Complex Monge-Ampère Operator for Plurisubharmonic Functions with Analytic Singularities

Zbigniew Błocki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/~blocki

(j.w. Mats Andersson & Elizabeth Wulcan)

Conference on Geometric and Nonlinear PDEs Murramarang Beachfront Resort, Australia, February 5–9, 2018 Defining Nonlinear Operators for Nonsmooth Functions

Real Monge-Ampère Operator

For convex $u \in C^2(\Omega)$, $\Omega \subset R^n$

$$MA(u) = \det D^2 u = Jac(\nabla u)$$

and

$$\int_E \det D^2 u \, d\lambda = \lambda(\nabla u(E)), \quad E \subset \Omega.$$

If *u* is just convex one can define the *gradient image*

$$abla u(x) = \{ y \in \mathbb{R}^n \colon u(x) + \langle \cdot - x, y \rangle \le u \},\$$
 $abla u(E) = \bigcup_{x \in E} \nabla u(x).$

This defines a Radon measure MA(u) such that $MA(u_j) \rightarrow MA(u)$ weakly if $u_j \rightarrow u$ in L^1_{loc} . We also have the following solution of the Dirichlet problem:

Theorem Assume that Ω is a bounded strictly convex domain in \mathbb{R}^n . Let φ be continuous on $\partial\Omega$ and μ a positive Radon measure in Ω such that $\mu(\Omega) < \infty$. Then there exists a unique solution to the following Dirichlet problem:

$$\begin{cases} u \in CVX(\Omega) \cap C(\overline{\Omega}), \\ MA(u) = \mu, \\ u = \varphi \text{ on } \partial\Omega. \end{cases}$$

Real Hessian Operator

For $m = 1, \ldots, n$ and smooth u we set

$$H_m(u) := S_m(D^2 u) = \sum_{1 \le i_1 < \cdots < i_m \le n} \lambda_{i_1} \cdots \lambda_{i_m},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $D^2 u$. Then $H_1 = \Delta$ and $H_n = MA$.

A C^2 function u is called *m*-convex if $H_m(u+a|x|^2) \ge 0$ for $a \ge 0$. Equivalently, $H_j(u) \ge 0$ for $j \le m$.

A nonsmooth *u* is *m*-convex if locally it is a limit of a decreasing sequence of smooth *m*-convex functions.

Trudinger, Wang, 1999 For every *m*-convex *u* one can uniquely define a positive measure $H_m(u)$ so that $H_m(u_j) \to H_m(u)$ weakly if $u_j \to u$ in L^1_{loc} .

(日) (同) (三) (三) (三) (○) (○)

Complex Monge-Ampère Operator

For $u \in C^2(\Omega)$, $\Omega \subset \mathbb{C}^n$, we set

$$CMA(u) = \det\left(\frac{\partial^2 u}{\partial z_j \partial \bar{z}_k}\right).$$

We have

$$(dd^{c}u)^{n} = dd^{c}u \wedge \cdots \wedge dd^{c}u = 4^{n}n!CMA(u)d\lambda_{2}$$

where $d = \partial + \bar{\partial}$, $d^c = i(\bar{\partial} - \partial)$, $dd^c = 2i\partial\bar{\partial}$.

Example (Shiffman-Taylor, 1974, Kiselman, 1982)

$$u(z) = (-\log |z_1|)^{1/n} (|z_2|^2 + \cdots + |z_n|^2 - 1)$$

Then *u* is plurisubharmonic (psh) near the origin in \mathbb{C}^n , *u* is smooth away from $\{z_1 = 0\}$ but $(dd^c u)^n$ has unbounded mass near $\{z_1 = 0\}$.

Bedford-Taylor, 1982 For $u \in PSH \cap L^{\infty}_{loc}$ one can well define $(dd^c u)^n$ as a positive Radon measure so that $(dd^c u_j)^n \to (dd^c u)^n$ weakly if u_j decreases to u.

Recursive definition: for $k = 1, \ldots, n$

$$(dd^c u)^k := dd^c \left(u (dd^c u)^{k-1} \right)$$

is a closed positive current.

Demailly, 1985 The same for $u \in PSH(\Omega) \cap L^{\infty}_{loc}(\Omega \setminus U)$, $U \Subset \Omega$.

Monotone convergence is essential:

Example (Cegrell, 1984) There exists a sequence $u_j \in PSH \cap C^{\infty}$, $0 \le u_j \le 1$, converging in L^1_{loc} (and thus in L^p_{loc} for every $p < \infty$) to $u \in PSH \cap C^{\infty}$ but $(dd^c u_j)^n$ does not converge weakly to $(dd^c u)^n$.

Bedford-Taylor, 1976 Let Ω be a bounded strongly pseudoconvex domain in \mathbb{C}^n , $\varphi \in C(\partial \Omega)$ and $f \in C(\overline{\Omega})$, $f \ge 0$. Then there exists unique solution to the following Dirichlet problem

$$\begin{cases} u \in PSH(\Omega) \cap C(\bar{\Omega}), \\ (dd^c u)^n = f \ d\lambda, \\ u = \varphi \ \text{on} \ \partial\Omega. \end{cases}$$

Kołodziej, 1998 May take nonnegative $f \in L^{p}(\Omega)$ where p > 1.

Example (Cegrell, 1982) For

$$u(z) = \log |z_1 \dots z_n| = \log |z_1| + \dots + \log |z_n|$$

consider two sequences from $PSH \cap C^{\infty}$ decreasing to *u*:

$$u_{j} = \frac{1}{2} \log \left(|z_{1} \dots z_{n}|^{2} + \frac{1}{j} \right),$$

$$v_{j} = \frac{1}{2} \log \left(|z_{1}|^{2} + \frac{1}{j} \right) + \dots + \frac{1}{2} \log \left(|z_{n}|^{2} + \frac{1}{j} \right).$$

Then $(dd^{c}u_{j})^{n} \rightarrow 0$ and $(dd^{c}v_{j})^{n} \rightarrow n!2^{n}\delta_{0}$ weakly.

Domain of Definition of CMA

Let \mathcal{D} denote the subclass of the class of psh functions consisting of those psh u such that there exists a measure μ such that $(dd^c u_j)^n \to \mu$ weakly for any smooth psh u_j decreasing to u.

One can easily show that D is a maximal subclass of PSH where one can define CMA in such a way that it is continuous for decreasing sequences.

If
$$\Omega \subset \mathbb{C}^2$$
 and $u \in C^2(\Omega)$ then
$$\int_{\Omega} \varphi(dd^c u)^2 = -\int_{\Omega} du \wedge d^c u \wedge dd^c \varphi, \quad \varphi \in C_0^{\infty}(\Omega).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

B. (2004) If
$$n = 2$$
 then $\mathcal{D} = PSH \cap W_{loc}^{1,2}$.

B. (2006) For a negative $u \in PSH(\Omega)$, $\Omega \subset \mathbb{C}^n$, TFAE

i) $u \in \mathcal{D}$;

- ii) For every $u_j \in PSH \cap C^{\infty}$ decreasing to u the sequence $(dd^c u_j)^n$ is locally weakly bounded;
- iii) For every $u_i \in PSH \cap C^{\infty}$ decreasing to *u* the sequences

$$|u_j|^{n-p-2}du_j\wedge d^c u_j\wedge (dd^c u_j)^p\wedge \omega^{n-p-2}, \quad p=0,1,\ldots,n-2,$$

 $(\omega = dd^c |z|^2)$ are locally weakly bounded;

iv) There exists $u_j \in PSH \cap C^{\infty}$ decreasing to u such that the sequences

$$|u_j|^{n-p-2}du_j\wedge d^c u_j\wedge (dd^c u_j)^p\wedge \omega^{n-p-2}, \quad p=0,1,\ldots,n-2,$$

 $(\omega = dd^c |z|^2)$ are locally weakly bounded.

Complex Hessian Operator For $u \in C^2(\Omega)$, $\Omega \subset \mathbb{C}^n$, and m = 1, ..., n

$$CH_m(u) := S_m(u_{j\bar{k}}) = \sum_{1 \leq i_1 < \cdots < i_m \leq n} \lambda_{i_1} \ldots \lambda_{i_m},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the complex Hessian $(u_{j\bar{k}}) = (\partial^2 u / \partial z_j \partial \bar{z}_k)$. Then $CH_1 = \Delta/4$ and $CH_n = CMA$.

We have

$$(dd^{c}u)^{m}\wedge\omega^{n-m}=4^{n}m!(n-m)!CH_{m}(u)d\lambda,$$

where $\omega = dd^c |z|^2$.

A C^2 function u is called *m*-subharmonic if $CH_m(u + a|z|^2) \ge 0$ for $a \ge 0$. Equivalently, $CH_j(u) \ge 0$ for $j \le m$.

A nonsmooth u is *m*-subharmonic if locally it is a limit of a decreasing sequence of smooth *m*-subharmonic functions.

Conjecture If *u* is *m*-subharmonic then $u \in L_{loc}^p$ for p < nm/(n-m).

B. 2005 True for p < n/(n-m).

Dinew-Kołodziej, 2012 True for p < nm/(n-m) if the unbounded locus of u is relatively compact.

Psh Functions with Analytic Singularities

A psh u is said to have *analytic singularities* if locally it can be written in the form

$$u=c\log|F|+b,$$

where $c \ge 0$, $F = (f_1, \ldots, f_m)$ is a tuple of holomorphic functions and b is bounded.

Certainly in general $u \notin \mathcal{D}!$

Definition of CMA (Andersson-Wulcan, 2014)

For $u = \log |F| + b$, $F = (f_1, \ldots, f_m)$, and $k = 1, \ldots, n$ we want to define

$$(dd^c u)^k := dd^c (\mathbf{1}_{\{F \neq 0\}} u (dd^c u)^{k-1}).$$

For this one needs to show that $T_{k-1} := \mathbf{1}_{\{F \neq 0\}} (dd^c u)^{k-1}$ extends across $\{F = 0\}$ to a closed positive current and uT_{k-1} has a finite mass near $\{F = 0\}$.

If m = 1 then we say that u has *divisorial singularities*. Then $\log |F|$ is pluriharmonic, b is a bounded psh function, and thus $T_{k-1} = (dd^c b)^{k-1}$. In this case we have therefore

$$(dd^cu)^k = [F = 0] \wedge (dd^cb)^{k-1} + (dd^cb)^k,$$

where $[F = 0] = dd^{c}(\log |f|)$ is the current of integration along $\{F = 0\}$.

Reduction to Divisorial Singularities

For m > 1 we use the resolution of singularities. Assume that u is defined in open $X \subset \mathbb{C}^n$ and $Z := \{F = 0\}$. By Hironaka there exists a complex manifold X' and a proper holomorphic mapping $\pi : X' \to X$ such that the exceptional divisor $E := \pi^{-1}Z$ is a hypersurface and $\pi|_{X' \setminus E} \to X \setminus Z$ is a biholomorphism. We then have $\pi^*F = f_0F'$, where f_0 is a holomorphic function such that $E = \{f_0 = 0\}$ and F' is a nonvanishing tuple of holomorphic functions. Then

$$\pi^* u = \log |f_0| + \log |F'| + \pi^* b = \log |f_0| + B$$

has divisorial singularities. One can then show that

$$T_{k-1} = \mathbf{1}_{\{F \neq 0\}} (dd^c u)^{k-1} = \pi_* (dd^c B)^{k-1}$$

is indeed a closed positive current and similarly one can show that uT_{k-1} has a locally bounded mass near Z.

The definition of $(dd^c u)^k$ for psh u with analytic singularities is related to the intersection theory and Segre numbers in analytic geometry introduced by Tworzewski in 1995.

Theorem 1 Let u be a negative psh function with analytic singularities. Assume that $\chi_j(t)$ are bounded nondecreasing (in t) convex functions on $(-\infty, 0]$, decreasing to t as $j \to \infty$. Then for every $k = 1, \ldots, n$ we have weak convergence of currents

$$(dd^c(\chi_j \circ u))^k \to (dd^c u)^k.$$

Remark This result can be treated as an alternative definition of $(dd^{c}u)^{k}$.

Sketch of proof Similarly as before we may reduce it to the case of divisorial singularities: $u = \log |f| + v$, where f is holomorphic and v bounded psh. Assume that χ_j are smooth. Let γ_j be convex on $(-\infty, 0]$ such that $\gamma_j(-1) = \chi_j(-1)$ and $\gamma'_j = (\chi'_j)^k$. Then they are also bounded nondecreasing (in t) and $\gamma_j(t)$ decreases to t as $j \to \infty$.

Then on $\{f \neq 0\}$

$$(dd^{c}(\chi_{j} \circ u))^{k} = (\chi_{j}^{\prime\prime} \circ u \, du \wedge d^{c} u + \chi_{j}^{\prime} \circ u \, dd^{c} u)^{k}$$

$$= (k\chi_{j}^{\prime\prime} \circ u \, du \wedge d^{c} u + \chi_{j}^{\prime} \circ u \, dd^{c} u) \wedge (\chi^{\prime} \circ u \, dd^{c} u)^{k-1}$$

$$= d((\chi_{j}^{\prime} \circ u)^{k} d^{c} u) \wedge (dd^{c} v)^{k-1}$$

$$= dd^{c}(\gamma_{j} \circ u) \wedge (dd^{c} v)^{k-1}$$

$$= dd^{c}(\gamma_{j} \circ u \, (dd^{c} v)^{k-1})$$

Since noee of the above currents charges $\{f = 0\}$, the equality holds everywhere. One can show that

$$\gamma_j \circ u (dd^c v)^{k-1} \rightarrow u (dd^c v)^{k-1}$$

weakly as $j \to \infty$.

Psh Functions with Analytic Singularities on Compact Kähler Manifolds

(X, ω) Kähler manifold

We say that $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is ω -psh if locally $u := g + \varphi$ is psh, where g is a local Kähler potential, that is $\omega = dd^c g$. We say that such a φ has analytic singularities if locally u has local singularities.

Theorem 2 Let (X, Ω) be a compact Kähler manifold and φ an ω -psh function on X with analytic singularities. Then

$$\int_X (\omega + dd^c \varphi)^n = \int_X \omega^n - \sum_{k=1}^{n-1} \int_Z (\omega + dd^c \varphi)^k \wedge \omega^{n-k},$$

where Z is the singular set of φ . In particular,

$$\int_X (\omega + dd^c \varphi)^n \leq \int_X \omega^n.$$

Example Let $X = \mathbb{P}^n$, $n \ge 2$, and let ω be the Fubini-Study metric.Set

$$\varphi([z_0:z_1:\cdots:z_n]):=\log \frac{|z_1|}{|z|}, \quad z\in \mathbb{C}^{n+1}\setminus \{0\}.$$

Then $(\omega + dd^c \varphi)^n = 0.$

Sketch of proof of Theorem 2 For $k = 0, \ldots, n-1$

$$T_k := \mathbf{1}_{X \setminus Z} (\omega + dd^c \varphi)^k$$

is a closed positive current on X. Locally we have

$$(\omega + dd^{c}\varphi)^{n} = dd^{c}((g + \varphi)T_{n-1}) = \omega \wedge T_{n-1} + dd^{c}(\varphi T_{n-1})$$

and therefore

$$\int_X (\omega + dd^c \varphi)^n = \int_X \omega \wedge T_{n-1} = \int_X (\omega + dd^c \varphi)^{n-1} \wedge \omega - \int_Z (\omega + dd^c \varphi)^{n-1} \wedge \omega.$$

Continuing this way we will get the result.

Thank you!