Let A be a countable, dense subset of Ω and let

wj ∈ A be a sequence where every element of A is repeated infinitely many times. Let

K1 ⊂ K2 ⊂ . . . be a sequence of compact subsets of Ω whose union is Ω. Since the

envelopes are compact for every j we can find zj ∈ Pwj \ K̂O(Ω), and therefore there exists

fj ∈ O(Ω) such that f(zj) = 1 but |fj | < 1 on Kj . Replacing fj by by a power of fj if

necessary, we may assume that |fj | ≤ 2−j on Kj . We may also assume that fj 6≡ 1 on any

component of Ω. Define

f :=
∞∏
j=1

(1− fj)j .

For a fixed l the series
∑

j j|fj | is uniformly absolutely convergent on Kl, and thus f ∈
O(Ω) and f 6= 0 an any component of Ω. We have ∂αf(zj) = 0 if |α| < j. Since every

element w ∈ M is repeated infinitely many times in the sequence wj , there exist points

in Pw vanishing to arbitrary order. If the power series of f at w were convergent in a

neighbourhood of P̄w then we would find a point in P̄w where it would vanish to infinite

order and thus the function would vanish near it. This would mean that f ≡ 0 in a

component of Ω, a contradiction. �

The condition ii in Theorem 4.1 implies in particular that being a domain of holomorphy

is a biholomorphically invariant notion (although it can be also deduced directly from the

definition in a much more elementary way).

Exercise 2. Let Ω = {z ∈ C2 : |z2| < |z1| < 1} be the Hartogs triangle. Show that it is

a domain of holomorphy. Prove also that every holomorphic function in neighbourhood of

Ω̄ extends holomorphically to ∆2.

An open set Ω in Cn is called pseudoconvex if there exists a psh exhaustion of Ω, that

is u ∈ PSH(Ω) such that the sublevel sets {u < c} are relatively compact for all c ∈ R.

Theorem 4.3. Domains of holomorphy are pseudoconvex.

Proof. We may assume that Ω 6= Cn. Let δΩ be as in Lemma 4.2. The function

− log δΩ(z) + |z|2 is exhaustive and it is enough to show that − log δΩ is psh in Ω. Fix

z0 ∈ Ω and X ∈ Cn. We have to show that

v(ζ) = − log δΩ(z0 + ζX)

is subharmonic near the origin in C. It is enough to show that if v is defined in a neigh-

bourhood of a closed disk, say ∆̄, and h is a harmonic function there with h ≤ v on ∂∆

then h ≤ v in ∆. We can find f holomorphic in a neighbourhood of ∆̄ such that h = Re f .

Without loss of generality we may assume that f is a polynomial. Let P be a polynomial

in Cn such that f(ζ) = P (z0 + ζX). For K := {z0 + ζX : |ζ| = 1} by the maximum

principle we have K̂O(Ω) ⊃ {z0 + ζX : |ζ| ≤ 1}. With F := e−P we have |F | ≤ δΩ on K

and thus by Lemma 4.2 also on K̂O(Ω). This means that h ≤ v in ∆. �
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We will later show that the converse result to Theorem 4.3 also holds.

Theorem 4.4. For an open set Ω in Cn the following are equivalent:

i) Ω is pseudoconvex;

ii) − log δΩ is psh for every norm;

iii) − log δΩ is psh for some norm;

iv) If K b Ω then K̂PSH(Ω) := {z ∈ Ω : u(z) ≤ supK u for all u ∈ PSH(Ω)} b Ω.

Proof. The implications ii)⇒iii)⇒i)⇒iv) are clear. To show iv)⇒ii) note that similarly

as in the proof of Theorem 4.3 it is enough to show that if z0 ∈ Ω, X ∈ Cn and f is a

complex polynomial such that

− log δΩ(z0 + ζX) ≤ Re f(ζ)

for ζ ∈ ∂∆ then the inequality also holds for ζ ∈ ∆. This inequality is equivalent to

(4.1) δΩ(z0 + ζX) ≥ |e−f(ζ)|

which means precisely that

(4.2) z0 + ζX + e−f(ζ)w ∈ Ω, if ||w|| < 1.

Fix w with ||w|| < 1 and set

S := {t ∈ [0, 1] : Dt ⊂ Ω},

where

Dt = {z0 + ζX + te−f(ζ)w : ζ ∈ ∆̄}.
We have 0 ∈ S and it is clear that S is open. It is enough to prove that it is closed.

Let K be the union of the boundaries of Dt for t ∈ [0, 1], that is

K = {z0 + ζX + te−f(ζ)w : ζ ∈ ∂∆, t ∈ [0, 1]}.

Since (4.1) holds for ζ ∈ ∂∆, it follows that K is a compact subset of Ω. From the

maximum principle for subharmonic functions it follows that Dt ⊂ K̂PSH(Ω) for t ∈ S and

by (iv) also for t ∈ S̄. �

It is clear that always K̂PSH(Ω) ⊂ K̂O(Ω). We will later show that in pseudoconvex

domains they are actually equal.

Theorem 4.5. Assume that K̂PSH(Ω) ⊂ U ⊂ Ω, where Ω is pseudoconvex, U open and K

compact. Then there exists a smooth strongly psh (that is we have strict inequality in (3.1)

for X 6= 0) exhaustion u of Ω such that u < 0 on K and u ≥ 1 on Ω \ U . In particular,

K̂PSH(Ω) is compact.

Proof. By Theorem 4.4 there exists a continuous psh exhaustion u0 in Ω. We may assume

that u0 < 0 in K. For every z ∈ L := {u0 ≤ 0} \ U we can find w ∈ PSH(Ω) such that

w(z) > 0 and w < 0 on K. Let Ω′ be open and such that {u0 ≤ 2} ⊂ Ω′ b Ω. Regularizing

w we can find w1 ∈ PSH ∩ C(Ω′) such that w1(z) > 0 and w1 < 0 on K. Since {w1 > 0}
is an open covering of the compact set L, choosing a finite subcovering and a maximum
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of corresponding functions we can find w2 ∈ PSH ∩ C(Ω′) such that w2 > 0 on L and

w2 < 0 on K. Define

v(z) :=

{
max{w2(z), Cu0(z)} if u0(z) < 2

Cu0(z) if u0(z) ≥ 2.

We see that v = Cu0 on {1 ≤ u0 ≤ 2} for sufficiently large C and thus v is a continuous

psh exhaustion of Ω. It is clear that v < 0 on K and v ≥ 1 on Ω \ U .

To construct smooth strongly psh exhaustion with the required properties set Ωj :=

{v < j}. Then, considering functions of the form v ∗ ρε + ε|z|2, for every j we can find vj
such that it is smooth and strongly psh in a neighbourhood of Ω̄j , v < vj < v + 1 there

and vj < 0 on K. We may also assume that vj ∈ C∞(Cn). Let χ ∈ C∞(R) be convex and

such that χ(t) = 0 for t ≤ 0 and χ′(t) > 0 for t > 0. Then χ(vj + 1− j) is strongly psh in

a neighbourhood Ω̄j \ Ωj−1. If aj are sufficiently big then for every m ≥ 1 the function

um = v0 +

m∑
j=1

ajχ(vj + 1− j)

is strongly psh in a neighbourhood of Ω̄m and um > v there. For m > j in Ωj we have

vm ≤ m − 1 and thus um = ul there for m, l > j. Therefore the limit u := limum exists

and is a smooth strongly psh function in Ω. We also have u = v0 < 0 on K and u ≥ v ≥ 1

on Ω \ U . �

The following result is very easy for pseudoconvex sets but highly non-trivial for domains

of holomorphy. For those it was called the Levi problem.

Theorem 4.6. Pseudoconvexity is a local property of the boundary. More precisely: an

open Ω is pseudoconvex if and only if for every z ∈ ∂Ω there exists a neighbourhood U of

z such that Ω ∩ U is pseudoconvex.

Proof. By the condition (iii) in Theorem 4.4 an intersection of two pseudoconvex sets is

pseudoconvex. It also follows that if Ωj is a sequence of pseudoconvex increasing to Ω

then Ω is pseudoconvex. Intersecting Ω with big balls we may thus assume that Ω is

bounded. It follows from Theorem 4.4 that if ∂Ω has the local pseudoconvex property

then − log δΩ ∈ PSH(Ω \ K) for some K b Ω. Then for sufficiently big c the function

max{− log δΩ + |z|2, c} is a psh exhaustion of Ω. �

To solve the Levi problem it is enough to show that pseudoconvex sets are domains

of holomorphy. It was originally done independently by Oka [55], Bremermann [18] and

Norguet [53]. We will later prove it using the Hörmander estimate.

We have the following characterization of pseudoconvex sets with smooth boundary:

Theorem 4.7. Let Ω be an open set in Cn with C2 boundary and let ρ be its defining

function (that is ρ is C2 in a neighbourhood of Ω̄, Ω = {ρ < 0} and ∇ρ 6= 0 on ∂Ω). Then

Ω is pseudoconvex if and only if for z ∈ ∂Ω we have

(4.3)
∑
j,k

∂2ρ

∂zj∂z̄k
(z)XjX̄k ≥ 0, X ∈ TC

z ∂Ω,
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where TC
z ∂Ω is the complex tangent space to ∂Ω at z, that is

TC
z ∂Ω =

{
X ∈ Cn :

∑
j

∂ρ

∂zj
(z)Xj = 0

}
.

Proof. We can choose a C2 defining function ρ such that ρ = −δΩ near ∂Ω in Ω. Then for

X ∈ Cn we have near ∂Ω

−δΩ

∑
j,k

∂2(log δΩ)

∂zj∂z̄k
XjX̄k = −

∑
j,k

∂2δΩ

∂zj∂z̄k
XjX̄k + δ−1

Ω

∣∣∑
j

∂δΩ

∂zj
Xj

∣∣2.
If − log δΩ is psh then approaching the boundary we easily get (4.3) for this particular ρ. If

ρ̃ is another defining function for Ω we can find non-vanishing h ∈ C1 in a neighbourhood

of Ω̄ such that ρ̃ = hρ and h > 0. Then on ∂Ω

∂ρ̃

∂zj
= h

∂ρ

∂zj

and ∑
j,k

∂2ρ̃

∂zj∂z̄k
XjX̄k = h

∑
j,k

∂2ρ

∂zj∂z̄k
XjX̄k + 2Re

(∑
j

∂ρ

∂zj
Xj

∑
k

∂h

∂z̄k
X̄k

)
.

It follows that the definition of TC
z ∂Ω and (4.3) are independent of the choice of a defining

function ρ and we get (4.3) for arbitrary such a ρ.

To prove the converse assume that (4.3) holds for ρ as before and suppose that − log δΩ

is not psh near ∂Ω. Then we can find z ∈ Ω near ∂Ω (where δΩ is C2) and Y ∈ Cn such

that

c :=
∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

log δΩ(z + ζY ) > 0.

Taylor expansion gives

(4.4) log δΩ(z + ζY ) = log δΩ(z) + Re (aζ + bζ2) + c|ζ|2 + o(|ζ|2)

for some a, b ∈ C. Choose z0 ∈ ∂Ω with δΩ(z) = |z0 − z| and define

z(ζ) = z + ζY + eaζ+bζ
2
(z0 − z).

Then z(0) = z0 and by (4.4)

δΩ(z + ζY ) = |eaζ+bζ2
(z0 − z)|ec|ζ|

2+o(|ζ|2).

Therefore, if |ζ| is sufficiently small,

δΩ(z + ζY )− |eaζ+bζ2
(z0 − z)| = |eaζ+bζ

2
(z0 − z)|

(
ec|ζ|

2+o(|ζ|2) − 1
)

≥ |eaζ+bζ2
(z0 − z)|

(
c|ζ|2 + o(|ζ|2)

)
≥ c

2
|z0 − z| |ζ|2.

It follows that z(ζ) ∈ Ω if ζ 6= 0 and

δΩ(z(ζ)) ≥ c

2
|z0 − z| |ζ|2.
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Therefore δΩ(z(ζ)) has a minimum at 0 and for X := z′(0) we have∑
j

∂ρ

∂zj
(z0)Xj = − ∂

∂ζ

∣∣∣∣
ζ=0

δΩ(z(ζ)) = 0

and ∑
j

∂2ρ

∂zj∂z̄k
(z0)XjX̄k = − ∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

δΩ(z(ζ)) < 0

which contradicts (4.3). �
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5. Bergman Kernel and Metric

For a domain Ω in Cn the Bergman space is defined by

A2(Ω) := O(Ω) ∩ L2(Ω).

By || · || we will denote the L2-norm and by 〈·, ·〉 the scalar product in L2(Ω). Since for

f ∈ A2(Ω the function |f |2 is psh,

(5.1) |f(w)| ≤ cn
rn
||f ||, if B(w, r) ⊂ Ω,

and for K b Ω

sup
K
|f | ≤ C||f ||,

where C depends only on K and Ω. It follows from Theorem 2.3 that A2(Ω) is a closed

subspace of L2(Ω) and thus a Hilbert space.

Open Problem 2. Assume that Ω is pseudoconvex. Then either A2(Ω) = {0} or A2(Ω)

is infinitely dimensional.

Wiegerinck [61] showed that it is true in dimension one. He also gave examples of

domains which are not pseudoconvex for which A2(Ω has arbitrary finite dimension.

From (5.1) we also deduce that for a fixed w ∈ Ω the mapping

A2(Ω) 3 f 7−→ f(w) ∈ C

is a bounded linear functional on A2(Ω). The Riesz representative of this functional defines

the Bergman kernel KΩ on Ω× Ω: it is uniquely determined by the reproducing property

(5.2) f(w) =

∫
Ω
f KΩ(·, w)dλ, f ∈ A2(Ω), w ∈ Ω.

If we apply it for f = KΩ(·, z) we easily get that the kernel is antisymmetric:

KΩ(w, z) = KΩ(z, w).

In particular, KΩ(z, w) is holomorphic in z and antiholomorphic in w. From Theorem 2.5

applied to the function KΩ(·, ·̄) it also follows that KΩ ∈ C∞(Ω× Ω).

With some abuse of notation we will denote the Bergman kernel on the diagonal of

Ω× Ω also by KΩ, that is KΩ(z) = KΩ(z, z). The reproducing formula (5.2) implies that

KΩ(z) = ||KΩ(·, z)||2

and thus

(5.3) KΩ(z) = sup{|f(z)|2 : f ∈ O(Ω), ||f || ≤ 1}.

Let be {ϕj} be an orthonormal system in A2(Ω) and write

KΩ(·, w) =
∑
j

ajϕj .

Then

aj = 〈KΩ(·, w), ϕj〉 = ϕj(w)
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and it follows that

(5.4) KΩ(z, w) =
∑
j

ϕj(z)ϕj(w)

and

(5.5) KΩ(z) =
∑
j

|ϕj(z)|2.

Exercise 3. Using the fact that {zj}j≥0 is an orthogonal system in ∆ show that

K∆(z, w) =
1

π(1− zw̄)2
.

For the annulus P = {z ∈ C : r < |z| < 1}, where 0 < r < 1, prove that

KP (z, w) =
1

πzw̄

 1

−2 log r
+
∑
j∈Z

j(zw̄)j

1− r2j

 .

Proposition 5.1. Let Ω′, Ω′′ be domains in Cn, Cm, respectively. Then

KΩ′×Ω′′
(
(z′, z′′), (w′, w′′)

)
= KΩ′(z

′, w′)KΩ′′(z
′′, w′′).

Proof. By (5.4) it is enough to show that if ϕ′j , ϕ
′′
k are orthonormal systems in A2(Ω′),

A2(Ω′′), respectively, then ϕ′j(z
′)ϕ′′k(z

′′) is an orthonormal system in A2(Ω′×Ω′′). We only

have to prove that it is complete. Let f ∈ A2(Ω′ × Ω′′) be such that∫∫
Ω′×Ω′′

f(z′, z′′)ϕ′j(z
′)ϕ′′k(z

′′)dλ(z′, z′′) = 0

for all j, k. It is enough to show that for ϕ ∈ A2(Ω′) the function

g(z′′) =

∫
Ω′
f(z′, z′′)ϕ(z′)dλ(z′)

belongs to A2(Ω′′). Let Kl be a sequence of compact subsets of Ω′ increasing to Ω′. The

functions

gl(z
′′) =

∫
Kl

f(z′, z′′)ϕ(z′)dλ(z′)

are holomorphic in Ω′′ and satisfy

||gl − g||L2(Ω′′) ≤ ||f ||L2((Ω′\Kl)×Ω′′)||ϕ||L2(Ω′).

Therefore gl → g in L2(Ω′′) as l→∞ and it follows that g ∈ A2(Ω). �

Proposition 5.2. If Ωj increases to Ω then KΩj → KΩ locally uniformly in Ω× Ω.

Proof. For z, w ∈ Ω′ b Ω′′ b Ω and j big enough

|KΩj (z, w)|2 ≤ KΩj (z)KΩj (w) ≤ KΩ′′(z)KΩ′′(w),

hence KΩj is locally bounded in Ω×Ω. By Theorem 2.4 applied to the sequence KΩj (·, ·̄)
it is enough to show that if KΩj → K locally uniformly then K = KΩ. We have

||K(·, w)||2L2(Ω′) = lim
j→∞

||KΩj (·, w)||2L2(Ω′) ≤ lim
j→∞

KΩj (w) = K(w,w)
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and therefore ||K(·, w)||2 ≤ K(w,w). In particular, K(·, w) ∈ A2(Ω) and it remains to

show that K satisfies the reproducing property (5.2). For f ∈ A2(Ω) and j sufficiently

large we can write

f(w)−
∫

Ω
fK(·, w)dλ =

∫
Ωj

fKΩj (·, w)dλ−
∫

Ω
fK(·, w)dλ

=

∫
Ω′
f
(
KΩj (·, w)−K(·, w)

)
dλ

+

∫
Ωj\Ω′

fKΩj (·, w)dλ−
∫

Ω\Ω′
fK(·, w)dλ

and we easily show that all three integrals are arbitrarily small as j is large and Ω′ is close

to Ω. �

If F : Ω1 → Ω2 is a biholomorphic mapping then

A2(Ω2) 3 f 7−→ f ◦ F JacF ∈ A2(Ω1)

is an isometry (we use the fact that JacRF = |JacF |2) and

(5.6) KΩ1(z, w) = KΩ2(F (z), F (w))JacF (z) JacF (w).

Exercise 4. (i) Prove that A2(∆) = A2(∆∗).

(ii )Prove that the Hartogs triangle Ω (defined in Exercise 2) is biholomorphic to ∆∗×∆.

Use it to derive the formula

(5.7) KΩ(z, w) =
z1w̄1

π2(1− z1w̄1)2(z1w̄1 − z2w̄2)2
.

It follows from (5.7) that KΩ is exhaustive. Domains with this property are called

Bergman exhaustive. By Exercise 4(i) and Proposition 5.2 it is clear that being Bergman

exhaustive is not a biholomorphic invariant for bounded domains in Cn for n ≥ 2.

Open Problem 3. Is Bergman exhaustiveness a biholomorphic invariant for bounded

domains in C?

If z ∈ Ω is such that KΩ(z) > 0 then logKΩ is a smooth psh function near z. By (5.6)

we see that although KΩ is not biholomorphically invariant, the Levi form of logKΩ is.

For X ∈ Cn we define the Bergman metric on Ω by

B2
Ω(z;X) :=

∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

logKΩ(z + ζX) =
∑
j,k

∂2(logKΩ)

∂zj∂z̄k
(z)XjX̄k.

Theorem 5.3. Assume that KΩ(z0) > 0. Then for X ∈ Cn

(5.8) B2
Ω(z0;X) =

1

KΩ(z0)
sup{|fX(z0)|2 : f ∈ O(Ω), f(z0) = 0, ||f || ≤ 1},

where fX =
∑

j ∂f/∂zj Xj.

Proof. Define

H ′ := {f ∈ A2(Ω) : f(z0) = 0}
H ′′ = {f ∈ H ′ : fX(z0) = 0}.
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Then H ′ is a subspace of A2(Ω) of codimension one and H ′′ is either a subspace of H ′ of

codimension one or H ′′ = H ′. In both cases we can find an orthonormal system ϕ0, ϕ1, . . .

in A2(Ω) such that ϕ1 ∈ H ′ and ϕj ∈ H ′′ for j ≥ 2. Write K(z) = KΩ(z, z). Then by

(5.5) at z0 we have

K = |ϕ0|2, KX = ϕ0,Xϕ0, KXX̄ = |ϕ0,X |2 + |ϕ1,X |2.

Therefore at z0

B2
Ω(·;X) = (logK)XX̄ =

KKXX̄ − |KX |2

K2
=
|ϕ1,X |2

|ϕ0|2

and we get ≤ in (11.4). On the other hand for f ∈ H ′ we have 〈f, ϕ0〉 = 0 and thus at z0

|fX | =
∣∣∑

j

〈f, ϕj〉ϕj,X
∣∣ =

∣∣〈f, ϕ1〉ϕ1,X

∣∣ ≤ ||f || |ϕ1,X |

and the result follows. �

If KΩ > 0 and logKΩ is strongly psh then BΩ is a Kähler metric with potential logKΩ.

We then say that Ω admits the Bergman metric. By Theorem 5.3 this is for example the

case when Ω is bounded. The Bergman metric is in particular a Riemannian metric, for a

curve γ ∈ C1([0, 1],Ω) its length is given by∫ 1

0
BΩ(γ(t); γ′(t))dt

and the distance between z, w ∈ Ω is the infimum of the lengths of curves connecting z

with w. This Bergman distance will be denoted by distBΩ . We will say that Ω is Bergman

complete if it is complete with respect to this distance.

Proposition 5.4. If Ω is Bergman complete then it is a domain of holomorphy.

Proof. Suppose that Ω is not a domain of holomorphy. Then there exists an open polydisk

P 6⊂ Ω centered at z0 ∈ Ω such that for every f ∈ O(Ω) its Taylor series at z0 converges in

P . By Theorem 2.5 there exists K(z, w) ∈ C∞(P×P ), holomorphic in z, anti-holomorphic

in w and such that K = KΩ near (z0, z0). We can find z′ ∈ ∂Ω∩P which is on the boundary

of the component of Ω ∩ P containing z0. Then K is an extension of KΩ near z′ and a

sequence from Ω converging to z′ is Cauchy with respect to distBΩ . This means that Ω

cannot be Bergman complete. �

The converse is not true: ∆∗ is not Bergman complete by Exercise 4(i).

The main criterion for Bergman completeness is due to Kobayashi [47]:

Theorem 5.5. Let Ω be a domain in Cn admitting the Bergman metric. Assume that for

every sequence zj ∈ Ω with no accumulation point in Ω one has

(5.9) lim
j→∞

|f(zj)|2

KΩ(zj)
= 0, f ∈ A2(Ω).

Then Ω is Bergman complete.
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The main tool in proving Theorem 5.5 will be the mapping

ι : Ω 3 z 7−→
[
KΩ(·, z)

]
∈ P(A2(Ω)).

It is easy to check that ι is injective if Ω is bounded.

For any Hilbert space H one can define the Fubini-Study metric FSP(H) on P(H) as

the push-forward π∗P , where

π : H∗ 3 f 7−→ [f ] ∈ P(H)

and P is the Kähler metric on H∗ with the potential log ||f ||2, that is for f ∈ H∗, F ∈ H
we have

P 2(f ;F ) :=
∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

log ||f + ζF ||2 =
||F ||2

||f ||2
− |〈F, f〉|

2

||f ||4
.

Proposition 5.6. BΩ = ι∗FSP(A2(Ω)).

Proof. It will be enough to show that BΩ = ι∗P , where P is the above metric for H =

A2(Ω). For γ ∈ C1((−ε, ε),Ω), where ε > 0, set z0 := γ(0), X := γ′(0), f := KΩ(·, z0) and

F :=
d

dt

∣∣∣∣
t=0

KΩ(·, γ(t)).

We have to show that

(5.10)
∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

logKΩ(z0 + ζX) =
∂2

∂ζ∂ζ̄

∣∣∣∣
ζ=0

log ||f + ζF ||2.

If ϕ0, ϕ1, . . . are as in the proof of Theorem 5.3 then f = ϕ0(z0)ϕ0 and F = ϕ0,X(z0)ϕ0 +

ϕ1,X(z0)ϕ1. Using the fact that for any holomorphic f

d

dt

∣∣∣∣
t=0

f(γ(t)) = fX(z0),

we can show that both sides of (5.10) are equal to |ϕ1,X(z0)|2/|ϕ0(z0)|2. �

The distance on P(H) given by the Fubini-Study metric is given by

arccos
|〈f, g〉|
||f || ||g||

, [f ], [g] ∈ P(H).

(For details see Appendix A4 in [8].) Since ι is distance decreasing, we have obtained the

following lower bound for the Bergman distance:

Corollary 5.7. If Ω admits the Bergman metric then

distBΩ(z, w) ≥ arccos
|KΩ(z, w)|√
KΩ(z)KΩ(w)

. �

Proof of Theorem 5.5. Let zj ∈ Ω be a Cauchy sequence with respect to distBΩ . We may

assume that it has no accumulation point in Ω. Since ι is distance decreasing, ι(zj) is

a Cauchy sequence in P(A2(Ω)). But P(A2(Ω)) is complete and therefore we can find

f ∈ A2(Ω), f 6= 0, such that ι(zj) converges to [f ]. This means that there exist λj ∈ C
such that |λj | = 1 and

λj
KΩ(·, zj)√
KΩ(zj)

−→ f

||f ||
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in A2(Ω). This implies that
|f(zj)|√
KΩ(zj)

−→ ||f ||

which contradicts (5.9). �

Zwonek [64] showed that the converse to Theorem 5.5 does not hold: he gave an example

of a bounded domain in C which is Bergman complete but not Bergman exhaustive.

(Taking f ≡ 1 in (5.9) when Ω is bounded clearly shows that bounded domains satisfying

(5.9) must be Bergman exhaustive.) This example was simplified by Jucha [41]: he showed

that

Ω := ∆∗ \

( ∞⋃
k=1

∆̄(2−k, rk)

)
,

where rk > 0 are such that ∆̄(2−k, rk) ∩ ∆̄(2−l, rl) = ∅ for k 6= l, is Bergman complete if

and only if
∞∑
k=1

2k√
− log rk

=∞

and Bergman exhaustive if and only if
∞∑
k=1

4k

− log rk
=∞.

Therefore, if for example rk = e−k
24k then Ω is Bergman complete but not Bergman

exhaustive.

The proof of Theorem 5.5 really shows something slightly stronger: instead of (5.9) it

is enough to assume that

(5.11) lim
j→∞

|f(zj)|2

KΩ(zj)
< ||f ||2, f ∈ A2(Ω), f 6= 0.

Open Problem 4. Assume that Ω is Bergman complete. Does this imply (5.11) for any

sequence zj ∈ Ω without an accumulation point in Ω?



SEVERAL COMPLEX VARIABLES 29

6. Hörmander Estimate in Dimension One

On an open set Ω ⊂ C we consider the inhomogeneous Cauchy Riemann equation

(6.1)
∂u

∂z̄
= f.

It makes sense for any complex-valued locally integrable u and f in the distributional

sense

−
∫

Ω
uβz̄dλ =

∫
Ω
fβdλ, β ∈ C∞0 (Ω).

We will prove the following existence result:

Theorem 6.1. Let Ω be an open subset of C and ϕ a C2 strongly subharmonic function

in Ω. Then for every f ∈ L2(Ω, e−ϕ) such that∫
Ω

|f |2

ϕzz̄
e−ϕdλ <∞

there exists u ∈ L2(Ω, e−ϕ) a solution of (6.1) such that

(6.2)

∫
Ω
|u|2e−ϕdλ ≤

∫
Ω

|f |2

ϕzz̄
e−ϕdλ.

In dimension one it is convenient to use the notation ∂ = ∂/∂z, ∂̄ = ∂/∂z̄. To prove

the estimate we need to introduce the adjoint ∂̄∗ϕ to the (densely defined) operator ∂̄ in

the weighted space L2(Ω, e−ϕ). It is determined by the relation

〈∂̄u, β〉ϕ = 〈u, ∂̄∗ϕβ〉ϕ, β ∈ C∞0 (Ω),

that is

−
∫

Ω
u∂̄(β̄e−ϕ)dλ =

∫
Ω
u ∂̄∗ϕβ e

−ϕdλ.

This gives

(6.3) ∂̄∗ϕβ = −∂(βe−ϕ)eϕ = −∂β + β∂ϕ.

Theorem 6.1 will be an easy consequence of the following two propositions:

Proposition 6.2. Assume that f ∈ L2
loc(Ω, e

−ϕ) where ϕ is continuous. Then for a given

finite constant C there exists a solution u to ∂̄u = f satisfying

(6.4)

∫
Ω
|u|2e−ϕdλ ≤ C

if and only if

(6.5)

∣∣∣∣∫
Ω
fβ̄e−ϕdλ

∣∣∣∣2 ≤ C ∫
Ω
|∂̄∗ϕβ|2e−ϕdλ

for all β ∈ C∞0 (Ω).

Proof. It is clear that (6.4) implies (6.5), so assume (6.5) holds. Then the functional

F
(
∂̄∗ϕβ

)
=

∫
Ω
fβ̄e−ϕdλ
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is well defined on {∂̄∗ϕβ : β ∈ C∞0 (Ω)} and its norm does not exceed
√
C. It can be extended

to a functional defined on L2(Ω, e−ϕ) with the same norm. We can find u ∈ L2(Ω, e−ϕ)

satisfying (6.4) and such that

F (g) = 〈g, u〉ϕ, g ∈ L2(Ω, e−ϕ).

Hence u satisfies (6.4) and

〈f, β〉ϕ = F (∂̄∗ϕβ) = 〈u, ∂̄∗ϕβ〉ϕ = 〈∂̄u, β〉ϕ, β ∈ C∞0 (Ω).

It follows that ∂̄u = f . �

Proposition 6.3. For ϕ ∈ C2(Ω) and β ∈ C2
0 (Ω) we have∫

Ω
|∂̄∗ϕβ|2e−ϕdλ =

∫
Ω

(
|∂̄β|2 + ϕzz̄|β|2

)
e−ϕdλ.

Proof. By the definition of ∂̄∗ϕ we have∫
Ω
|∂̄∗ϕβ|2e−ϕdλ = 〈∂̄∗ϕβ, ∂̄∗ϕβ〉ϕ = 〈∂̄∂̄∗ϕβ, β〉ϕ.

From (6.3) we will get

∂̄∂̄∗ϕβ = ∂̄∗ϕ∂̄β + ϕzz̄β

and the proposition follows. �

Proof of Theorem 6.1. By the Cauchy-Schwarz inequality∣∣∣∣∫
Ω
fβ̄e−ϕdλ

∣∣∣∣2 ≤ ∫
Ω

|f |2

ϕzz̄
e−ϕdλ

∫
Ω
ϕzz̄|β|2e−ϕdλ

and the theorem is a consequence of both propositions. �

We can now state a general existence result for the ∂̄-equation:

Theorem 6.4. For any f ∈ L2
loc(Ω) there exists u ∈ L2

loc(Ω) solving ∂̄u = f .

Proof. By Theorem 6.1 it is enough to find a smooth strongly subharmonic ϕ such that

f ∈ L2(Ω, e−ϕ) and the right-hand side of (6.2) is finite. Let ψ be a smooth strongly

subharrmonic exhaustion of Ω. We may assume that ψ ≥ 0. Considering functions of

the form ϕ = χ ◦ ψ, where χ is smooth, increasing and convex, we can find ϕ satisfying

the first condition. Since ϕzz̄ ≥ χ′ ◦ ψ ψzz̄ we can also assume that ϕzz̄ ≥ 1 and then the

right-hand side of (6.2) is finite. �

By approximation we can show a bit more general version of Theorem 6.1, where in

particular we do not have to assume that the weight is smooth:

Theorem 6.5. Let ϕ be a subharmonic function in Ω and f ∈ L2
loc(Ω). Assume that

h ∈ L∞loc(Ω) is such that h ≥ 0 and |f |2 ≤ hϕzz̄ (in the distributional sense). Then there

exists u ∈ L2
loc(Ω), a solution of ∂̄u = f , such that

(6.6)

∫
Ω
|u|2e−ϕdλ ≤

∫
Ω
he−ϕdλ.
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Proof. If the right-hand side of (6.6) is infinite then the result follows from Theorem 6.4, we

may thus assume that it is finite. If ϕ is smooth strongly subharmonic and f ∈ L2(Ω, e−ϕ)

then it is enough to use Theorem 6.1. If f is not necessarily in L2(Ω, e−ϕ) then let Ωj be

relatively compact open subsets of Ω such that Ωj ↑ Ω. For every j we will find a solution

uj ∈ L2(Ωj , e
−ϕ) of ∂̄u = f satisfying∫

Ωj

|uj |2e−ϕdλ ≤
∫

Ω

|f |2

ϕzz̄
e−ϕdλ.

By the Banach-Alaoglu theorem applied in L2(Ωk, e
−ϕ) for a fixed k and using the diagonal

argument one can show that uj has a subsequence converging weakly to u which has the

required properties.

We may thus assume that the right-hand side of (6.6) is finite and that the result

holds for smooth strongly subharmonic ϕ. By the Radon-Nikodym theorem we can find

β ∈ L1
loc(Ω) such that 0 ≤ β ≤ ϕzz̄ and |f |2 ≤ hβ. Let εj be a sequence decreasing to 0

such that ϕj := ϕ ∗ ρεj + εj |z|2 is defined in a neighbourhood of Ω̄j . Set hj := |f |2/ϕj,zz̄.
By the previous part we can find uj ∈ L2

loc(Ωj) such that∫
Ωj

|uj |2e−ϕjdλ ≤
∫

Ωj

hje
−ϕjdλ ≤

∫
Ωj

hje
−ϕdλ.

We have βj := β ∗ ρεj ≤ ϕj,zz̄ and replecing it with a subsequence if necessary we may

assume that βj converges pointwise to β almost everywhere. Therefore

lim sup
j→∞

hj ≤ lim sup
j→∞

|f |2

βj
≤ h

and by the Fatou lemma

lim sup
j→∞

∫
Ωj

|uj |2e−ϕjdλ ≤
∫

Ω
he−ϕdλ =: C.

For fixed m ≥ k we see that the L2(Ωk, e
−ϕm)-norm of uj , j ≥ m, is bounded and thus,

replacing εj with a subsequence if necessary and using the diagonal argument, we can find

u ∈ L2
loc(Ω) such that uj converges weakly to u in L2(Ωk, e

−ϕm) for every k and m. It

follows that for every δ > 0 and sufficiently large m∫
Ωk

|u|2e−ϕmdλ ≤ C + δ

and therefore u satisfies (6.6). �

The set of u ∈ L2(Ω, e−ϕ) solving ∂̄u = f must be of the form u0 + ker ∂̄, where u0 is

a particular solution of ∂̄u = f . Since for every distribution h satisfying ∂̄h = 0 we also

have ∆h = 0, it follows that

ker ∂̄ = O(Ω) ∩ L2(Ω, e−ϕ).

The minimal solution to ∂̄u = f in the L2(Ω, e−ϕ)-norm is the only one perpendicular to

ker ∂̄, that is ∫
Ω
uh̄e−ϕdλ = 0, h ∈ ker ∂̄.
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Exercise 5. Assume that ϕ is a bounded continuous radially symmetric function on the

unit disk ∆. Show that u0 = z̄ is the minimal solution to ∂̄u = 1 in the L2(∆, e−ϕ)-norm.

One inconvenience with the Hörmander estimate (6.2) is that ϕ appears both as a weight

and in the denominator on the right-hand side of (6.2). These two roles are separated in

the following estimate for the ∂̄-equation due to Donnelly and Fefferman [28].

Theorem 6.6. Let Ω be open in C. Assume that ψ = − log(−v) where v ∈ SH−(Ω).

Then for any ϕ ∈ SH(Ω) and f ∈ L2
loc(Ω) there exists u ∈ L2

loc(Ω) solving ∂̄u = f such

that

(6.7)

∫
Ω
|u|2e−ϕdλ ≤ 4

∫
Ω
he−ϕdλ,

where h ∈ L∞loc(Ω) is such that h ≥ 0 and |f |2 ≤ hψzz̄.

Proof. First assume that ϕ, ψ and Ω are bounded and ψ is smooth and strongly subhar-

monic. Then it is characterized by the condition

(6.8) |ψz|2 ≤ ψzz̄.

Let u be the solution to ∂̄u = f which is minimal in L2(Ω, e−ϕ−ψ/2). Then u is perpen-

dicular to ker ∂̄ in L2(Ω, e−ϕ−ψ/2), that is∫
Ω
uh̄ e−ϕ−ψ/2dλ = 0, h ∈ ker ∂̄.

But this means that v := ueψ/2 is perpendicular to ker ∂̄ in L2(Ω, e−ϕ−ψ) (by our assump-

tions at the beginning of the proof the set ker ∂̄ is the same with respect to both weights).

Therefore v is the minimal solution to ∂̄v = g where

g =
∂

∂z̄

(
ueψ/2

)
= eψ/2

(
f + uψz̄/2

)
.

We trivially have

|g|2 ≤ |g|
2

ψzz̄
ϕzz̄ + ψzz̄

and by Theorem 6.5 ∫
Ω
|v|2e−ϕ−ψdλ ≤

∫
Ω

|g|2

ψzz̄
e−ϕ−ψdλ.

Therefore, using (6.8) for t > 0 we will get∫
Ω
|u|2e−ϕdλ ≤

∫
Ω

|f + uψz̄/2|2

ψzz̄
e−ϕdλ

≤
∫

Ω

(
|f |2

ψzz̄
+
|u| |f |√
ψzz̄

+
|u|2

4

)
e−ϕdλ

≤
∫

Ω

((
1 +

t

2

)
|f |2

ψzz̄
+

(
1

4
+

1

2t

)
|u|2
)
e−ϕdλ.

For t = 2 we obtain (6.7).

For arbitrary ϕ, ψ and Ω the result follows if we approximate similarly as before: first

Ω from inside and ϕ from above, so that we may assume that they are bounded, and then

consider ψε = − log(−vε), where vε = v ∗ ρε + ε|z|2. �
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The proof of Theorem 6.6 given here is due to Berndtsson [4] with some modifications

from [9] (see also [10]) where the constant 4 was obtained. Moreover, we have the following

result from [14]:

Proposition 6.7. The constant 4 in (6.7) is optimal.

Proof. Let Ω = ∆ and

u(z) =
η(− log |z|)

z

for some η ∈ C1
0 ((0,∞)). Then ∂̄u = f where

f(z) := −η
′(− log |z|)

2|z|2
.

We claim that it is the minimal in L2(∆). Indeed, for j ≥ 0 we have∫
∆
u(z)z̄jdλ(z) =

∫ 1

0

∫ 2π

0
rjη(− log r)e−i(j+1)tdt dr = 0

and since zj is an orthogonal system in L2(∆) we conclude that u is perpendicular to

ker ∂̄. Theorem 6.6 with ϕ ≡ 0 and

ψ(z) = − log(− log |z|)

now gives

(6.9)

∫ ∞
0

η2dt ≤ 4

∫ ∞
0

(η′)2t2dt

for all η ∈ C1
0 ((0,∞)) and thus for all η ∈W 1,2

0 ((0,∞)).

It is enough to show that the constant 4 is optimal in (6.9). For ε > 0 set

η(t) =

{
t−(1−ε)/2 t ≤ 1

t−(1+ε)/2 t > 1.

Then we can compute ∫ ∞
0

η2dt =
2

ε
,

∫ ∞
0

(η′)2t2dt =
1 + ε2

2ε
,

and the ratio tends to 4 as ε→ 0. �

We now illustrate the usefulness of ∂̄-estimates in dimension one to show the following

result proved independently in [33] and [21].

Theorem 6.8. Let Ω be a bounded domain in C and let z0 ∈ ∂Ω. Then the subspace of

A2(Ω) of those functions from A2(Ω) that extend holomorphically to a neighbourhood of

Ω ∪ {z0} is dense in A2(Ω).

Proof. We may assume that z0 = 0 and Ω ⊂ ∆R. We will use Theorem 6.6 with ϕ ≡ 0

and

ψ(z) = − log
(
− log(|z|/R)

)
.
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For ε > 0 set T := − log(− log(ε/R)), so that ∆ε = {ψ < T}. We define ε̃ > 0 by the

condition ∆ε̃ = {ψ < T + 1}. It is easy to check that ε̃→ 0 as ε→ 0. We also set

χ(t) :=


0 t ≤ T
t− T T < t ≤ T + 1

1 t > T + 1.

For a fixed h ∈ A2(Ω) the function hχ◦ψ can be trivially continuously extended to Ω∪∆ε

so that it vanishes in ∆ε. Set

f :=
∂

∂z̄

(
χ ◦ ψ h

)
= χ′ ◦ ψ ψz̄ h.

Then

|f |2 = (χ′ ◦ ψ)2|ψz|2|h|2 = (χ′ ◦ ψ)2|h|2ψzz̄
and from Theorem 6.6 we obtain u ∈ L2

loc(Ω ∪∆ε) solving ∂̄u = f and such that∫
Ω∪∆ε

|u|2dλ ≤ 4

∫
Ω

(χ′ ◦ ψ)2|h|2dλ ≤ 4

∫
Ω∩∆ε̃

|h|2dλ.

In fact, u has to be continuous, since hχ ◦ ψ is. The function

hε := hχ ◦ ψ − u

is holomorphic in Ω ∪∆ε, belongs to A2(Ω) and

||hε − h|| ≤ ||h
(
χ ◦ ψ − 1

)
||+ ||u|| ≤ 3||h||L2(Ω∩∆ε̃). �

Theorem 6.8 can be used to prove the following improvement of the Kobayashi criterion

for bounded domains in C due to Chen [21] (see also [10]).

Theorem 6.9. Assume that Ω is a bounded domain in C which is Bergman exhaustive.

Then it is Bergman complete.

Proof. Take f ∈ A2(Ω), z0 ∈ ∂Ω and a sequence zj ∈ Ω converging to z0. By Theorem 6.8

for every ε > 0 we can find fε ∈ A2(Ω) which is in particular bounded near z0 and such

that ||f − fε|| ≤ ε. Then

|f(zj)|√
KΩ(zj)

≤ |fε(zj)|+ |f(zj)− fε(zj)|√
KΩ(zj)

≤ |fε(zj)|√
KΩ(zj)

+ ε

and it follows that the Kobayashi criterion is satisfied. �

Considering the Hartogs triangle we see that this result is no longer true in higher

dimensions.
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7. Hörmander Estimate in Arbitrary Dimension

We now come back to several variables and consider the ∂̄-equation as in the proof of

Theorem 2.6:

(7.1) ∂̄u = α,

where α is a (0,1)-form satisfying ∂̄α = 0. The main result is the following estimate of

Hörmander in its full generality for (0, 1)-forms:

Theorem 7.1. Let Ω be pseudoconvex in Cn, ϕ ∈ PSH(Ω) and let α ∈ L2
loc,(0,1)(Ω) be

∂̄-closed. Then there exists u ∈ L2
loc(Ω) solving (7.1) and such that

(7.2)

∫
Ω
|u|2e−ϕdλ ≤

∫
Ω
|α|2i∂∂̄ϕ e

−ϕdλ.

Let us first explain the statement precisely. If ϕ is smooth and strongly psh then

|α|2i∂∂̄ϕ =
∑
j,k

ϕjk̄αjᾱk

(here (ϕjk̄) = (∂2ϕ/∂zj∂z̄k)−1) is the square of the length of α with respect the Kähler

metric i∂∂̄ϕ. It is equal to the minimal function h satisfying

(7.3) iᾱ ∧ α ≤ hi∂∂̄ϕ,

that is (αjᾱk) ≤ h(∂2ϕ/∂zj∂z̄k). If ϕ is arbitrary then, similarly as in Theorem 6.5,

we should replace |α|2
i∂∂̄ϕ

in (7.2) by any nonnegative h ∈ L∞loc(Ω) satisfying (7.3). The

Hörmander estimate for nonsmooth ϕ was first stated in [10].

Hörmander’s formulation (see [35], and also [36], [37]) was also weaker in the following

sense: instead of |α|2
i∂∂̄ϕ

on the right-hand side of (7.2) he considered |α|2/c, where at

every point c is the minimal eigenvalue of (∂2ϕ/∂zj∂z̄k). Demailly [23] was the first to

note that the proof of the Hörmander estimate for (0, 1)-forms really gives this stronger

statement.

When proving Theorem 7.1 the main difficulty compared with dimension one is that

we have to take into account the assumption ∂̄α = 0 which is not satisfied for all α when

n ≥ 2. We will consider Hilbert spaces

H1 = L2(Ω, e−ϕ1), H2 = L2
(0,1)(Ω, e

−ϕ2), H3 = L2
(0,2)(Ω, e

−ϕ3),

where ϕk ∈ C2(Ω), k = 1, 2, 3. Here, for

f =
∑
j

fjdz̄j ∈ H2,

we have

|f |2 =
∑
j

|fj |2, ||f ||2 =

∫
Ω
|f |2e−ϕ2dλ,

and for

F =
∑
j<k

Fjkdz̄j ∧ dz̄k ∈ H3,
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|F |2 =
∑
j<k

|Fjk|2, ||F ||2 =

∫
Ω
|F |2e−ϕ3dλ.

Note that

(7.4) |f ∧ g|2 ≤ 2|f |2|g|2, f, g ∈ H2.

It is also clear that the spaces of test forms C∞0 (Ω), C∞0,(0,1)(Ω) and C∞0,(0,2)(Ω) are dense

in H1, H2 and H3, respectively.

We will also consider linear, densely defined, closed operators given by ∂̄:

H1
T−→ H2

S−→ H3.

Since ∂̄2 = 0, the range of T is contained in kerS. Similarly as in Proposition 6.2, our

goal will be to prove

(7.5) |〈α, f〉| ≤
√
C||T ∗f ||, f ∈ DT ∗ .

We have to take into account that α ∈ kerS. In fact, we will then prove something more:

(7.6) |〈α, f〉|2 ≤ C||T ∗f ||2 + C̃||Sf ||2, f ∈ DT ∗ ∩DS .

It is easy to see that (7.6) implies (7.5) if α ∈ kerS: for f ∈ DT ∗ write f = f ′ + f ′′ where

f ′ ∈ kerS and f ′′ ⊥ kerS. Then f ′′ is also perpendicular to the range of T and thus

T ∗f ′′ = 0. Since Sα = 0, we also have 〈α, f ′′〉 = 0 and thus by (7.6)

|〈α, f〉|2 = |〈α, f ′〉|2 ≤ C||T ∗f ′||2 = C||T ∗f ||2.

There are essentially two ways of proving the Hörmander estimate. Berndtsson [2]

did it using the same weights ϕk = ϕ on bounded Ω with smooth boundary. Then

however inevitably also boundary terms have to appear, in particular one can show that

f ∈ C∞(0,1)(Ω) belongs to DT ∗ if and only if
∑

j fj∂ρ/∂zj = 0 on ∂Ω, where ρ is as in

Theorem 4.7. We will follow the original Hörmander approach from [35] and [36] which is

completely interior. It requires however that the weights ϕk are slightly different in order

to ensure that it is enough to prove (7.6) for f ∈ C∞0,(0,1)(Ω). Note that for such f we have

(7.7) T ∗f = −
n∑
j=1

eϕ1
∂(e−ϕ2fj)

∂zj
.

This formula also holds for f ∈ DT ∗ and in fact can be used to define T ∗ and DT ∗ .

Lemma 7.2. Let ψ ∈ C2(Ω) be such that there exist a sequence χν ∈ C∞0 (Ω) such that

0 ≤ χν ≤ 1, for every K b Ω one has χν = 1 on K for ν big enough, and |∂̄χν |2 ≤ eψ.

Then for any ϕ ∈ C2(Ω) and

ϕk = ϕ+ (k − 3)ψ, k = 1, 2, 3,

the space C∞0,(0,1)(Ω) is dense in DT ∗ ∩DS in the graph norm

||f ||+ ||T ∗f ||+ ||Sf ||, f ∈ H2.
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Proof. Fix f ∈ DT ∗ ∩DS . We have χνT
∗f → T ∗f in H1, χνf → f in H2 and χνSf → Sf

in H3. Since by (7.4)

||S(χνf)− χνSf ||2 ≤ 2

∫
Ω
|f |2|∂̄χν |2e−ϕ3dλ ≤ 2

∫
Ω
|f |2e−ϕ2dλ,

it follows from the Lebesgue bounded convergence theorem that S(χνf) → Sf in H3.

Similarly by (7.7)

T ∗(χνf)− χνT ∗f = −eϕ1−ϕ2
∑
j

fj
∂χν
∂zj

and

||T ∗(χνf)− χνT ∗f ||2 ≤
∫

Ω
|f |2|∂̄χν |2e−ϕdλ ≤

∫
Ω
|f |2e−ϕ2dλ.

This implies that T ∗(χνf)→ T ∗f in H1 and thus χνf → f in the graph norm.

We may thus assume that supp f b Ω. For sufficiently small ε > 0 let fε := f ∗ ρε.
Since f ∈ DT ∗ ∩DS , we have

∑
j ∂fj/∂zj ∈ L2(Ω) and Sf ∈ L2

(0,2)(Ω), and it follows that

fε → f in the graph norm. �

We will now prove a counterpart of Proposition 6.3. This kind of results, obtained by

integration by parts, are sometimes called the Bochner-Kodaira formulas.

Proposition 7.3. For f ∈ C∞0,(0,1)(Ω) and ϕ,ψ ∈ C2(Ω) we have∫
Ω

∣∣eψT ∗f +
∑
j

fj
∂ψ

∂zj

∣∣2 + |Sf |2
 e−ϕdλ =

∫
Ω

∑
j,k

(
∂2ϕ

∂zj∂z̄k
fj f̄k +

∣∣∣∣∂fj∂z̄k

∣∣∣∣2
)
e−ϕdλ.

Proof. We can compute that

(7.8) |Sf |2 =
∑
j<k

∣∣∣∣∂fj∂z̄k
− ∂fk
∂z̄j

∣∣∣∣2 =
∑
j,k

∣∣∣∣∂fj∂z̄k

∣∣∣∣2 −∑
j,k

∂fj
∂z̄k

∂f̄k
∂zj

and

(7.9) eψT ∗f = −
∑
j

∂fj
∂zj

+
∑
j

fj
∂ϕ2

∂zj
=
∑
j

δjfj −
∑
j

fj
∂ψ

∂zj
,

where

δjβ := − ∂β
∂zj

+
∂ϕ

∂zj
β = −eϕ ∂

∂zj
(βe−ϕ).

The operators ∂/∂z̄j and δj are adjoint in the sense that∫
Ω
β1
∂β2

∂z̄j
e−ϕ =

∫
Ω
δjβ1 β̄2e

−ϕdλ, β1, β2 ∈ C∞0 (Ω),

and they satisfy the following commutation relation:

∂

∂z̄k
δj − δj

∂

∂z̄k
=

∂2ϕ

∂zj∂z̄k
.

Using that we will obtain∫
Ω

∣∣∑
j

δjfj
∣∣2e−ϕdλ =

∫
Ω

∑
j,k

(
∂2ϕ

∂zj∂z̄k
fj f̄k +

∂fj
∂z̄k

∂f̄k
∂zj

)
e−ϕdλ.



38 Z. B LOCKI

Combining this with (7.9) and (7.8) we get the formula. �

Assume that ϕk are as in Lemma 7.2. We want to show (7.6) for f ∈ C∞0,(0,1)(Ω). By

Proposition 7.3 for t > 0

(7.10)

∫
Ω

∑
j,k

∂2ϕ

∂zj∂z̄k
fj f̄ke

−ϕdλ ≤ (1 + t−1)||T ∗f ||2 + ||Sf ||2

+ (1 + t)

∫
Ω
|f |2|∂̄ψ|2e−ϕdλ.

Proof of Theorem 7.1. Similarly as in the proof of Theorem 6.5 we reduce the proof to

the case when ϕ is smooth strongly psh and the right-hand side of (7.2) is finite. Since

Ω is pseudoconvex, there exists a smooth strongly psh exhaustion function s in Ω. Fix

t > 0. We may assume that the cut-off functions χν from Lemma 7.2 are equal to 1 on

Ωt+1 := {s < t + 1} and that ψ vanishes on Ωt. Let γ ∈ C∞(R) be convex and such

that γ = 0 on (−∞, t), γ ◦ s ≥ 2ψ, and γ′ ◦ s i∂∂̄s ≥ (1 + t)|∂ψ|2i∂∂̄|z|2. Therefore for

ϕ′ = ϕ+ γ ◦ s
i∂∂̄ϕ′ ≥ i∂∂̄ϕ+ (1 + t)|∂ψ|2i∂∂̄|z|2.

Let ϕk = ϕ′+(k−3)ψ, in particular we have ϕ−2ϕ2 = −ϕ′−γ ◦s+2ψ ≤ −ϕ′. Therefore

by (7.10) with ϕ replaced with ϕ′ we get for f ∈ C∞0,(0,1)(Ω)

(7.11)

∫
Ω

∑
j,k

∂2ϕ

∂zj∂z̄k
fj f̄ke

ϕ−2ϕ2dλ ≤ (1 + t−1)||T ∗f ||2 + ||Sf ||2.

By (7.3) for f ∈ C∞0,(0,1)(Ω)

∣∣∑
j

fjᾱj
∣∣2 ≤ h∑

j,k

∂2ϕ

∂zj∂z̄k
fj f̄k,

where h = |α|2
i∂∂̄ϕ

. This coupled with (7.11) and the Schwarz inequality gives

|〈α, f〉|2 =

∣∣∣∣∣∣
∫

Ω

∑
j

αj f̄je
−ϕ2dλ

∣∣∣∣∣∣
2

≤
∫

Ω
he−ϕdλ

∫
Ω

|
∑

j αj f̄j |2

h
eϕ−2ϕ2dλ

≤M
(
(1 + t−1)||T ∗f ||2 + ||Sf ||2

)
where M =

∫
Ω he

−ϕdλ < ∞. By Lemma 7.2 it holds for all f ∈ DT ∗ ∩DS . As we have

already seen this implies (7.5)

|〈α, f〉| ≤
√
M(1 + t−1)||T ∗f ||, f ∈ DT ∗ .

Similarly as in the proof of Proposition 6.2 we can find ut ∈ H1 with ||ut|| ≤
√
M(1 + t−1)

and

〈α, f〉 = 〈ut, T ∗f〉, f ∈ DT ∗ .
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This means that α = T ∗∗ut = Tut and, since ϕ1 = ϕ in Ωt, we have∫
Ωt

|ut|2e−ϕdλ ≤
∫

Ω
|ut|2e−ϕ1dλ ≤M(1 + t−1).

We may thus find a sequence tj ↑ ∞ and u ∈ L2
loc(Ω) such that utj converges weakly to u

in L2(Ωt0 , e
−ϕ) for every t0 > 0. �



40 Z. B LOCKI

8. Some Applications of the Hörmander Estimate

Theorem 7.1 and some of its consequences are principal tools in constructing holomor-

phic functions. Similarly as in dimension one the condition ∂̄u = 0 for functions from L2
loc

(and even distributions) completely characterizes the holomorphic functions.

Our first application is the solution of the Levi problem;

Theorem 8.1. Let Ω be pseudoconvex in Cn and K a compact subset of Ω. Then

K̂PSH(Ω) = K̂O(Ω).

In particular, Ω is a domain of holomorphy.

Proof. We clearly have ⊂. To show the converse fix z0 ∈ Ω \ K̂PSH(Ω). We may assume

that z0 = 0. By Theorem 4.5 there exists v ∈ PSH ∩ C(Ω) such that v < 0 on K and

v(0) > 1. Let χ ∈ C∞0 (Ω) be such that χ(0) = 1 and suppχ ⊂ {v > 1}. For t ≥ 1 set

vt := max{v, tv}, so that vt = v in {v < 0} and vt > t on suppχ. By Theorem 7.1 with

ϕt = |z|2 + 2n log |z|+ vt

and α = ∂̄χ there exists ut ∈ L2
loc(Ω) such that ∂̄ut = ∂̄χ (therefore u has to be continuous)

and ∫
Ω
|ut|2e−ϕtdλ ≤

∫
Ω
|∂̄χ|2e−ϕtdλ.

Since e−ϕt is not locally integrable near the origin, we have ut(0) = 0. Therefore ft := χ−ut
is holomorphic in Ω, ft(0) = 1 and∫

{v<0}
|ft|2dλ ≤ C1e

−t,

where C1 is independent of t. Since |ft|2 is subharmonic, we have

sup
K
|ft|2 ≤ C2e

−t

and we see that 0 /∈ K̂O(Ω).

The last statement now follows from Theorem 4.1. �

The fact that being a domain of holomorphy is equivalent to pseudoconvexity implies

that the former is a local property of the boundary, see Theorem 4.6.

For our further applications we will need the following estimate for ∂̄ due to Berndtsson

[3] (see also [9]):

Theorem 8.2. Assume that Ω is pseudoconvex, ϕ ∈ PSH(Ω) and ψ = − log(−v), where

v ∈ PSH−(Ω). Then for every α ∈ L2
loc,(0,1)(Ω) with ∂̄α = 0 and δ with 0 ≤ δ < 1 there

exists u ∈ L2
loc(Ω), a solution of ∂̄u = α such that

(8.1)

∫
Ω
|u|2eδψ−ϕdλ ≤ 4

(1− δ)2

∫
Ω
|α|2i∂∂̄ψe

δψ−ϕdλ

(we use the convention explained after Theorem 7.1).
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Proof. The proof will be similar to that of Theorem 6.6, the main idea is from [4]. Set

ϕ̃ := ϕ+(1−δ)ψ/2. As before we may assume that ϕ, ψ and Ω are bounded (we only need

it to conclude that the spaces L2(Ω, e−ϕ̃) and L2(Ω, e−ϕ−ψ) consist of the same elements)

and that ψ is smooth strongly psh. The condition on ψ now means precisely that

(8.2) |∂̄ψ|2i∂∂̄ψ ≤ 1

Let u be the minimal solution to ∂̄u = α in L2(Ω, e−ϕ̃). Then u is perpendicular to ker ∂̄,

that is ∫
Ω
uh̄e−ϕ−(1−δ)ψ/2dλ = 0, h ∈ ker ∂̄.

Then v := e(1+δ)ψ/2u is perpendicular to ker ∂̄ in L2(Ω, e−ϕ−ψ), and thus the minimal

solution in L2(Ω, e−ϕ−ψ) to ∂̄v = β, where

β = e(1+δ)ψ/2
(
α+

1 + δ

2
u ∂̄ψ

)
.

By the Hörmander estimate∫
Ω
|v|2e−ϕ−ψdλ ≤

∫
Ω
|β|2i∂∂̄(ϕ+ψ)e

−ϕ−ψdλ ≤
∫

Ω
|β|2i∂∂̄ψe

−ϕ−ψdλ

and thus for any t > 0 by (8.2)∫
Ω
|u|2eδψ−ϕdλ ≤

∫
Ω

∣∣α+
1 + δ

2
u ∂̄ψ

∣∣2
i∂∂̄ψ

eδψ−ϕdλ

≤
∫

Ω

(
(1 + t)

∣∣α|2i∂∂̄ψ + (1 + t−1)
(1 + δ)2

4
|u|2
)
eδψ−ϕdλ.

For t = (1 + δ)/(1− δ) we will get (8.1). �

For δ = 0 we get the Donnelly-Fefferman estimate [28]. Similarly as in Proposition 6.7

one can show that the constant 4/(1 − δ)2 in (8.1) is optimal for any δ (see [14]). The

method used to prove Theorem 8.2 is called twisting.

We will use Theorem 8.2 to prove the following estimate due to Herbort [34]:

Theorem 8.3. Let Ω be a pseudoconvex domain in Cn. Then for any f ∈ O(Ω) and

w ∈ Ω we have

(8.3)
|f(w)|2

KΩ(w)
≤ cn

∫
{GΩ(·,w)<−1}

|f |2dλ.

Proof. We may assume that G = GΩ(·, w) ∈ BΩ,w, otherwise the estimate follows from the

trivial one |f(w)|2/KΩ(w) ≤ ||f ||2. We will use Theorem 8.2 with δ = 0, ϕ = 2nG and

ψ = − log(−G). Set

α = ∂̄(fχ ◦G) = fχ′ ◦G ∂̄G,
where χ such that α ∈ L2

loc,(0,1)(Ω) will be determined later. We have

i∂∂̄ψ = −G−1i∂∂̄G+G−2i∂G ∧ ∂̄G

and

iᾱ ∧ α = |f |2(χ′ ◦G)2i∂G ∧ ∂̄G ≤ |f |2(χ′ ◦G)2G2i∂∂̄ψ.
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By Theorem 8.2 there exists u ∈ L2
loc(Ω) such that

(8.4)

∫
Ω
|u|2dλ ≤

∫
Ω
|u|2e−2nGdλ ≤ 4

∫
Ω
|f |2(χ′ ◦G)2G2e−2nGdλ.

We can now define

χ(t) :=


∫ −t

1

ds

sens
, t < −1

0, t ≥ −1.

The following lemma ensures that α ∈ L2
loc,(0,1)(Ω).

Lemma 8.4. Assume that u is psh in Ω and χ ∈ C0,1(R) is such that
∫ 0
−∞(χ′)2dt < ∞.

Then ∇(χ ◦ u) ∈ L2
loc(Ω).

Proof. The proof works for arbitrary subharmonic u. Without loss of generality we may

assume that u ≤ 0. We will prove that for K b Ω and smooth psh u in Ω one has

(8.5)

∫
K
|∇(χ ◦ u)|2dλ ≤ C(K,Ω)||u||L1(Ω)

∫ 0

−∞
(χ′)2dt.

This will be sufficient because for arbitrary u one can regularize it and use the Banach-

Alaoglu theorem. Set

f(t) :=

∫ t

−∞
(χ′(s))2ds, g(t) =

∫ 0

t
f(s)ds,

so that f ′ = (χ′)2 and g′ = −f . We have

(8.6) g(t) = |t|
∫ t

−∞
(χ′(s))2ds+

∫ 0

t
|s|(χ′(s))2ds ≤ |t|

∫ 0

−∞
(χ′(s))2ds.

Let ϕ ∈ C∞0 (Ω) be nonnegative and such that ϕ = 1 on K. Then∫
K
|∇(χ ◦ u)|2dλ ≤

∫
Ω
ϕ(χ′ ◦ u)2|∇u|2dλ

=

∫
Ω
ϕ〈∇(f ◦ u),∇u〉dλ

= −
∫

Ω
ϕf ◦ u∆u dλ−

∫
Ω
f ◦ u〈∇ϕ,∇u〉dλ

≤ −
∫

Ω
f ◦ u〈∇ϕ,∇u〉dλ

=

∫
Ω
〈∇ϕ,∇(g ◦ u)〉dλ

= −
∫

Ω
g ◦ u∆ϕdλ

and (8.5) follows from (8.6). �

End of proof of Theorem 8.3. Set f̃ := fχ ◦G− u, it is holomorphic in Ω. Since e−2nG is

not locally integrable near w, from (8.4) it follows that u(w) = 0 and f̃(w) = χ(−∞)f(w)
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(note that we may assume that the right-hand side of (8.3) is finite). We also have

||f̃ || ≤ ||fχ ◦G||+ ||u|| ≤ (χ(−∞) + 2)

√∫
{G<−1}

|f |2dλ

and thus
|f(w)|2

KΩ(w)
≤ ||f̃ ||2

(χ(−∞))2
≤
(

1 +
2

χ(−∞)

)2 ∫
{G<−1}

|f |2dλ. �

The proof of Theorem 8.3 presented here is from [10].

Theorem 8.3 coupled with the Kobayashi criterion Theorem 5.5 immediately gives the

following class of Bergman complete domains characterized in terms of pluripotential the-

ory. The result is due to Chen [20], see also [15] and [34].

Theorem 8.5. Let Ω be a pseudoconvex domain in Cn such that

(8.7) lim
j→∞

λ({GΩ(·, wj) < −1}) = 0

for every sequence wj ∈ Ω without an accumulation point. Then Ω is Bergman complete.

�

One can show that for bounded Ω in C the condition (8.7) is equivalent to the regularity

of Ω. In higher dimensions one can prove that (8.7) is satisfied (although not equivalent)

for so called hyperconvex domains, that is domains admitting a bounded psh exhaustion,

see [15].

Note that for f ≡ 1 the estimate (8.3) gives the following lower bound for the Bergman

kernel

KΩ(w) ≥ cn
λ({GΩ(·, w) < −1})

.

It turns out that establishing this estimate for all sublevel sets and finding optimal con-

stants leads to very interesting consequences. The following estimate was obtained in

[13]:

Theorem 8.6. Let Ω be pseudoconvex in Cn. Then for w ∈ Ω and t ≤ 0

(8.8) KΩ(w) ≥ e2nt

λ({GΩ(·, w) < t})
.

Proof. Repeating the proof of Theorem 8.3 with f ≡ 1 for arbitrary sublevel set we will

get

(8.9) KΩ(w) ≥ c(n, t)

λ({GΩ(·, w) < t})
,

where

c(n, t) =

(
1 +

2

Ei (nt)

)2

and

Ei (a) =

∫ ∞
a

ds

ses
.
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To improve the constant in (8.9) we can now use the tensor power trick: for m� 0 take

Ω̃ = Ωm ⊂ Cnm and w̃ = (w, . . . , w) ∈ Ω̃. We have K
Ω̃

(w̃) = (KΩ(w))m (by Proposition

5.1) and for z̃ = (z1, . . . , zm) ∈ Ω̃

max
j
GΩ(zj , w) ≤ G

Ω̃
(z̃, w̃),

since the left-hand side belongs to B
Ω̃,w̃

. (In fact, one always has equality here, see [39]

and [29].) It follows that

{G
Ω̃

(·, w̃) < t} ⊂ {GΩ(·, w) < t}m

and (8.9) gives

(KΩ(w))m = K
Ω̃

(w̃) ≥ c(nm, t)

λ({G
Ω̃

(·, w̃) < t})
≥ c(nm, t)

(λ({GΩ(·, w) < t}))m
.

It is now enough to check that

lim
m→∞

c(nm, t)1/m = e2nt. �

It is easy to see that if Ω is a ball centered at w then we have equality in (8.8). It is

especially interesting to see what happens with the right-hand side of (8.8) when t→ −∞.

For n = 1 we can write

GΩ(z, w) = log |z − w|+ ϕ(z),

where ϕ is harmonic in Ω. Then

∆(w, et−Mt) ⊂ {GΩ(·, w) < t} ⊂ ∆(w, et−mt),

where

mt := inf
{GΩ(·,w)<t}

ϕ, Mt := sup
{GΩ(·,w)<t}

ϕ.

It follows that the right-hand side of (8.8) converges to (cΩ(w))2/π, where

cΩ(w) = exp
(

lim
z→w

(GΩ(z, w)− log |z − w|)
)

is the logarithmic capacity of the complement of Ω with respect to w. We have thus proved

the Suita conjecture from [60], originally shown in [12]:

Theorem 8.7. For Ω ⊂ C one has c2
Ω ≤ πKΩ. �

Carleson [19] proved that

(8.10) KΩ(w) = 0 ⇔ cΩ(w) = 0.

Theorem 8.7 gives a quantitative version of ⇒ in (8.10). On the other hand, it is known,

see [16], that the reverse inequality KΩ ≤ Cc2Ω in general does not hold for any constant

C.

Open Problem 5. Find a quantitative version of ⇐ in (8.10).
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Another interesting case are convex domains in Cn. Letting t→ −∞ in (8.8) and using

Lempert’s theory [49] one can then show that

KΩ(w) ≤ 1

λ(IΩ(w))
,

where

IΩ(w) = {ϕ′(0) : ϕ ∈ O(∆,Ω), ϕ(0) = w}
is the Kobayashi indicatrix, see [13].
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9. Ohsawa-Takegoshi Extension Theorem

The following extension result is due to Ohsawa and Takegoshi [54].

Theorem 9.1. Let Ω be a bounded pseudoconvex open set and H a complex affine subspace

of Cn. Assume that ϕ is psh in Ω and f is holomorphic in Ω′ := Ω∩H. Then there exists

F ∈ O(Ω) such that F = f on Ω′ and∫
Ω
|F |2e−ϕdλ ≤ C

∫
Ω′
|f |2e−ϕdλ′,

where C depends on n and the diameter of Ω.

An important recent contribution is due to Chen [22] who showed that the Ohsawa-

Takegoshi extension theorem can be deduced directly from the Hörmander estimate. We

will essentially follow his proof here, with some modifications from [11].

The Berndtsson estimate, Theorem 8.2, is closely related to Theorem 9.1. If it were

true for δ = 1 (with some finite constant) then it would be sufficient to prove the extension

theorem. The following estimate from [11], motivated by the method from [22], can be

treated as a counterpart of the Berndtsson estimate for δ = 1.

Theorem 9.2. Let Ω, ϕ, ψ and α be as in Theorem 8.2. Assume in addition that

|∂̄ψ|2
i∂∂̄ψ

≤ a < 1 on suppα. Then there exists u ∈ L2
loc(Ω) such that ∂̄u = α and

(9.1)

∫
Ω

(1− |∂̄ψ|2i∂∂̄ψ)|u|2eψ−ϕdλ ≤ 1 +
√
a

1−
√
a

∫
Ω
|α|2i∂∂̄ψe

ψ−ϕdλ.

Proof. We essentially repeat the proof of Theorem 8.2. Assuming that the data is suffi-

ciently regular let u be the minimal solution to ∂̄u = α in L2(Ω, e−ϕ). We will obtain that

v := ueψ is the minimal solution to ∂̄v = β, where

β := (α+ u∂̄ψ)eψ,

in L2(Ω, e−ϕ−ψ). From Theorem 7.1 we will get∫
Ω
|u|2eψ−ϕdλ =

∫
Ω
|v|2e−ϕ−ψdλ

≤
∫

Ω
|β|2i∂∂̄(ϕ+ψ)e

−ϕ−ψdλ

≤
∫

Ω
|α+ u∂̄ψ|2i∂∂̄ψe

ψ−ϕdλ

≤
∫

Ω

(
|α|2i∂∂̄ϕ + 2|u|

√
h|α|i∂∂̄ϕ + |u|2h

)
eψ−ϕdλ,

where h := |∂̄ψ|2
i∂∂̄ψ

. Thus for t > 0∫
Ω
|u|2(1− h)eψ−ϕdλ

≤
∫

Ω

[(
1 +

th

1− h

)
|α|2i∂∂̄ϕ + t−1|u|2(1− h)

]
eψ−ϕdλ

≤
∫

Ω

[(
1 +

ta

1− a

)
|α|2i∂∂̄ϕ + t−1|u|2(1− h)

]
eψ−ϕdλ.
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We obtain (9.1) if we take t := 1 + a−1/2. �

To prove Theorem 9.1 we may assume that H is a hyperplane and then obtain the

general result by iteration. As noticed by Siu [59] and Berndtsson [3] it is enough to

assume that Ω is bounded in the direction orthogonal to H. We can formulate it is as

follows:

Theorem 9.3. Assume that Ω ⊂ Cn−1 ×∆ is pseudoconvex and set Ω′ := Ω ∩ {zn = 0}.
Then for any ϕ ∈ PSH(Ω) and f ∈ O(Ω′) there exists F ∈ O(Ω) such that F |Ω′ = f and

(9.2)

∫
Ω
|F |2e−ϕdλ ≤ C

∫
Ω′
|f |2e−ϕdλ′,

where C is an absolute constant.

Proof. We may assume that the right-hand side of (9.2) is finite, otherwise it is enough

to construct ϕ growing sufficiently quickly to ∞ at the boundary. Approximating Ω

from inside and regularizing ϕ we may assume that Ω is bounded, f is defined in a

neighbourhood of Ω̄∩{zn = 0} in {zn = 0} and ϕ is smooth and defined in a neighbourhood

of Ω̄.

Let χ ∈ C∞(R) be such that χ(t) = 1 for t ≤ −2 and χ(t) = 0 for t ≥ 0. For ε > 0

sufficiently small the function f(z′)vε(zn), where

vε(ζ) = vε(ζ) := χ(2 log(|ζ|/ε)
)
,

is defined in Ω. We will use Theorem 9.2 with

αε := ∂̄(fvε) = f(z′)χ′
(
2 log(|zn|/ε)

)dz̄n
z̄n

,

ϕ̃ := ϕ+ 2 log |zn|, and psh ψε depending only on |zn|. We will find uε ∈ L2
loc(Ω) such that

∂̄uε = αε (in fact uε has to be continuous, since fvε is) and

(9.3)

∫
Ω
|uε|2(1− |∂̄ψε|2i∂∂̄ψε

)eψε−ϕ̃dλ ≤
1 +

√
a(ε)

1−
√
a(ε)

∫
Ω
|α|2i∂∂̄ψε

eψε−ϕ̃dλ,

provided that

(9.4)
|ψε,z̄n |2

ψε,znz̄n

{
< 1, |zn| < 1

≤ a(ε) < 1, |zn| ≤ ε
.

We will need the following completely elementary lemma:

Lemma 9.4. For ζ ∈ C with |ζ| ≤ (2e)−1/2 and ε > 0 sufficiently small set

ψ(ζ) = ψε(ζ) := − log
[
− log(|ζ|2 + ε2) + log

(
− log(|ζ|2 + ε2)

)]
.

Then ψ is subharmonic in {|ζ| < (2e)−1/2} and there exist constants C1, C2, C3 such that

(i)

(
1−
|ψζ |2

ψζζ̄

)
eψ ≥ 1

C1 log2(|ζ|2 + ε2)
on {|ζ| ≤ (2e)−1/2};

(ii)
|ψζ |2

ψζζ̄
≤ C2

− log ε
on {|ζ| ≤ ε};

(iii)
eψ

|ζ|2ψζζ̄
≤ C3 on {ε/2 ≤ |ζ| ≤ ε}.
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Proof. Write t = 2 log |ζ| and let γ be such that ψ = γ(t). That is

γ = − log(−δ + log(−δ)),

where δ = − log(et + ε2). We have ψζ = γ′/ζ, ψζζ̄ = γ′′/|ζ|2 and thus

|ψζ |2

ψζζ̄
=

(γ′)2

γ′′
.

We have to prove that(
1− (γ′)2

γ′′

)
≥ −δ + log(−δ)

C1δ2
if t ≤ − log(2e)(9.5)

(γ′)2

γ′′
≤ C2

− log ε
if t ≤ 2 log ε(9.6)

(−δ + log(−δ))γ′′ ≥ 1

C3
if 2 log(ε/2) ≤ t ≤ 2 log ε.(9.7)

We can compute that

γ′ =
1− δ−1

−δ + log(−δ)
δ′

and

γ′′ ≥ 1− δ−1

−δ + log(−δ)
δ′′.

Therefore we get (9.7) and since

(γ′)2

γ′′
≤ 1− δ−1

−δ + log(−δ)
(δ′)2

δ′′
=

1− δ−1

−δ + log(−δ)
et,

we also obtain (9.5) and (9.6). �

End of proof of Theorem 9.3. It is no loss of generality to assume that Ω ⊂ Cn−1 × ∆r

where r = (2e)−1/2. Defining ψε as in Lemma 9.4 we see by (ii) that (9.4) is satisfied with

a(ε) = −C2/ log ε → 0 as ε → ∞. For a fixed ε > 0 the function (1 − |∂̄ψε|2i∂∂̄ψε
)eψε−ϕ̃

is not integrable near {zn = 0} and therefore by (9.3) uε vanishes there. It follows that

Fε := fvε − uε is a holomorphic extension of f to Ω. Combining (9.3) with (i) and (iii)

we obtain ∫
Ω

|u|2

|zn|2 log2(|zn|2 + ε2)
e−ϕdλ ≤ C

∫
Ω′
|f |2e−ϕdλ′,

where C is independent of ε. We immediately obtain (9.2), even for a small fixed ε > 0. �

In fact, as in [22] we have obtained a slightly better estimate than (9.2):∫
Ω

|F |2

|zn|2 log2(2|zn|)
e−ϕdλ ≤ C

∫
Ω′
|f |2e−ϕdλ′.

It was proved earlier by McNeal-Varolin [51]. We also see that the ∂̄-estimate from Theo-

rem 9.2 essentially reduced the proof of the Ohsawa-Takegoshi theorem to an elementary

ODE problem. Pushing these ideas further, it was shown in [12] that the optimal con-

stant in (9.2) is C = π. This method also gave the original proof of the Suita conjecture,

Theorem 8.7.
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In the next section we will present various applications of the Ohsawa-Takegoshi theorem

to singularities of psh functions. In fact, the original motivation behind this theorem was

the following lower bound for the Bergman kernel:

Theorem 9.5. If Ω is a bounded pseudoconvex domain with C2 boundary then

(9.8) KΩ ≥
1

Cδ2
Ω

for some positive constant C.

Proof. We can find r > 0 such that for every w ∈ ∂Ω there exists w∗ /∈ Ω such that

Ω̄ ∩ B̄(w∗, r) = {w}. For z ∈ Ω choose w ∈ ∂Ω such that |z − w| = δΩ(z). Then z, w and

w∗ lie on one complex line H. By the Ohsawa-Takegoshi theorem we have KΩ′ ≤ CKΩ,

where Ω′ = Ω ∩H, and the problem is reduced to dimension one. Then

KΩ′(z) ≥ KC\∆̄r
(r + |z − w|) =

r2

π|z − w|2(2r + |z − w|)2

and the estimate follows. �

One can easily check that the exponent 2 in (9.8) is optimal: consider for example

pseudoconvex Ω with smooth boundary such that B′r × ∆ ⊂ Ω ⊂ B′R × ∆, where B′r
denotes the ball in Cn−1 centered at the origin with radius r. Previously, Pflug [56],

using the Hörmander estimate directly, proved such an estimate with exponent arbitrarily

smaller than 2.
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10. Singularities of Plurisubharmonic Functions

The following recent result of Berndtsson [6] solved the so-called openness conjecture of

Demailly-Kollàr [26]. Its proof presented here, taken from [7] based on ideas of Guan-Zhou

[31], is a remarkable application of the Ohsawa-Takegoshi theorem. The result for n = 2

was proved earlier by Favre-Jonsson [30].

Theorem 10.1. Let ϕ be a psh function defined in a neighbourhood of z0 ∈ Cn. Then the

set of p ∈ R such that e−pϕ is integrable near z0 is an open integral of the form (−∞, p0).

Proof. It will be an induction on n. For n = 1 it follows from the following:

Exercise 6. For a subharmonic ϕ the function e−ϕ is integrable near z0 if and only if

∆ϕ({z0}) < 4π.

Note that if µ is a positive measure with compact support in C such that µ = ∆ϕ/2π near

z0 then we can write ϕ = Uµ + h, where

Uµ(z) = log |z| ∗ µ =

∫
C

log |ζ − z|dµ(ζ)

and h is harmonic near z0. It is therefore enough to prove Exercise 6 for Uµ.

We may assume that z0 is the origin, ϕ is defined in a neighbourhood of ∆̄n and ϕ ≤ 0.

We first claim that if ϕ is not locally integrable near the origin then

(10.1)

∫
∆n−1

e−ϕ(·,zn)dλ′ ≥ cn
|zn|2

, |zn| ≤ 1/2,

where cn is a positive constant depending only on n. For a fixed zn we may assume that

the left-hand side of (10.1) is finite. By the Ohsawa-Takegoshi theorem there exists a

holomorphic F in ∆n such that F (·, zn) = 1 in ∆n−1 and

(10.2)

∫
∆n

|F |2e−ϕdλ ≤ C1

∫
∆n−1

e−ϕ(·,zn)dλ′ <∞.

It is elementary that

(10.3) |F (0, ζ)|2 ≤ C2

∫
∆n

|F |2dλ ≤ C2

∫
∆n

|F |2e−ϕdλ, |ζ| ≤ 1/2.

Since e−ϕ is not locally integrable near the origin, by (10.2) we have F (0, 0) = 0, and thus

by (10.3) and the Schwarz lemma

|F (0, ζ)|2 ≤ C3|ζ|2
∫

∆n

|F |2e−ϕdλ, |ζ| ≤ 1/2.

For ζ = zn using (10.2) and the fact that F (0, zn) = 1 we get (10.1).

Now assume that the result is true for functions of n− 1 variables and suppose that

(10.4)

∫
∆n

e−p0ϕdλ <∞.

Since for p > p0 we know that e−pϕ is not locally integrable near the origin, by (10.1)

(10.5)

∫
∆n−1

e−pϕ(·,zn)dλ′ ≥ cn
|zn|2

, |zn| ≤ 1/2.
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From (10.4) it follows that for almost all zn ∈ ∆∫
∆n−1

e−p0ϕ(·,zn)dλ′ <∞

and thus by the inductive assumption for p sufficiently close to p0∫
∆n−1

e−pϕ(·,zn)dλ′ <∞.

The Lebesgue dominated convergence theorem now implies that (10.5) also holds for p = p0

which contradics (10.4). �

We had seen that psh functions are useful when proving various results on holomorphic

functions. The proof of Theorem 10.1 shows that a reverse situation is also possible.

If a psh ϕ is defined near z0 then its Lelong number is defined by

νϕ(z0) = lim inf
z→z0

ϕ(z)

log |z − z0|
= lim

r→0+

ϕr(z0)

log r
,

where

ϕr(z) := max
B̄(z,r)

ϕ, z ∈ Ωr.

Proposition 10.2. For ϕ ∈ PSH(Ω) and r > 0 we have ϕr ∈ PSH ∩C(Ωr). Also, ϕr(z)

is logarithmically convex in r and and decreases to ϕ(z) as r decreases to 0.

Proof. From Theorem 3.1(vii) it follows that ϕr(z) is logarithmically convex in r and

decreases to ϕ(z) as r decreases to 0. It remains to prove that ϕr is continuous for a fixed

r. If zj → z and λ > 1 then for sufficiently large j we have B̄(zj , r) ⊂ B̄(z, λr) and

ϕr(zj) ≤ ϕλr(z) ≤ ϕr(z) +
ϕr0(z)− ϕr(z)
log r0 − log r

log λ,

where r0 is such that r < r0 < δΩ(z). Similarly we can show the other bound. �

Since ϕr(z0) is logarithmically convex in r, it follows that if ϕ ≤ 0 then ϕr(z0)/ log r is

increasing in r. Therefore νϕ(z0) is the maximal number c ≥ 0 such that

ϕ(z) ≤ c log |z − z0|+A

for some constant A and z in a neighbourhood of z0. The Lelong number measures the

singularity of a psh function at a point. For n = 1 one has νϕ(z0) = ∆ϕ({z0})/2π - it is

essentially equivalent to Exercise 6.

The classical result on Lelong numbers is due to Siu [58]:

Theorem 10.3. For any psh ϕ defined in a bounded pseudoconvex Ω and c ∈ R the

superlevel set {νϕ ≥ c} is globally analytic in Ω, that is it can be written as
⋂
f∈F{f = 0}

for some F ⊂ O(Ω).

Note that if ϕ = log |f | where f is holomorphic then νϕ(z0) = |β| where β ∈ Nn is such

that f(z) = (z − z0)βh(z) and h(z0) 6= 0. Since ∂βf(z0) 6= 0 and ∂αf(z0) = 0 if αj < βj
for some j = 1, . . . , n, it follows that

{νϕ ≥ c} =
⋂
|α|<c

{∂αf = 0}.
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Similarly, if

(10.6) ϕ =
1

2
log
∑
l

|fl|2,

where fl is a sequence of holomorphic functions, then

(10.7) {νϕ ≥ c} =
⋂

l, |α|<c

{∂αfl = 0}.

The original proof of Theorem 10.3 in [58] was very complicated. It was later simplified

and generalized by Kiselman [43], [44] (see also [36]) and Demailly [24]. It was Demailly

[25] who found a surprisingly simple proof of the Siu theorem using the Ohsawa-Takegoshi

theorem. It was done using the following approximation of psh functions by functions of

the form (10.6):

Theorem 10.4. Let ϕ be psh in a bounded pseudoconvex Ω in Cn. For m = 1, 2, . . .

define

ϕm :=
1

2m
log sup

{
|f |2 : f ∈ O(Ω),

∫
Ω
|f |2e−2mϕdλ ≤ 1

}
.

Then there exist positive constants C1 depending only on n and the diameter of Ω and C2

depending only on n such that

(10.8) ϕ− C1

m
≤ ϕm ≤ ϕr +

1

m
log

C2

rn
in Ωr

and

(10.9) νϕ −
n

m
≤ νϕm ≤ νϕ.

In particular, ϕm → ϕ pointwise and in L1
loc.

Proof. By the Ohsawa-Takegoshi theorem for every z ∈ Ω we can find f ∈ O(Ω) such that∫
Ω
|f |2e−2mϕdλ ≤ C|f(z)|2e−2mϕ(z) = 1.

This implies that

ϕm(z) ≥ 1

2m
log |f(z)|2 = ϕ(z)− logC

2m
and we obtain the first inequality in (10.8). The proof of the second one is completely

elementary: |f |2 is in particular subharmonic and thus for r < dist (z, ∂Ω)

|f(z)|2 ≤ 1

λ(B(z, r))

∫
B(z,r)

|f |2dλ ≤ n!

πnr2n
e2mϕr(z)

∫
Ω
|f |2e−2mϕdλ

which gives the second inequality in (10.8).

Now (10.9) easily follows from (10.8): the first inequality in (10.8) implies that νϕm ≤
νϕ−C1/m = νϕ and the second one gives

ϕrm ≤ ϕ2r +
1

m
log

C2

rn
,

hence νϕ − n/m ≤ ϕn/m. �
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Proof of Theorem 10.3. By (10.9)

{νϕ ≥ c} =
⋂
m

{νϕm ≥ c−
n

m
},

it thus remains to prove the result for ϕm. If {σl} is an orthonormal basis of O(Ω) ∩
L2(Ω, e−2mϕ) then

(10.10) ϕm =
1

2m
log
∑
l

|σl|2

and by (10.7)

{νϕm ≥ c−
n

m
} =

⋂
l

|α|<mc−n

{∂ασl = 0}

which finishes the proof. �

The Ohsawa-Takegoshi theorem also gives the following subadditivity of the Demailly

approximation from [27]:

Theorem 10.5. Under the assumptions of Theorem 10.4 there exists a positive constant

C depending only on n and the diameter of Ω such that

(10.11) (m1 +m2)ϕm1+m2 ≤ m1ϕm1 +m2ϕm2 + C.

In particular, the sequence ϕ2k + C/2k+1 is decreasing.

Proof. By the Ohsawa-Takegoshi theorem for every f ∈ O(Ω) with∫
Ω
|f |2e−2(m1+m2)ϕdλ ≤ 1

there exists F ∈ O(Ω× Ω) such that F (z, z) = f(z) for z ∈ Ω and

(10.12)

∫∫
Ω×Ω
|F (z, w)|2e−2m1ϕ(z)−m2ϕ(w)dλ(z)dλ(w) ≤ C̃.

Let {σl} be an orthonormal basis in O(Ω)∩L2(Ω, e−2m1ϕ) and {σ′k} an orthonormal basis

in O(Ω) ∩ L2(Ω, e−2m2ϕ). Similarly as in the proof of Proposition 5.1 we can prove that

{σl(z)σ′k(w)} is an orthonormal basis in O(Ω× Ω) ∩ L2(Ω× Ω, e−2m1ϕ(z)−2m2ϕ(w)). If

F (z, w) =
∑
l,k

clkσl(z)σ
′
k(w)

then
∑

l,k |clk|2 ≤ C̃ by (10.12) and thus by the Schwarz inequality and (10.10)

|f(z)|2 = |F (z, z)|2 ≤ C̃
∑
l

|σl(z)|2
∑
k

|σ′k(z)|2 = C̃e2m1ϕm1 (z)e2m2ϕm2 (z).

This gives (10.11) with C = log C̃/2. �

It was recently showed by D. Kim [42] that in general one cannot expect monotonicity

of the entire sequence ϕm, even after adding a sequence of constants converging to 0.
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11. Mahler Conjecture and Bourgain-Milman Inequality

Let K be a convex symmetric body in Rn. This means that K is compact, convex,

−K = K and K has a non-empty interior. Note that there is a one-to-one correspondence

between such objects and norms in Rn: every such K is the unit ball of the norm given

by its Minkowski functional:

qK = inf{t > 0: t−1x ∈ K} = sup{x · y : y ∈ K ′},

where

K ′ = {y ∈ Rn : x · y ≤ 1 for all x ∈ K}

is the dual of K. The Mahler volume of K is defined by λ(K)λ(K ′). One can easily show

that it is independent of linear transformations in Rn and thus also on the inner product

in Rn.

The Blaschke-Santaló inequality says that the Mahler volume is maximal for balls. Still

open Mahler conjecture [50] predicts that the Mahler volume is minimal for cubes. Since

for K = [−1, 1]n we have

K ′ = {x ∈ Rn : |x1|+ · · ·+ |xn| ≤ 1}

and λ(K ′) = 2n/n!, it follows that the Mahler conjecture is equivalent to the following

lower bound for the Mahler volume:

λ(K)λ(K ′) ≥ 4n

n!
.

For n = 2 the Mahler conjecture can be shown by approximating a convex symmetric body

in R2 by polygons and showing that a proper modification of a polygon which reduces the

number of vertices keeping the area unchanged decreases the area of the dual polygon.

It is known that the equality in the Blasche-Santaló inequality is attained only for balls

(up to linear transformations). As for the Mahler conjecture, for n = 2 one can show

that the square is the only minimizer. However, the cube [−1, 1]3 cannot be the only

minimizer for n = 3 because its dual, the octahedron, is not linearly equivalent to the

cube. In general, it is conjectured that all minimizers of the Mahler volume are the so-

called Hansen-Lima bodies [32]: for n = 1 these are precisely symmetric intervals and

in higher dimensions they are obtained either by taking products of lower-dimensional

Hansen-Lima bodies or by taking their duals.

Nazarov [52] has recently proposed a complex analytic approach to the Mahler conjec-

ture. The first step is to express λ(K ′) in terms of entire holomorphic functions using the

Fourier-Laplace transform. For u ∈ L2(K ′) we consider

û(z) =

∫
K′
u(y)e−iz·ydλ(y) ∈ O(Cn).

By the Schwarz inequality

|û(0)|2 =

∣∣∣∣∫
K′
u dλ

∣∣∣∣2 ≤ λ(K ′)||u||2L2(K′) = (2π)−nλ(K ′)||û||2L2(Rn),
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where the last equality follows from the Parseval formula. Since we have equality for u ≡ 1

on K ′, we get

(11.1) λ(K ′) = (2π)n sup
f∈P, f 6≡0

|f(0)|2

||f ||2
L2(Rn)

,

where P := {û : u ∈ L2(K ′)}.

Proposition 11.1. The class P consists precisely of those f ∈ O(Cn) satisfying

(11.2) |f(z)| ≤ CeqK(Im z), z ∈ Cn,

for some constant C, and

(11.3)

∫
Rn

|f(x)|2dλ(x) <∞.

Proof. We have |û(z)| ≤ ||u||L1(K′)e
qK(Im z) and thus every element of P satisfies (11.2).

(11.3) follows from the Parseval formula. On the other hand, if f ∈ O(Cn) satisfies (11.3)

then f = û for some u ∈ L2(Rn). By (11.2) and the Paley-Wiener theorem we also have

suppu ⊂ K ′. �

Combining this with (11.1) we have thus obtained the following equivalent formulation

of the Mahler conjecture: there exists f ∈ O(Cn) satisfying (11.2) such that f(0) = 1 and∫
Rn

|f(x)|2dλ(x) ≤ n!(π/2)nλ(K).

The Mahler conjecture remains open. The most important lower bound for the Mahler

volume is the following inequality of Bourgain-Milman [17]:

Theorem 11.2. There exists c > 0 such that for any convex symmetric body K in Rn

one has

(11.4) λ(K)λ(K ′) ≥ cn 4n

n!
.

Of course the Mahler conjecture is equivalent to the Bourgain-Milman inequality with

c = 1. The best known constant so far, c = π/4, was obtained by G. Kuperberg [48].

Following Nazarov [52] we will show the Bourgain-Milman inequality with c = (π/4)3

using several complex variables.

Theorem 11.3. For a convex symmetric body K by Ω denote the tube domain

TK := intK + iRn.

Then

(11.5) KΩ(0) ≤ n!

πn
λ(K ′)

λ(K)

and

(11.6) KΩ(0) ≥
(π

4

)2n 1

(λ(K))2
.

In particular, (11.4) holds with (π/4)3.
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The upper bound (11.5) will be proved using the following general integral formula for

the Bergman kernel in arbitrary convex tube domains due to Rothaus [57]:

Theorem 11.4. For a domain D in Rn

(11.7) KTD(z, w) =
1

(2π)n

∫
Rn

e(z+w̄)·y

JD(y)
dλ(y), z, w ∈ TD,

where

JD(y) =

∫
D
e2x·ydλ(x), y ∈ Rn.

The result will easily follow from the following two lemmas:

Lemma 11.5. Assume that r > 0 and x ∈ D, where D is a domain in Rn, are such that

x+ r(−1, 1)n ⊂ D. Then

(11.8)

∫
Rn

e2x·y

JD(y)
dλ(y) ≤

(
π√
8r

)2n

.

Proof. With C := x+ r(−1, 1)n we have

JD(y) ≥ JC(y) = e2x·y sinh(2ry1)

y1
. . .

sinh(2ryn)

yn

and the lemma follows since ∫ ∞
−∞

t

sinh t
dt =

π2

4
. �

Lemma 11.6. For a domain D in Rn the mapping

(11.9) L2(Rn, JD) 3 u 7−→ ũ ∈ A2(TD),

where

ũ(z) = (2π)−n/2
∫
Rn

u(y)ez·ydλ(y),

is an isomorphism of the Hilbert spaces.

Proof. For u ∈ L2(Rn, JD) by Lemma 11.5 the integral is convergent and thus ũ is holo-

morphic in TD. It also follows that h(y) := (2π)−n/2u(y)eRe z·y ∈ L2(Rn) and we can write

ũ(z) = ĥ(−Im z). By the Parseval formula and the Fubini theorem

||ũ||2L2(TD) =

∫
K

∫
Rn

|u(y)|2e2x·ydλ(y)dλ(x) = ||u||2L2(Rn,JD).

It remains to prove that the mapping (11.9) is onto. For f ∈ A2(TD) approximating D by

relatively compact subsets from inside and using the fact that |f |2 is subharmonic we may

assume that f is bounded in TD. Multiplying f by functions of the form eεz·z we may also

assume that f satisfies the estimate

(11.10) |f(z)| ≤Me−ε|Im z|2

for some positive constants M and ε. For a fixed x ∈ D with the notation fx(η) = f(x+iη),

using the fact that g(η) = (2π)−n̂̂g(−η), we have f(x + iη) = ũx(x + iη) where ux(ξ) =
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(2π)−n/2f̂x(ξ)e−x·ξ. We have to prove that ux(ξ) is independent of x. From (11.10) it

follows that we can differentiate under the sign of integration

∂

∂xj

∫
Rn

f(x+ iy)e−(x+iy)·ξdλ(y) =

∫
Rn

(
∂f

∂xj
(x+ iy)− ξjf(x+ iy)

)
e−(x+iy)·ξdλ(y).

We have ∂f/∂xj = −i∂f/∂yj and by (11.10) we can integrate by parts. Therefore∫
Rn

∂f

∂xj
(x+ iy)e−(x+iy)·ξdλ(y) = −i

∫
Rn

∂f

∂yj
(x+ iy)e−(x+iy)·ξdλ(y)

=

∫
Rn

ξjf(x+ iy)e−(x+iy)·ξdλ(y)

,

hence ux(ξ) is independent of x and the mapping (11.9) is onto. �

Proof of Theorem 11.4. By K(z, w) denote the right-hand side of (11.7) and fix w ∈ TD.

Then, with the notation of Lemma 11.6, we have K(·, w) = (2π)−n/2ṽ, where

v(y) =
ew̄·y

JD(y)
∈ L2(Rn, JD)

by Lemma 11.5. It follows from Lemma 11.6 that K(·, w) ∈ A2(TD) and to finish the

proof we have to show that it has the reproducing property. For f = ũ ∈ A2(TD) where

u ∈ L2(Rn, JD) by Lemma 11.6

〈f,K(·, w)〉A2(TD) = (2π)−n/2〈ũ, ṽ〉A2(TD) = (2π)−n/2〈u, v〉L2(Rn,JD) = f(w). �

Proof of Theorem 11.3. We first show the upper bound (11.5). For y ∈ Rn and x̃ ∈ K,

since K ⊃ (x̃+K)/2,

JK(y) ≥ 1

2n

∫
K
e(x̃+x)·ydλ(x) ≥ λ(K)

2n
ex̃·y

and therefore

JK(y) ≥ λ(K)

2n
eqK′ (y).

Since by the Fubini theorem∫
Rn

e−qK′dλ =

∫
Rn

∫ ∞
qK′(y)

e−tdt dλ(y) =

∫ ∞
0

e−tλ({qK′ < t})dt = n!λ(K ′),

from (11.7) with D = intK and z = w = 0 we get (11.5).

To prove the lower bound (11.6) we will use Theorem 8.6. Let Φ be a conformal mapping

from the strip {|Re ζ| < 1} to ∆ such that Φ(0) = 0, so that in particular |Φ′(0)| = 4/π.

For a fixed y ∈ K ′ set u(z) := log |Φ(z · y)|. Then u ∈ BΩ,0 and thus u ≤ G := GΩ(·, 0).

Therefore for t < 0

{G < t} ⊂ {z ∈ Ω: |Φ(z · y)| < et} ⊂ {z ∈ Ω: |z · y| ≤
(
4/π + ε(t)

)
et},

where ε is such that ε(t)→ 0 as t→ −∞. Since K ′′ = K, we conclude that

{G < t} ⊂
(
4/π + ε(t)

)
et(K + iK)

and (11.6) follows from (8.8) as t→ −∞. �
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Open Problem 6. If Ω = TK , where K is a convex symmetric body in Rn, then

KΩ(0) ≥
(π

4

)n 1

(λ(K))2
.

Note that this would be optimal since for K = [−1, 1]n one has

KΩ(0) =
(
K{|Re ζ|<1}(0)

)n
=
(
|(Φ−1)′(0)|2K∆(0)

)n
= (π/16)n,

where Φ is as in the proof of Theorem 11.3.
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[18] H. Bremermann, Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete
im Raum von n komplexen Veränderlichen, Math. Ann. 128 (1954), 63–91

[19] L. Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13,
Van Nostrand, 1967

[20] B.Y. Chen, Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol.
Math. 71 (1999), 241–251

[21] B.Y. Chen, A remark on the Bergman completeness, Complex Variables Theory Appl. 42 (2000),
11–15

[22] B.Y. Chen, A simple proof of the Ohsawa-Takegoshi extension theorem, arXiv: 1105.2430v1
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